Development of a Lightweight Inertial Gravimeter for Use on Board an Autonomous Underwater Vehicle: Measurement Principle, System Design and Sea Trial Mission
Abstract
:1. Introduction
2. Materials and Methods
2.1. GraviMob System Composition
2.2. GraviMob System Mathematical Model
2.3. GraviMob System Adjustment
2.3.1. Basic Equation of Adjustment
2.3.2. Overview of an User-Friendly Adjustment Method
2.3.3. Testing of the Adjustment Method
- installation of the GraviMob system in the climate chamber (Figure 4) in a given orientation;
- setting a temperature set point and recording the voltages delivered by the six accelerometers measuring specific force components and internal temperatures for 5 min, after stabilisation of the internal chamber temperature;
- repeating of step 2 after increasing the previous setpoint temperature by °C until the entire desired temperature range has been covered;
- repeating of the manipulation from step 1 by changing the orientation of the GraviMob until a significant number of orientations are obtained.
2.3.4. Orientation of the GraviMob System Inside the Submersible
2.4. Method for Processing GraviMob-Measured Data
- are respectively the longitude, latitude and ellipsoidal height of point P, and , their first and second time derivatives;
- are respectively the yaw, pitch and roll attitude angles of the AUV, and , their first and second time derivatives;
- are respectively the east, north and vertical components in the n-frame of the gravity vector , and , their first and second time derivatives.
- ,
- ,
- ,
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AUV | Autonomous Underwater Vehicle |
EKF | Extended Kalman Filter |
FOF | French Oceanographic Fleet |
GRACE | Gravity Recovery and Climate Experiment |
GraviMob | Mobile Gravimetry System |
GNSS | Global Navigation Satellite Systems |
GOCE | Gravity field and steady-state Ocean Circulation Explorer |
ICGEM | International Centre for Global Earth Models |
IFREMER | French National Institute for Ocean Science |
IGN | French National Institute of Geographic and Forest Information |
INS | Inertial Navigation System |
JAMSTEC | Japan Agency for Marine-Earth Science and Technology |
LAGEOS | LAser GEOdynamics Satellite |
LIMO-g | LIght MObile gravimetry system |
LOD | Length Of Day |
ROV | Remotely Operated Vehicle |
UKF | Unscented Kalman Filter |
USBL | Ultra-Short Baseline Position System |
UUV | Unmanned Underwater Vehicle |
SHOM | French Marine Hydrographic and Oceanographic Service |
Appendix A. Definition of Useful Coordinate Reference Frames
- The i-frame (inertial frame) is a non-rotating, inertial reference frame which has its origin at the centre O of the Earth and axes aligned with the directions of fixed stars (Figure A1). This frame consists of an orthogonal, right-handed axis set defined by the axes , and with coincident with the Earth’s polar axis assumed to be invariant in direction. The i-frame is the only reference frame where Newton’s Second Law of motion is valid.
- The e-frame (Earth frame) is the Earth fixed, reference frame used for location definition. Its origin is at the centre O of the Earth and axes are fixed with respect to the Earth (Figure A1). This frame consists of an orthogonal, right-handed axis set , , typically defined with parallel to the Earth’s polar axis and lying along the intersection of the Greenwich meridian with the Earth’s equatorial plane. The e-frame rotates with respect to the i-frame at a angular rate about the axis .
- The n-frame (navigation frame) is a local geographic frame which has its origin C at the point whose position is effectively measured by the AUV navigation system (Figure A1). The frame consists of an orthogonal, right-handed axis set whose axes , and are aligned respectively with the directions of east, north and the upward normal to a reference ellipsoid passing through the point C. Thus, the n-frame moves with the submersible and the movement of its origin C can be determined with respect to the e-frame using the AUV navigation system. The components of the gravity vector are usually expressed in the n-frame, thus giving respectively its east , north and vertical components.
- 4.
- The b-frame (body frame) consists of a orthogonal, right-handed axis set which axes , and are aligned respectively with the pitch, roll and yaw axes of the submersible. Its orientation with respect to the n-frame is used for defining the attitude of the submersible (Figure A2). In the paper, we assume that the b-frame and the n-frame have both the same origin C. The point C will henceforth be called the AUV reference point.
- 5.
- The s-frame (sensor frame) is an acceleration sensor coordinate frame with axes parallel to the sensor input axes of one given accelerometer (Figure A2). These axes are non-coplanar, but not necessarily orthogonal depending on both the design of the accelerometer supporting triad and the misalignments which affect unavoidably the sensor input axis directions. Each triad of accelerometers defines its own s-frame the origin of which is at the intersection of its three input axes. In the paper, we denote by (resp. ) the origin of the s-frame (resp. ) defined by the triad of accelerometers labelled by (resp. ).
- 6.
- The -frame (orthogonal sensor frame) is also an acceleration sensor coordinate frame whose origin is at (resp. ) for the triad (resp. ). Unlike the s-frame, the -frame is an orthogonal, right-handed reference frame whose x-axis is parallel to the x-axis of the s-frame (Figure A2). To be more specific, let be a set of three unit vectors of the -frame axes , and respectively. Let be a set of three orthogonal unit vectors of the -frame axes , and respectively. The vectors , , can be defined as follows:
- ;
- belongs to the plane defined by the two vectors and whilst being orthogonal to the vector ;
- .
Appendix B. Coordinate and Matrix Transformations
Appendix C. Explicit Forms of Transformation and Skew Symmetric Matrices
Appendix C.1. Earth Frame to Navigation Frame
Appendix C.2. Body Frame to Navigation Frame
- angle, clockwise rotation around the inital axis;
- angle, counter-clockwise rotation around the intermediate axis;
- angle, counter-clockwise rotation around the final axis.
Appendix C.3. Orthogonal Sensor Frame to Sensor Frame
Appendix C.4. Orthogonal Sensor Frame to Body Frame
- angle, counter-clockwise rotation around the inital z-axis;
- angle, counter-clockwise rotation around the intermediate y-axis;
- angle, counter-clockwise rotation around the final x-axis.
Appendix C.5. Earth Frame with Respect to Inertial Frame
Appendix C.6. Body Frame with Respect to Inertial Frame
Appendix D. Constrained Optimisation
References
- Herzig, P.M.; Hannington, M.D. Polymetallic Massive Sulfides and Gold Mineralization at Mid-Ocean Ridges and in Subduction-Related Environments; CRC Press: Boca Raton, FL, USA, 2000; pp. 347–368. [Google Scholar]
- Rona, P.A. Resources of the Sea Floor. Science 2003, 299, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Hannington, M.; Jamieson, J.; Monecke, T.; Petersen, S.; Beaulieu, S. The abundance of seafloor massive sulfide deposits. Geology 2011, 39, 1155–1158. [Google Scholar] [CrossRef]
- Escartín, J.; Lin, J. Ridge offsets, normal faulting, and gravity anomalies of slow spreading ridges. J. Geophys. Res. Solid Earth 1995, 100, 6163–6177. [Google Scholar] [CrossRef] [Green Version]
- Maia, M.; Goslin, J.; Gente, P. Evolution of the accretion processes along the Mid-Atlantic Ridge north of the Azores since 5.5 Ma: An insight into the interactions between the ridge and the plume. Geochem. Geophys. Geosyst. 2007, 8. [Google Scholar] [CrossRef] [Green Version]
- Maia, M.; Sichel, S.; Briais, A.; Brunelli, D.; Ligi, M.; Ferreira, N.; Campos, T.; Mougel, B.; Brehme, I.; Hémond, C.; et al. Extreme mantle uplift and exhumation along a transpressive transform fault. Nat. Geosci. 2016, 9, 619–623. [Google Scholar] [CrossRef] [Green Version]
- Ballu, V.; Dubois, J.; Deplus, C.; Diament, M.; Bonvalot, S. Crustal structure of the Mid-Atlantic Ridge south of the Kane Fracture Zone from seafloor and sea surface gravity data. J. Geophys. Res. Solid Earth 1998, 103, 2615–2631. [Google Scholar] [CrossRef] [Green Version]
- Evans, R.L. A seafloor gravity profile across the TAG Hydrothermal Mound. Geophys. Res. Lett. 1996, 23, 3447–3450. [Google Scholar] [CrossRef]
- Araya, A.; Kanazawa, T.; Shinohara, M.; Yamada, T.; Fujimoto, H.; Iizasa, K.; Ishihara, T. A gravity gradiometer to search for submarine ore deposits. In Proceedings of the 2011 IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, Tokyo, Japan, 5–8 April 2011; pp. 1–3. [Google Scholar] [CrossRef]
- Fujimoto, H.; Kanazawa, T.; Shinohara, M.; Araya, A.; Yamada, T.; Mochizuki, K.; Ishihara, T.; Iizasa, K. Development of a hybrid gravimeter system onboard an underwater vehicle. In Proceedings of the 2011 IEEE Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, Tokyo, Japan, 5–8 April 2011; pp. 1–3. [Google Scholar] [CrossRef]
- Araya, A.; Kanazawa, T.; Shinohara, M.; Yamada, T.; Fujimoto, H.; Iizasa, K.; Ishihara, T. Gravity gradiometer implemented in AUV for detection of seafloor massive sulfides. In Proceedings of the 2012 Oceans, Hampton Roads, VA, USA, 14–19 October 2012; pp. 1–4. [Google Scholar] [CrossRef]
- Shinohara, M.; Yamada, T.; Kanazawa, T.; Uehira, K.; Fujimoto, H.; Ishihara, T.; Araya, A.; Iizasa, K.; Tsukioka, S. Development of an underwater gravimeter and the first observation by using autonomous underwater vehicle. In Proceedings of the 2013 IEEE International Underwater Technology Symposium (UT), Tokyo, Japan, 5–8 March 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Araya, A.; Shinohara, M.; Kanazawa, T.; Fujimoto, H.; Yamada, T.; Ishihara, T.; Iizasa, K.; Tsukioka, S. Development and demonstration of a gravity gradiometer onboard an autonomous underwater vehicle for detecting massive subseafloor deposits. Ocean Eng. 2015, 105, 64–71. [Google Scholar] [CrossRef]
- Shinohara, M.; Yamada, T.; Ishihara, T.; Araya, A.; Kanazawa, T.; Fujimoto, H.; Uehira, K.; Tsukioka, S.; Omika, S.; Iizasa, K. Development of an underwater gravity measurement system using autonomous underwater vehicle for exploration of seafloor deposits. In Proceedings of the OCEANS 2015, Genova, Italy, 18–21 May 2015; pp. 1–7. [Google Scholar] [CrossRef]
- Shinohara, M.; Kanazawa, T.; Fujimoto, H.; Ishihara, T.; Yamada, T.; Araya, A.; Tsukioka, S.; Omika, S.; Yoshiume, T.; Mochizuki, M.; et al. Development of a High-Resolution Underwater Gravity Measurement System Installed on an Autonomous Underwater Vehicle. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1937–1941. [Google Scholar] [CrossRef]
- Ishihara, T.; Shinohara, M.; Fujimoto, H.; Kanazawa, T.; Araya, A.; Yamada, T.; Iizasa, K.; Tsukioka, S.; Omika, S.; Yoshiume, T.; et al. High-resolution gravity measurement aboard an autonomous underwater vehicle. Geophysics 2018, 83, G119–G135. [Google Scholar] [CrossRef]
- Kinsey, J.C.; Tivey, M.A.; Yoerger, D.R. Toward high-spatial resolution gravity surveying of the mid-ocean ridges with autonomous underwater vehicles. In Proceedings of the OCEANS 2008, Quebec City, QC, Canada, 15–18 September 2008; pp. 1–10. [Google Scholar] [CrossRef]
- Izraelevitz, J. Optimal trajectory generation for draped AUV gravity surveys. In Proceedings of the OCEANS 2011, Santander, Spain, 6–9 June 2011; pp. 1–8. [Google Scholar] [CrossRef]
- Kinsey, J.C.; Tivey, M.A.; Yoerger, D.R. Dynamics and navigation of autonomous underwater vehicles for submarine gravity surveying. Geophysics 2013, 78, G55–G68. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, J.; Zhang, K.; Yu, R. Experimental Study on Underwater Moving Gravity Measurement by Using Strapdown Gravimeter Based on AUV Platform. Mar. Geod. 2021, 44, 108–135. [Google Scholar] [CrossRef]
- Saint-Jean, B.d. Étude et Développement d’un Système de Gravimétrie Mobile. Ph.D. Thesis, Observatoire de Paris, Paris, France, 2008. [Google Scholar]
- Roussel, C. Expérimentation d’un Gravimètre Mobile Léger et Novateur pour la Mesure du Champ de Gravité en Fond de Mer. Ph.D. Thesis, Conservatoire National des Arts et Métiers (Cnam), Paris, France, 2017. [Google Scholar]
- El-Sheimy, N.; Hou, H.; Niu, X. Analysis and Modeling of Inertial Sensors Using Allan Variance. IEEE Trans. Instrum. Meas. 2008, 57, 140–149. [Google Scholar] [CrossRef]
- Jekeli, C. Inertial Navigation Systems with Geodetic Applications; Walter de Gruyter: Berlin, Germany, 2012. [Google Scholar] [CrossRef]
- Rogers, R.M. Applied Mathematics in Integrated Navigation Systems, 3rd ed.; American Institute of Aeronautics & Astronautics: Reston, VA, USA, 2007. [Google Scholar]
- Titterton, D.; Weston, J.; Weston, J. Strapdown Inertial Navigation Technology; IEE Radar, Sonar, Navigation and Avionics Series; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2004. [Google Scholar]
- Cai, S.; Zhang, K.; Wu, M.; Huang, Y. Long-Term Stability of the SGA-WZ Strapdown Airborne Gravimeter. Sensors 2012, 12, 11091–11099. [Google Scholar] [CrossRef]
- Moritz, H. Geodetic Reference System 1980. J. Geod. 2000, 74, 128–133. [Google Scholar] [CrossRef]
- Groten, E. Parameters of Common Relevance of Astronomy, Geodesy, and Geodynamics. J. Geod. 2000, 74, 134–140. [Google Scholar] [CrossRef]
- Schönemann, P.H. A generalized solution of the orthogonal procrustes problem. Psychometrika 1966, 31, 1–10. [Google Scholar] [CrossRef]
- Watson, G.A. Computing Helmert transformations. J. Comput. Appl. Math. 2006, 197, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Wu, W.; Wu, Y.; Lian, J. Improved iterative calibration for triaxial accelerometers based on the optimal observation. Sensors 2012, 12, 8157–8175. [Google Scholar] [CrossRef] [Green Version]
- Panahandeh, G.; Skog, I.; Jansson, M. Calibration of the accelerometer triad of an inertial measurement unit, maximum likelihood estimation and Cramer-Rao bound. In Proceedings of the 2010 International Conference on Indoor Positioning and Indoor Navigation, Zurich, Switzerland, 15–17 September 2010; pp. 1–6. [Google Scholar] [CrossRef] [Green Version]
- Julier, S.J.; Uhlmann, J.K. New extension of the Kalman filter to nonlinear systems. In Proceedings of the AeroSense ’97, Orlando, FL, USA, 21–25 April 1997; Volume 3068. [Google Scholar] [CrossRef]
- Bar-Shalom, Y.; Li, X.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software; Wiley: Hoboken, NJ, USA, 2001. [Google Scholar]
- Dmitriev, V.I.; Ingtem, Z.G. Numerical differentiation using spline functions. Comput. Math. Model. 2012, 23, 312–318. [Google Scholar] [CrossRef]
- Roussel, C.; Verdun, J.; Cali, J.; Maia, M.; d’EU, J.F. Integration of a strapdown gravimeter system in an autonomous underwater vehicle. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W5, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Maia, M. GRAVIMOB Cruise, L’Europe R/V; Sismer: Bologna, Italy, 2016. [Google Scholar] [CrossRef]
- Wessel, P.; Luis, J.F.; Uieda, L.; Scharroo, R.; Wobbe, F.; Smith, W.H.F.; Tian, D. The Generic Mapping Tools Version 6. Geochem. Geophys. Geosyst. 2019, 20, 5556–5564. [Google Scholar] [CrossRef] [Green Version]
- Ince, E.S.; Barthelmes, F.; Reißland, S.; Elger, K.; Förste, C.; Flechtner, F.; Schuh, H. ICGEM—15 years of successful collection and distribution of global gravitational models, associated services, and future plans. Earth Syst. Sci. Data 2019, 11, 647–674. [Google Scholar] [CrossRef] [Green Version]
- Lemoine, J.M.; Biancale, R.; Reinquin, F.; Bourgogne, S.; Gégout, P. CNES/GRGS RL04 Earth Gravity Field Models, from GRACE and SLR Data; GFZ Data Services: Potsdam, Germany, 2019. [Google Scholar] [CrossRef]
- Brockmann, J.M.; Schubert, T.; Schuh, W.D. An Improved Model of the Earth’s Static Gravity Field Solely Derived from Reprocessed GOCE Data. Surv. Geophys. 2021, 42, 277–316. [Google Scholar] [CrossRef]
- Zingerle, P.; Pail, R.; Gruber, T.; Oikonomidou, X. The combined global gravity field model XGM2019e. J. Geod. 2020, 94, 66. [Google Scholar] [CrossRef]
- Liang, W.; Li, J.; Xu, X.; Zhang, S.; Zhao, Y. A High-Resolution Earth’s Gravity Field Model SGG-UGM-2 from GOCE, GRACE, Satellite Altimetry, and EGM2008. Engineering 2020, 6, 860–878. [Google Scholar] [CrossRef]
- Verdun, J.; Damenet, N.; Cali, J. Moving-base vector gravimetry data processing based on optimal, physically sensible evolution models. In Proceedings of the IAG Symposium on Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM 2013), St. Petersburg, Russia, 1–4 October 2013; pp. 41–47. [Google Scholar]
- Newtonian Methods. In Numerical Optimization: Theoretical and Practical Aspects; Bonnans, J.F.; Gilbert, J.C.; Lemaréchal, C.; Sagastizábal, C.A. (Eds.) Springer: Berlin/Heidelberg, Germany, 2006; pp. 51–66. [Google Scholar] [CrossRef]
Technical Feature | Value or Range of Values |
---|---|
Possible measuring range | ( ) |
Tailored measuring range | () |
Bias | < |
Scale factor (output current) | between and |
Scale factor (output voltage) | between and |
Temperature sensitivity | 15 (15 ) |
Residuals | Triad | Triad | Unit |
---|---|---|---|
Mean | 0 | 0 | mGal |
Standard | mGal | ||
Parameters | Triad | Triad | Unit |
(value error) | |||
mV | |||
mV | |||
mV |
Angles | Triad | Triad | Unit |
---|---|---|---|
decimal degrees | |||
decimal degrees | |||
decimal degrees |
Position | Value | Unit |
---|---|---|
Attitude | Value | Unit |
Gravity | Value | Unit |
Model Number | Model Name | Year | Data | Degree | Reference |
---|---|---|---|---|---|
1 | EIGEN-GRGS.RL04.MEAN-FIELD | 2019 | S | 300 | [41] |
2 | GO_CONS_GCF_2_TIM_R6 | 2019 | S | 300 | [42] |
3 | XGM2019e_2159 | 2019 | A, G, S, T | 2190 | [43] |
4 | SGG-UGM-2 | 2020 | A, M, S | 2190 | [44] |
EW Vertical Deflection (Arcsec) | NS Vertical Deflection (Arcsec) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Model | 1 | 2 | 3 | 4 | Model | 1 | 2 | 3 | 4 |
Mean | 3.56 | 3.53 | 3.6 | 3.0 | Mean | —8.43 | —8.73 | —9 | —10 |
Min | 3.46 | 3.30 | 2.9 | 2.7 | Min | —8.46 | —8.77 | —13 | —15 |
Max | 3.64 | 3.73 | 4.7 | 4.0 | Max | —8.35 | —8.64 | —5 | —6 |
Std | 0.05 | 0.12 | 0.5 | 0.4 | Std | 0.03 | 0.04 | 3 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdun, J.; Roussel, C.; Cali, J.; Maia, M.; D’Eu, J.-F.; Kharbou, O.; Poitou, C.; Ammann, J.; Durand, F.; Bouhier, M.-É. Development of a Lightweight Inertial Gravimeter for Use on Board an Autonomous Underwater Vehicle: Measurement Principle, System Design and Sea Trial Mission. Remote Sens. 2022, 14, 2513. https://doi.org/10.3390/rs14112513
Verdun J, Roussel C, Cali J, Maia M, D’Eu J-F, Kharbou O, Poitou C, Ammann J, Durand F, Bouhier M-É. Development of a Lightweight Inertial Gravimeter for Use on Board an Autonomous Underwater Vehicle: Measurement Principle, System Design and Sea Trial Mission. Remote Sensing. 2022; 14(11):2513. https://doi.org/10.3390/rs14112513
Chicago/Turabian StyleVerdun, Jérôme, Clément Roussel, José Cali, Marcia Maia, Jean-François D’Eu, Ossama Kharbou, Charles Poitou, Jérôme Ammann, Frédéric Durand, and Marie-Édith Bouhier. 2022. "Development of a Lightweight Inertial Gravimeter for Use on Board an Autonomous Underwater Vehicle: Measurement Principle, System Design and Sea Trial Mission" Remote Sensing 14, no. 11: 2513. https://doi.org/10.3390/rs14112513
APA StyleVerdun, J., Roussel, C., Cali, J., Maia, M., D’Eu, J. -F., Kharbou, O., Poitou, C., Ammann, J., Durand, F., & Bouhier, M. -É. (2022). Development of a Lightweight Inertial Gravimeter for Use on Board an Autonomous Underwater Vehicle: Measurement Principle, System Design and Sea Trial Mission. Remote Sensing, 14(11), 2513. https://doi.org/10.3390/rs14112513