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Abstract: The purpose of this paper is to present the design, development and testing of an innovative
instrument called GraviMob, which allows performing dynamic measurements of underwater gravity
anomalies. After recalling the interest in underwater gravimetry, we describe the system, the core of
which consists of triads of accelerometers rigidly attached to an Autonomous Underwater Vehicle
(AUV). The article also presents the mathematical methods for estimating the east, north and vertical
components of the local gravity vector. An unscented Kalman filter, integrating AUV position and
orientation data, performs estimation of gravity in a frame adapted to its interpretation. To assess its
performance, GraviMob was tested in the Mediterranean Sea during the year 2016. A comparison of
the surface gravimetric signal previously acquired by the French Navy indicates that the maximum
discrepancy between the vertical gravity component and its reference is below 4 mGal. Components
of the vertical deflection calculated from GraviMob’s measurements were compared with those
calculated from recent gravity field models. While a remarkable agreement was found on the north
component, there remains a discrepancy (7 arcsec) on the east component which can be largely
reduced by refining the estimation of the orientation of GraviMob’s sensitive axes in the AUV.

Keywords: deep-sea exploration; mobile gravimetry; vector strapdown gravity sensor; underwater
gravity anomalies; autonomous underwater vehicle (AUV); Kalman filtering

1. Introduction

Deep-sea exploration and sustainable resource exploitation have generated consider-
able research interest in both basic and applied geophysical research. The development
of new technologies for deep-sea vehicles such as high-resolution acoustic sonars, multi-
beam echo-sounders and magnetometers, allows very detailed images of the seafloor to
be produced. These developments have not only improved our understanding of the
dynamics of major faults, mid-oceanic ridges and hydrothermal vents but also opened
new perspectives on the exploration and exploitation of mineral resources in deep wa-
ter [1–3]. Today, the study of the structure of the seafloor at tens to a few kilometres
largely relies on high-resolution bathymetry and magnetism, particularly when conducted
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close to the seafloor onboard Autonomous Underwater Vehicles (AUVs). Meanwhile, sea
surface gravity surveys carried out onboard oceanographic vessels have revolutionised
our vision of the structure of the oceanic crust revealing a high spatial and temporal
variability [4–6]. However, the water depth that separates gravity measurements from grav-
ity sources (2 to 5 km) greatly attenuates most high-frequency gravity signals, indispensable
to imaging the smallest seafloor geological structures. Some rather old experiments of
seafloor deployment of a customised static gravimeter installable on sea-bottom from a sub-
marine or a Remotely Operated Vehicle (ROV), have significantly increased our knowledge
of the paths of percolation of seawater and fracturing [7] and of the in-depth distribution
and density of hydrothermal sulphide deposits [8]. Despite these indisputable advances,
such experiments have proven to be less efficient in terms of spatial resolution since the ben-
efit of manoeuvring near seafloor gravity sources is offset by the uneven spatial distribution
of gravity measurements. Today, available mobile gravimetric systems are still cumbersome
and energy-intensive, which in particular prohibits their installation on light submarine
vehicles, such as AUVs. Hence, the development of a new type of gravimetric sensor
with a small footprint and low energy consumption, suitable for installation onboard AUV
appears essential to meet the problem posed by the measurement of the Earth’s gravity
field near seafloor with unprecedented accuracy and spatial resolution.

The development of gravity sensors for underwater vehicles is a key project for some
of the most prestigious institutes working on ocean sciences, most notably the Woods
Hole Oceanographic Institute, USA, and the Japan Agency for Marine-Earth Science and
Technology (JAMSTEC), Japan. Research at JAMSTEC and the University of Tokyo is
probably the most advanced. The Japanese system consists of a LaCoste-Romberg S-
174 Micro-g gravimeter mounted on a gimbal mechanism and a gradiometer consisting
of two astatic pendulums also mounted on a gimbal platform [9–11]. Since 2012, this
system has been repeatedly tested on board the submersible URASHIMA [12–15]. On
the basis of sea trials, the accuracy of this system is of the order of a tenth of mGal
(1 mGal = 10−5 m s−2) for gravimetric measurement (RMS of cross over errors after lev-
elling) [16]. To our knowledge, the Japanese team is the first to have calculated and
interpreted Bouguer gravity anomalies from AUV data acquired at sea. The dimensions of
the Japanese AUV (1.3 m in width, 10 m in length, 1.5 m in height), much larger than those
of the other AUVs, allowed them to adopt a classical approach, with a sensor based on a
terrestrial gravimeter (a Lacoste-Romberg) mounted on a compensation system controlled
by gyros. Their prototype is, however, very greedy in energy and space and difficult to
transpose to other AUVs of smaller dimensions.

For its part, the American team from the Department of Geology and Geophysics at
the Woods Hole Oceanographic Institute is focusing its efforts on modelling the navigation
of autonomous underwater vehicles [17–19]. On the basis of numerical simulations, the
team is seeking to reduce, by filtering and smoothing, the impact of uncertainties affecting
the vertical positioning of the underwater vehicle on the restitution of the underwater
gravity field. This work does not mention the development of new sensors, which suggests
the adaptation and use of terrestrial gravity instruments, such as relative gravimeters, on
board autonomous underwater vehicles that would be verticalised by means of a stabilised
platform.

A recent experiment of gravity measurement onboard an unmanned underwater
vehicle (UUV) and using a strapdown sensor was carried out by a Chinese team in Mulan
Lake, Wuhan City, Hubei Province, China [20]. The survey was carried out using a small
UUV BQR800 (1.55 m in length, 0.87 m in width, 0.81 m in height) remotely operated
at a depth of 8 to 20 m along a 6 km profile. The gravity measurements were delivered
by a dg-M shipborne strapdown gravimeter of 1 mGal accuracy developed by Hunan
INS Technology Co., Ltd. Submersible positioning and orientation were ensured by a
set of positioning sensors consisting of an inertial navigation system, a short baseline
acoustic system, (accuracy: 1 m at 100 m distance) an ultrasonic Doppler velocimeter
(accuracy: 0.1 cm/s) and a depth gauge (accuracy: 2 mm). According to the Chinese
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team’s findings, based on the analysis of six repeated surface and underwater profiles, the
accuracy of the system reached 0.42 mGal. These results tend to demonstrate the feasibility
of mobile underwater gravimetry only in lakes and need to be confirmed in the underwater
environment at greater depths, where navigation conditions are more difficult.

The purpose of this study is to present the design, development and testing of an inno-
vative mobile gravity sensor that allows the dynamic measurement of the Earth’s gravity
anomalies near the ocean floor. This instrument, named GraviMob (Mobile Gravimetry
System), is inspired by the LIMO-g system (Light Mobile Gravimetry System) whose
development was initiated in 1999 by the French National Institute of Geographic and
Forest Information (IGN), then studied successively during the doctorates of Bertrand de
Saint-Jean [21] and Clément Roussel [22]. Compared to competing systems, GraviMob is
the only one that can measure the gravity vector by determining its east, north and vertical
components. GraviMob is a lightweight, low power consumption sensor that can be easily
integrated on a small AUV such as those used by the French Oceanographic Fleet (FOF).
In this article, Section 2 is entirely devoted to the description of the GraviMob system and
the data processing methods. We first present the sensor we have developed, and the
carrier vehicle used to test the GraviMob system (Section 2.1). The mathematical model of
the GraviMob system (Section 2.2) and the methodology used to determine the internal
parameters of the system (Section 2.3) are then discussed in detail. Finally, the method of
processing the GraviMob measurements together with the positioning and orientation data
of the carrier vehicle is fully explained (Section 2.4). The results of the GraviMob system
experimentation in the Mediterranean Sea are described in Section 3. Planned modifications
to the GraviMob system to improve its performance are discussed in Section 4. Additional
information necessary for the understanding of the article is given in the appendices. Defi-
nition of useful coordinate reference frames and formulae of coordinate changes are given
in Appendices A and B. Explicit forms of transformation and skew symmetric matrices
are provided in Appendix C. Finally, a constrained optimisation method is described in
Appendix D.

2. Materials and Methods
2.1. GraviMob System Composition

GraviMob system essentially consists of one accelerometer sensor which itself con-
tains six QFLEX-QA 3000 unidirectional electrostatic accelerometers manufactured by the
American company Honeywell (Figure 1a). The working principle of each electrostatic
accelerometer is the following: a proof mass hanging to a flexible beam and exposed to a
magnetic field from an electromagnet, is kept at rest thanks to the restoring magnetic force
exerted on it. If the acceleration of the proof mass varies, the resulting displacement of
the proof mass relative to the sensor box is measured by a capacitive displacement sensor,
that generates a signal proportional to the displacement amplitude. This signal is then fed
back to the control system that determines the intensity of the current needed to supply the
electromagnet so as to make the proof mass return to its rest position.

The six accelerometers are mounted in two triads whose two-by-two orthogonal axes
allow the components of the specific force vector to be measured (Figure 1b). Moreover,
these two triads are rigidly mounted in the carrier vehicle used for performing gravity sur-
veys (Figure 1c,d). Each accelerometer from one of the two triads provides a measurement
of the specific force component along its sensitive axis. The specific force is tantamount to
the force per unit mass that has to be exerted on the proof mass of one given accelerometer
to maintain it motionless with respect to the sensor box. By itself, the sole measurements of
the specific force components do not permit those of the gravitational force to be estimated.
They actually need to be corrected from the motion-induced accelerations experienced by
the proof mass. For that reason, GraviMob jointly makes use of position data provided by
an additional positioning system. Such position data are commonly expressed in a terres-
trial reference frame, whose axes are not aligned with accelerometer sensitive axes. This is
why, as we shall see subsequently through mathematical relationships (see Section 2.2), the
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joint determination of the carrier vehicle orientation is essential. In our experiments, the
Autonomous Underwater Vehicle (AUV) Asterx, operated by IFREMER, was used as the
carrier vehicle (Figure 2).

Triad

Triad

Figure 1. (a) QFLEX QA-3000 electrostatic accelerometers manufactured by Honeywell. (b) Picture
showing GraviMob’s accelerometer sensor and its 24 bit digitiser. The two triads α and β each
consisted of 3 accelerometers, the axes of which are mutually orthogonal and are shown in the red
boxes. (c) Picture showing the glass sphere mounted in its frame itself screw-fixed into the AUV’s
front case. (d) Overall view of AUV Asterx. The red arrow points to the front case where the sensor
was installed.

A sophisticated navigation system on board allows measurements of the position and
the orientation of the AUV to be continuously acquired. The navigation system consists
of three distinct devices: an inertial navigation system (INS) from iXBlue company, an
ultrasonic Doppler velocimeter and an ultra-short baseline (USBL) positioning system,
that calculates the position by measuring the range from a vessel-mounted transceiver to
an acoustic transponder fitted to the AUV. The vessel in question, which also supports
the AUV operation by putting and getting back the submersible to its working site, is
itself accurately positioned with the aid of GNSS techniques. Unlike shipborne or airborne
gravity measurements, those acquired in the submarine domain are relatively undisturbed
by submersible-induced accelerations. Consequently, the measuring range of the accelerom-
eters can be significantly narrowed (Table 1), thus lessening the digitizing error at 0.02
mGal using a 24 bit digitiser with a sampling frequency at 2 Hz.
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Figure 2. View of IFREMER’s AUV Asterx. This submersible is 4.5 m long, 2.1 m wide (fins included)
and 0.71 m in diameter with a total mass of 850 kg. It is powered by 50V/16kWh Li-ion batteries. Its
autonomy is about 16 h. The maximum immersion depth of Asterx is 2650 m.

Table 1. Technical data of QFLEX QA-3000 electrostatic accelerometers. The letter “g” stands for an
acceleration of 10 m s−2, that is 106 mGal. The possible measuring range of the accelerometers has
been deliberately narrowed so as to lessen the digitizing error. A voltage offset has therefore to be
applied to the accelerometer of each triad, the sensitive axis of which is most often in a direction
close to the vertical. The electrical arrangement of the sensor only allows for specific force intensities
below g/5.32 to be measured. Above this value, the accelerometers enter saturation plage. Therefore,
the value of the limit tilt angle beyond which horizontal accelerometers enter saturation is 10.8 deg,
value deduced from arcsin(1/5.32). A voltage source that offers at least 5µV accuracy is crucial since
a variation of such a value would be interpreted as a 1 mGal variation of the acceleration.

Technical Feature Value or Range of Values

Possible measuring range ±60 g (±60× 106 mGal)

Tailored measuring range ± 1
5.32

g (±187, 970 mGal)

Bias <4× 103 g (4000 mGal)

Scale factor (output current) between 1.20 and 1.46 mA/g

Scale factor (output voltage) between 4.80 and 5.84 V/g

Temperature sensitivity 15 µg/◦C (15 mGal/◦C)

The accelerometers’ noise level proved to be at 1 mGal/
√

Hz based on an experimental
noise analysis drawn upon Allan variance [23]. Through the combined processing of
all positioning sensors’ data, the overall planimetric and altimetric accuracies of AUV
positioning have been estimated at 1 to 2.5 m and 30 cm respectively. The attitude angles
jointly determined consist of the yaw angle measured at 0.05 deg accuracy and the pitch
and roll angles both measured at 0.005 deg accuracy. The whole apparatus including the
two accelerometer triads and the 24 bit digitiser, is enclosed in a 17′′ diameter (43.2 cm)



Remote Sens. 2022, 14, 2513 6 of 44

watertight sealed glass sphere. The sphere is locked in an ad hoc plastic frame that is
screw-fixed into the front case of the AUV. The overall weight of the system is of some
40 kg and its proper function requires a power supply of 2.5 W. It should be noted that
the sphere is entirely immersed during gravity survey operations, thus allowing a thermal
balance between the gas inside the sphere and sea water to be achieved. The temperature
stability inside the sphere stems exclusively from this thermal balance, with no need for an
additional temperature-stabilizing system.

2.2. GraviMob System Mathematical Model

This subsection is devoted to deriving the fundamental equation that links gravity to
the measurements performed by the GraviMob system. We first need to define the coordi-
nate reference frames used in the paper (see Appendix A) and describe some properties of
the transformation matrix between two reference frames (see Appendix B). The explicit
forms of both transformation matrices and skew symmetric matrices are also given in
Appendix C. We draw heavily on the relationships in Jekeli [24], Rogers [25] and Titterton
et al. [26] where greater mathematical detail is given. In the following, we will denote P
the point of the carrier vehicle at which gravity is actually determined.

Let us consider one 3D accelerometer labelled by α. Let Xi
Mα

be the one column matrix
which contains the coordinate in the i-frame of the position vector of the proof mass inside
the accelerometer case. The proof mass is located at the point Mα where acceleration
measurement is performed, which also coincides with the origin of the s-frame sα defined
by the accelerometer α. According to Newton’s Second Law applied to the proof mass, the
second-order time derivative Ẍi

Mα
of Xi

Mα
may be expressed as

Ẍi
Mα

= gi
Mα

+ ai
Mα

, (1)

where gi
Mα

is the gravitational acceleration and ai
Mα

is the restoring force per unit of mass,
that is the specific force exerted on the proof mass inside the sensor, both projected onto
i-frame axes.

The position vector Xi
Mα

can be related to the position vector of the point P expressed
in the e-frame, Xe

P, as
Xi

Mα
= Ci

eXe
P + Ci

bLb
α , (2)

where Ci
e and Ci

b are the direction cosine matrices of the i-frame relative to the e-frame and
b-frame respectively, and Lb

α the lever arm between the point P and the measuring point
Mα of the accelerometer α. It must be emphasised that the restoring force aMα

maintains the
proof mass fixed with respect to the case of the sensor which is itself fixed with respect to
the b-frame. As a consequence, the components of the one column matrix Lb

α are constants
independent of time.

The specific force ai
Mα

is directly related to the accelerometer measurements, that is
asα

Mα
components where sα is the s-frame associated with the accelerometer α, by

ai
Mα

= Ci
nCn

b Cb
sα

asα
Mα

, (3)

where Ci
n and Cn

b are the orthogonal transformation matrices from the i-frame to the
navigation frame n-frame, and from the body frame b-frame to the n-frame respectively,
and Cb

sα
is the transformation matrix not necessarily orthogonal from the s-frame to the

b-frame. The elements of matrix Cb
sα

can be determined once and for all for each 3D
accelerometer during the design of the system. Some authors [27] suggest that these
elements could vary in the long term and should therefore be steadily upgraded by means
of pre-calibration or on-the-fly methods. The description of such a method will be dealt
with specifically in Section 2.3.
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By differentiating Equation (2) twice with respect to time according to Equation (A12)
and given the fact that Lb

α does not depend on time (L̇b
Mα

= L̈b
Mα

= 0), we obtain

Ẍi
Mα

= Ci
e
[
Ẍe

P + 2Ωe
ieẊe

P +
(
Ωe

ieΩe
ie + Ω̇e

ie
)
Xe

P
]
+ Ci

b

(
Ωb

ibΩb
ib + Ω̇b

ib

)
Lb

α , (4)

where Ωe
ie is the skew symmetric matrix associated with the rotation of the e-frame with

respect to the i-frame and Ω̇e
ie its first-order time derivative, both expressed in the e-frame,

and similarly Ωb
ib is the skew symmetric matrix associated with the rotation of the b-frame

with respect to the i-frame and Ω̇b
ib its first-order time derivative, both expressed in the

b-frame.
According to Equations (1) and (4), the gravitational acceleration gi

Mα
given in the

i-frame may be expressed as

gi
Mα

= Ci
e
[
Ẍe

P + 2Ωe
ieẊe

P +
(
Ωe

ieΩe
ie + Ω̇e

ie
)
Xe

P
]
+ Ci

b

(
Ωb

ibΩb
ib + Ω̇b

ib

)
Lb

α − ai
Mα

. (5)

By multiplying both sides of Equation (5) by matrix Cn
i using equations Cn

i Ci
e = Cn

e ,
Cn

i Ci
b = Cn

b , Cn
i Ci

n = I3 and Equation (3), we obtain

gn
Mα

= Cn
e
[
Ẍe

P + 2Ωe
ieẊe

P +
(
Ωe

ieΩe
ie + Ω̇e

ie
)
Xe

P
]
+ Cn

b

(
Ωb

ibΩb
ib + Ω̇b

ib

)
Lb

α

−Cn
b Cb

sα
asα

Mα
. (6)

This equation relates the components of the gravitational acceleration to the three vectors
corresponding respectively to the position, velocity and acceleration of the point P, the
specific force and the lever-arm, all of those being defined in the b-frame. By assuming
Lb

α = 0 in Equation (6) and expressing Ẍe
P as a function of the remaining terms in (6), we

obtain the so-called navigation equation in the e-frame already derived by Jekeli [24].
The gravity vector denoted by gn

Mα
is then deduced from the gravitation vector by

subtracting the centripetal acceleration Ωe
ieΩe

ieXe
Mα

due to the Earth’s rotation expressed in
the n-frame, thus giving:

gn
Mα

= gn
Mα
− Cn

e Ωe
ieΩe

ieXe
Mα

, (7)

where the direction cosine matrix Cn
e depends only on the position of point P relative to

the e-frame, Ωe
ie is the skew symmetric matrix of the Earth’s own rotation around the polar

axis and the position vector of point P in the e-frame, Xe
Mα

, may be expressed as:

Xe
Mα

= Xe
P + Ce

nCn
b Lb

α. (8)

The equation giving the gravity vector can be deduced by combining Equations (6)–(8); it
thus follows:

gn
Mα

= Cn
e
[
Ẍe

P + 2Ωe
ieẊe

P + Ω̇e
ieXe

P
]
+
[
Cn

b

(
Ωb

ibΩb
ib + Ω̇b

ib

)
− Cn

e Ωe
ieΩe

ieCe
nCn

b

]
Lb

α

−Cn
b Cb

sα
asα

Mα
. (9)

Equation (9) may also be expressed for the second accelerometer triad indicated by β as
follows:

gn
Mβ

= Cn
e
[
Ẍe

P + 2Ωe
ieẊe

P + Ω̇e
ieXe

P
]
+
[
Cn

b

(
Ωb

ibΩb
ib + Ω̇b

ib

)
− Cn

e Ωe
ieΩe

ieCe
nCn

b

]
Lb

β

−Cn
b Cb

sβ
a

sβ

Mβ
. (10)

The presence of two accelerometric triads makes it possible to avoid the term relative to
the lever arm. This remains true as long as the point P above mentioned is such that
−−→
PMα = Lα = −−−→PMβ = −Lβ, i.e., in the case where point P is exactly located in the middle
of the segment [Mα Mβ]. In that case, combining Equations (9) and (10) as an arithmetic
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average leads to a simple equation where all terms related to the lever arm have cancelled
each other out:

1
2

(
gn

Mα
+ gn

Mβ

)
= Cn

e
[
Ẍe

P + 2Ωe
ieẊe

P + Ω̇e
ieXe

P
]
− 1

2
Cn

b

(
Cb

sα
asα

Mα
+ Cb

sβ
a

sβ

Mβ

)
. (11)

Under the above hypotheses, Equation (11) can also be regarded as a second-order approxi-
mate of the gravity vector gn

P at point P expressed in the n-frame. Indeed, we can express
gn

Mα
and gn

Mβ
in the following expansions about, respectively, the lever arms Ln

α and Ln
β:

gn
Mα

= gn
P + JP(Xe

P)L
n
α + ‖Ln

α‖ εα(Ln
α), (12)

gn
Mβ

= gn
P + JP(Xe

P)L
n
β + ‖Ln

β‖ εβ

(
Ln

β

)
, (13)

where JP
(
Xe

P
)

corresponds to the Jacobian matrix at point P of the function defined from
R3 to R3 that relates every position vector Xe

M to the gravity vector gn
M at point M, for

a = α, β, ‖Ln
a‖ denotes the Euclidian norm of vector Ln

a , and εa stands for a vectorial
function such that:

εa(Ln
a ) −→‖Ln

a ‖→0
0. (14)

Provided that Ln
α = − Ln

β, the arithmetic average (11) obtained by Equations (12) and (13)
is then given by:

1
2

(
gn

Mα
+ gn

Mβ

)
= gn

P +
1
2
‖Ln

α‖
(

εα(Ln
α) + εβ

(
Ln

β

))
, (15)

which indicates that the gravity vector gn
P differs from the arithmetic average (Equation (11))

solely by one second order term proportional to ‖Ln
a‖2. This approximation is all the more

accurate as the length of the lever arm ‖Ln
a‖ is small compared to that of the position

vector Xe
P. We will now adopt the following expression of the gravity vector at point P:

gn
P = Cn

e
[
Ẍe

P + 2Ωe
ieẊe

P + Ω̇e
ieXe

P
]
− 1

2
Cn

b

(
Cb

sα
asα

Mα
+ Cb

sβ
a

sβ

Mβ

)
. (16)

By a similar approach, an expression of gravitational acceleration gn
P at point P can be

established and expressed as follows:

gn
P = Cn

e
[
Ẍe

P + 2Ωe
ieẊe

P +
(
Ωe

ieΩe
ie + Ω̇e

ie
)
Xe

P
]
− 1

2
Cn

b

(
Cb

sα
asα

Mα
+ Cb

sβ
a

sβ

Mβ

)
. (17)

Among the terms that compose Equation (16) (or (17)) is Ω̇e
ieXe

P, which explicitly
depends on fluctuations in the Earth’s angular rate of rotation. Let ωe be the value of the
Earth’s angular rate of rotation, then we can state that:

‖Ω̇e
ieXe

P‖ ≤ |ω̇e|‖Xe
P‖. (18)

To estimate an upper bound of this term, we consider a major contribution to the time
variations of the Earth’s angular rate of rotation, that comes from the bimonthly fluctuation
of the Length Of Day (LOD) estimated at 0.5 milliseconds. If δLOD denotes the variation
of the length of day during the time interval δt, then the time variation ω̇e of the Earth’s
angular rate of rotation may be expressed as:

ω̇e = − ωe

LOD
δLOD

δt
. (19)
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From the following numerical values [28,29]:

ωe = 7.292115× 10−5 rad s−1,

LOD = 86, 400 s,

δLOD = 1 ms,

δt = 0.5 month,

‖Xe
P‖ = 6, 378, 137 m,

we can obtain the following reasonable estimates of |ω̇e| and |ω̇e|‖Xe
P‖:

|ω̇e| ' 10−18 rad s−2 ;

|ω̇e|‖Xe
P‖ ' 10−11 m s−2 = 10−6 mGal.

According to the inequality (18) and given the level of noise of GraviMob accelerometers
at 1 mGal/

√
Hz, the term Ω̇e

ieXe
P can be neglected in Equations (16) and (17). Once the

term Ω̇e
ieXe

P has been removed, Equation (16) (resp. (17)) is the desired gravity (resp.
gravitational acceleration) observation equation:

gn
P = Cn

e
[
Ẍe

P + 2Ωe
ieẊe

P
]
− 1

2
Cn

b

(
Cb

sα
asα

Mα
+ Cb

sβ
a

sβ

Mβ

)
, (20)

resp. gn
P = Cn

e
[
Ẍe

P + 2Ωe
ieẊe

P + Ωe
ieΩe

ieXe
P
]
− 1

2
Cn

b

(
Cb

sα
asα

Mα
+ Cb

sβ
a

sβ

Mβ

)
. (21)

Finally, it should be noted that since both accelerometer triads are placed at the front of

the AUV, there is an offset Lb
C =

[−−→
PC

]b
, where

[−−→
PC

]b
stands for the components of vector

−−→
PC in the b-frame, between point P and the point C (AUV reference point) effectively
positioned by the positioning system of the AUV. The position of point P, Xe

P, can only
be determined providing the position Xe

C given by the AUV positioning system and the
vector Lb

C joining point P to the point C. The components of this vector can be accurately
determined from a 3D geometrical model describing the AUV and the accelerometer triads.
The position vector Xe

P can then be related to the position vector of the point C, Xe
C, as

Xe
P = Xe

C + Ce
nCn

b Lb
C. (22)

A major improvement in the design of the GraviMob system would be to place the posi-
tioning system so that the points P and C coincide (Lb

C = 0). This configuration would be
possible by placing the INS in a central position between the two triads, which could be
considered for a future version of the GraviMob system.

2.3. GraviMob System Adjustment
2.3.1. Basic Equation of Adjustment

In practice, the signals delivered by each triad of accelerometers consist of three
electrical voltages, which are also affected by biases, i.e., offset voltages even when the
sensors are not accelerated. Let Vsα be the column vector whose components correspond to
the three electrical voltages measured in the triad α. The following reasoning will remain
valid in all respects for the triad β. Assuming a linear response of the accelerometers, the
relationship that relates this vector to the specific force asα

Mα
may be expressed as:

Vsα = Kαasα
Mα

+ Vsα
0 , (23)
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where Kα is a 3× 3 diagonal matrix consisting of scale factors and Vsα
0 is the vector of the

three electrical voltage biases. For the purpose of performing adjustment, the relation (23)
has to be slightly modified as follows:

Vsα = KαCsα
so aso

Mα
+ Vsα

0 , (24)

where Csα
so is the transformation matrix from the so-frame to the s-frame corresponding to

the triad α. It should be recalled that the axes of s-frame are not necessarily orthogonal due
to misalignments of accelerometer sensitive axes. The matrix Csα

so is thus non orthogonal.
Moreover, the axes of so-frame are not necessarily aligned with those of b-frame. This point
will be dealt with at the end of Section 2.3. Adjustment of GraviMob system consists of
each triad in estimating GraviMob’s internal parameters, that is the bias vector Vsα

0 and the
elements of matrices Kα and Csα

so through experimental painstaking techniques, that can be
carried out in laboratory just before the survey.

2.3.2. Overview of an User-Friendly Adjustment Method

In general terms the idea of adjustment methods consists in collecting several mea-
surements of Vsα and asα

Mα
while keeping the system stationary. In that case, the system

measures only the gravity vector and thus the amplitudes of the three signals delivered
by the triad depend essentially on the gravity intensity and the orientation of the system.
Mathematically speaking, if gn

Mα
denotes the gravity vector at the location of the triad, the

specific force asα
Mα

may be related to the gravity vector given the transformation matrix Csα
n

from the n-frame to the s-frame by:

as
Mα

= −Cs
ngn

Mα
. (25)

By carrying out static measurements with the system tilted in N different orientations
(Figure 3), N pairs (

asα
Mα

, Vsα

)
i
, i = 1, 2, . . . , N

can be formed, that are theoretically linked by Equation (24). The system adjustment,
therefore, amounts to estimating the best parameter values consistent with the N pairs
obtained from static measurements.

Let kx, ky, kz be the three scale factors such that the matrix Kα may be expressed as:

Kα =

 kx 0 0
0 ky 0
0 0 kz

. (26)

In the case where kx = ky = kz and the reference frames s-frame and so-frame are
orthogonal, the system adjustment is tantamount to solving the so-called orthogonal
Procrustes problem whose solution can be found in Schönemann [30]. In the more general
case where kx 6= ky 6= kz and s-frame and so-frame are not orthogonal, the Procrustes
solution is no longer valid. It is then necessary to use an iterative search of GraviMob’s
internal parameters [31]. The method we adopted is detailed in Yang et al. [32]. It assumes
only the prior determination of gravity vector magnitude at the site of experimentation. In
order to give the explicit mathematical formulation of the method, the following explicit
notations should be used:

(Vsα)k =

 vx,i
vy,i
vz,i

, (27)
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where vx,i, vy,i, vz,i are the three electrical voltages given by the triad α for the i-th orienta-
tion of GraviMob system; (

aso

Mα

)
k
= ‖gn

Mα
‖

 cx,i
cy,i
cz,i

, (28)

where ‖gn
Mα
‖ denotes the magnitude of the local gravity vector and cx,i, cy,i, cz,i are the

three direction cosines such that ‖gn
Mα
‖ cx,i, ‖gn

Mα
‖ cy,i, ‖gn

Mα
‖ cz,i correspond respectively

to the three components of the gravity vector gn
Mα

once projected onto x, y and z-axes of
the so-frame for the i-th orientation of GraviMob system; this equation is equivalent with
Equation (25);

Csα
so =

 1 τxy τxz
0 τyy τyz
0 0 τzz

, (29)

denotes the non-orthogonal transformation matrix from the so-frame to the s-frame defined
in Appendix C from a formula given in Panahandeh et al. [33];

Vsα
0 =

 v0
x

v0
y

v0
z

, (30)

where v0
x, v0

y, v0
z are the three electrical voltage biases of the triad α. For the i-th orientation

of GraviMob system, Equation (24) may be explicitly expressed as: vx,i
vy,i
vz,i

 = ‖gn
Mα
‖

 kx 0 0
0 ky 0
0 0 kz

 1 τxy τxz
0 τyy τyz
0 0 τzz

 cx,i
cy,i
cz,i

 +

 v0
x

v0
y

v0
z



= ‖gn
Mα
‖

 kxx kxy kxz
0 kyy kyz
0 0 kzz

 cx,i
cy,i
cz,i

 +

 v0
x

v0
y

v0
z

, (31)

after having defined klm, l, m = x, y, z terms as follows:

kxx = kx,
kxy = kx τxy,
kxz = kx τxz,
kyy = ky τyy,
kyz = ky τyz,
kzz = kz τzz.

(32)

Given an initial set of N distinct orientations (N > 3) defined by direction cosines(
cx,i, cy,i, cz,i

)
, i = 1, 2, . . . , N, the six parameters kxx, kxy, kxz, kyy, kyz and kzz and the

three voltage biases v0
x, v0

y and v0
z can be estimated by solving the overdetermined linear

system of 3N equations in 9 unknowns by least squares method expressed as:
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A1
A2
A3
...
...

Ai
...
...

AN−1
AN





kxx
kxy
kxz
v0

x
kyy
kyz
v0

y
kzz
v0

z


=



b1
b2
b3
...
...
bi
...
...

bN−1
bN



, (33)

where

Ai =

 ‖gn
Mα
‖ cx,i ‖gn

Mα
‖ cy,i ‖gn

Mα
‖ cz,i 1 0 0 0 0 0

0 0 0 0 ‖gn
Mα
‖ cy,i ‖gn

Mα
‖ cz,i 1 0 0

0 0 0 0 0 0 0 ‖gn
Mα
‖ cz,i 1

,

and

bi =

 vx,i
vy,i
vz,i

.

Figure 3. View of the AUV during the manipulation performed to adjust the internal parameters of
the GraviMob system in one of the tilted positions. The AUV can thus be tilted along the roll, pitch
and yaw axes.
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Once those nine parameters have been determined, the 3N values of the direction cosines
cx,i, cy,i and cz,i, i = 1, 2, . . . , N can be updated by finding out the minimum of the N cost
functions defined as:

fi(cx,i, cy,i, cz,i) = ‖KαCsα
so aso

Mα
+ Vsα

0 − Vsα‖2
i (34)

that can explicitly written as follows

fi(cx,i, cy,i, cz,i) =
(
‖gn

Mα
‖kxx cx,i + ‖gn

Mα
‖kxy cy,i + ‖gn

Mα
‖kxz cz,i + v0

x − vx,i

)2

+
(
‖gn

Mα
‖kyy cy,i + ‖gn

Mα
‖kyz cz,i + v0

y − vy,i

)2

+
(
‖gn

Mα
‖kzz cz,i + v0

z − vz,i

)2

.

Assuming that the experiments carried out to tilt the GraviMob system along different
directions are independent, the direction cosines cx,i, cy,i and cz,i for each inclination can
then be considered statistically independent. They can be thus estimated by minimizing N
independent cost functions as (34) under the constraints stating that c2

x,i + c2
y,i + c2

z,i = 1 for
all i varying from 1 to N. This minimisation under non-linear constraints is explained in
detail in Appendix D. The updated values of the direction cosines are then used to reiterate
an estimation of the above mentioned internal parameters and such a recursive process
is then resumed until a stopping criterion will be satisfied. To this end, a residual r(m)

i is
calculated for the i-th orientation and the m-th iteration, which may be expressed as:

r(m)
i = ‖Cso

sα
K−1

α

(
Vsα − Vsα

0
)
‖i − ‖gn

Mα
‖. (35)

Let σ
(m)
v be the standard deviation of the N residuals r(m)

i , i = 1, 2, . . . , N calculated for the
m-iteration. Then, the stopping criterion consists in verifying the following inequality:

|σ(m)
v − σ

(m−1)
v | < ε, (36)

where ε is a threshold value given a priori. Such an inequality ensures that the dispersion
of the residuals has not changed significantly between the (m− 1)-th and the m-th iteration.
Once the six parameters defined in Equation (32) have been determined, the three scale
factors kx, ky, kz and the six parameters τxy, τxz, τyy, τyz and τzz can be calculated provided
that three additional relationships involving them can be found. Noting that the columns
of the matrix

(
Csα

so
)−1

= Cso
sα

are the coordinates of the three non orthogonal unit vectors
of s-frame-axes expressed in the so-frame, we have:

Cso

sα
=


1 −

τxy

τyy

τxyτyz − τxzτyy

τyyτzz

0
1

τyy
−

τyz

τyyτzz

0 0
1

τzz

, (37)

and thus,
τ2

yy = 1 + τ2
xy,

τ2
zz = 1 +

(
τxz − τyz

τxy

τyy

)2
+

(
τyz

τyy

)2
.

(38)

Since the misalignment angles between the respective y- and z-axes of the s-frame and
so-frame are infinitesimal, we can infer that the two last diagonal terms of matrix Cso

sα
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are close to 1, and thus positive. As a result, the nine internal parameters of GraviMob can
finally be calculated using the following equations used successively:

kx = kxx,

τxy =
kxy

kxx
,

τxz =
kxz

kxx
,

τyy =
√

1 + τ2
xy,

ky =
kyz

τyy
,

τyz =
kyz

ky
,

τzz =

√
1 +

(
τxz − τyz

τxy

τyy

)2
+

(
τyz

τyy

)2
,

kz =
kzz

τzz
.

(39)

2.3.3. Testing of the Adjustment Method

After being validated by numerical simulations, the adjustment method was applied
to experimental measurements acquired in laboratory, and consisted of the six voltages
vq

k, k = x, y, z, q = α, β delivered by the accelerometers of the two triads held fixed for
different orientations of the GraviMob system. The value of the local gravity intensity
in our laboratory is known, equal to 980,856.4908 ±0.0034 mGal, measured by an FG5
absolute gravimeter (FG5#206) between 26 and 29 April 1999. In order to limit the effect
of temperature variation, the acquisition time was deliberately limited to 15 min during
which N = 50 different orientations could be tested. The temperature variation observed
during the experiment was 0.22 °C for an average temperature of 23.82 °C. The iterative
parameter estimation algorithm of the adjustment method was initialised with the initial
values of the direction cosines calculated by:

cx,i ≈
vx,i√

v2
x,i + v2

y,i + v2
z,i

, cy,i ≈
vy,i√

v2
x,i + v2

y,i + v2
z,i

,

cz,i ≈
vx,i√

v2
z,i + v2

y,i + v2
z,i

, (40)

for all i varying from 1 to N. Given a threshold value of ε = 10−16 (Equation (36)), the
number of iterations necessary for the convergence of the algorithm was approximately
10, 000. However, in order to observe the dispersion of internal parameter values, this
number was voluntarily fixed at 50, 000 so as to evaluate the mean and standard deviation
of the estimated values of internal parameters. These values obtained with the measure-
ments acquired during this experiment are given in Table 2. The corresponding residuals
(Equation (35)) are zero mean. Their standard deviations for the triads α and β are equal to
1.4 and 3.1 mGal respectively. These statistical indicators make it possible to evaluate the
uncertainty of GraviMob measurements resulting specifically from the uncertainty of the
values of the internal parameters. According to our findings, this uncertainty cannot be less
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than 3 mGal due to the measurement range of the GraviMob system, for which the possible
tilt angles must be strictly within the range of ±10.8 degrees (see Table 1 in Section 2.1).
Of particular note is the high uncertainty in the bias values ranging within 0.02 to 0.8 mV
(see Table 2). Working again on numerical simulations, we found that the bias values are
highly correlated with the values of the scale factors, which makes their estimation very
difficult. Our simulations showed that this correlation decreases quite quickly as the range
of variation in the GraviMob orientation angles increases. More specifically, the simulations
showed that the deviations of the estimated internal parameters from their reference values
are less than 10−6 and the standard deviation of the residuals less than 10−6 mGal when
the orientation range of GraviMob is extended to all directions. In this case, the tilt angles
to which the GraviMob must be exposed during the adjustment process have to range from
−180 to +180 degrees in the three orthogonal directions of space. Another condition is
that the measuring range of the accelerometers must be adjusted so that all the specific
forces they experience during the experiment can be measured without entering saturation,
and without adding an offset voltage. It is therefore planned to modify the measurement
range and the arrangement of the accelerometers to meet these two conditions in the future
version of the GraviMob system.

Table 2. Mean and standard deviation of the residuals (Equation (35)) obtained with our adjustment
method and corresponding values of the internal parameters (scale factors, misalignment components,
biases) for the triads α and β.

Residuals Triad α Triad β Unit

Mean 0 0 mGal
Standard 1.4 3.1 mGal

Parameters Triad α Triad β Unit
(value ±1σ error)

kx 5.3903± 3× 10−4 5.3484± 2× 10−4 µV mGal−1

ky 5.3892± 3× 10−4 5.3426± 2× 10−4 µV mGal−1

kz 5.489± 1× 10−3 5.2792± 6× 10−4 µV mGal−1

τxy +0.0003216± 2× 10−7 +0.0008731± 2× 10−7

τxz +0.003873± 4× 10−6 −0.000903± 3× 10−6

τyy +1.0000000000± 1× 10−10 +1.0000003811± 2× 10−10

τyz −0.002580± 4× 10−6 −0.002332± 3× 10−6

τzz +1.00001083± 3× 10−8 +1.000003126± 3× 10−9

v0
x 14.89± 0.02 −1.62± 0.02 mV

v0
y −9.12610± 2× 10−5 −14.56± 0.02 mV

v0
z 73.3± 0.8 −31.3± 0.4 mV

As seen earlier, reducing the level of residual dispersion requires multiplying the
number of orientations given to the GraviMob system during the adjustment manipulation.
Another fundamental point is the determination of the equations governing the variations
of the internal parameters as a function of temperature. The GraviMob system is equipped
with a total of seven temperature sensors. Each accelerometer has its own built-in tem-
perature sensor and a final sensor is placed directly on the electronic acquisition board
inside the glass sphere that houses it. To adjust and maintain the temperature inside the
sphere during the adjustment process, it is necessary to operate with the GraviMob system
installed in a temperature-controlled climate chamber. We therefore carried out a second
series of laboratory measurements using the following experimental protocol:

1. installation of the GraviMob system in the climate chamber (Figure 4) in a given
orientation;

2. setting a temperature set point and recording the voltages delivered by the six ac-
celerometers measuring specific force components and internal temperatures for
5 min, after stabilisation of the internal chamber temperature;
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3. repeating of step 2 after increasing the previous setpoint temperature by 0.5 °C until
the entire desired temperature range has been covered;

4. repeating of the manipulation from step 1 by changing the orientation of the GraviMob
until a significant number of orientations are obtained.

The first step was to calibrate the seven temperature sensors of the GraviMob system.
The desired temperature range was set from 4 °C to 21 °C to include the deep water
temperatures found in the Atlantic Ocean (4 °C) and the Mediterranean Sea (14.5 °C). At
a rate of one recording every 0.5 s (2 Hz), this manipulation made it possible to obtain
600 voltages per temperature for 14 different orientations of the GraviMob system. It
thus became possible to obtain 600 estimates of each of the 11 internal parameters (3 scale
factors, 5 misalignment components, 3 biases) for a given temperature. The value of each
parameter was then determined by averaging these 600 measurements. The standard
deviation of the mean was then obtained by dividing the empirical standard deviation
of the 600 measurements by the square root of 600 (≈24). The estimates of GraviMob’s
internal parameters obtained by this method are presented in Figures 5–7. In order to obtain
mathematical functions describing the variation of these parameters with temperature,
polynomial fits were performed and validated by means of chi-squared statistical tests. Our
own results confirm the strong variations of the parameters with temperature, which make
it essential to calibrate the system in temperature beforehand. The values of the parameters
must then be set according to the mathematical model based on the working temperature
of the GraviMob system measured inside the sphere.

Figure 4. View of the GraviMob system inside the climate chamber. The thumbnail shows an enlarged
view of the additional electronic thermometer used for monitoring temperature variations inside the
chamber.
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Triad   : Scale factors

9

Figure 5. Graphs showing the variation of the scale factors kx (top), ky (middle) and kz (bottom)
with temperature for the triad α. The red solid circles correspond to the values of the scale factors
determined by our adjustment method and are plotted with their 1 sigma error bars. The blue
curves represent the result of a polynomial fit with fourth-degree polynomials. Expressions of the
polynomials are directly written out on the graphs. For all three polynomial fits, the coefficient of
determination was found to be 0.987 (kx), 0.987 (ky) and 0.915 (kz). These coefficients did not show
a significant increase for polynomial models of degrees greater than 4. The polynomial fits were
validated by performing a chi-squared statistical test on the residuals with a 5% risk. This validation
required the rejection of some observations that led to the failure of the chi-squared test. The same
graphs are available for the triad β.
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Figure 6. Graphs showing the variation of the parameters τxy (top left), τyy (middle left), τxz (top
right), τyz (middle right) and τzz (bottom right) arranged as in the matrix (A15) with temperature
for the triad α. The red solid circles correspond to the values of the parameters determined by our
adjustment method and are plotted with their 1 sigma error bars. The blue curves represent the
result of a polynomial fit with fourth-degree polynomials. Expressions of the polynomials are directly
written out on the graphs. For all three polynomial fits, the coefficient of determination was found
to be 0.988 (τxy), 0.899 (τxz), 0.975 (τyy), 0.989 (τyz) and 0.997 (τzz). These coefficients did not show
a significant increase for polynomial models of degrees greater than 4. The polynomial fits were
validated by performing a chi-squared statistical test on the residuals with a 5% risk. This validation
required the rejection of some observations that led to the failure of the chi-squared test. The same
graphs are available for the triad β.
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Triad   : Biases

Figure 7. Graphs showing the variation of the accelerometer biases v0
x (top), v0

y (middle) and v0
z

(bottom) with temperature for the triad α. The red solid circles correspond to the values of the
biases determined by our adjustment method and are plotted with their 1 sigma error bars. The blue
curves represent the result of a polynomial fit with fourth-degree polynomials. Expressions of the
polynomials are directly written out on the graphs. For all three polynomial fits, the coefficient of
determination was found to be 0.993 (v0

x), 0.996 (v0
y) and 0.989 (v0

z). These coefficients did not show
a significant increase for polynomial models of degrees greater than 4. The polynomial fits were
validated by performing a chi-squared statistical test on the residuals with a 5% risk. This validation
required the rejection of some observations that led to the failure of the chi-squared test. The same
graphs are available for the triad β.
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2.3.4. Orientation of the GraviMob System Inside the Submersible

The adjustment of GraviMob’s internal parameters ends with the determination of
the matrix Cb

so , which fixes the orientation of the gravimob system in the submersible. The
b-frame and so-frame being orthogonal, the determination of matrix Cb

so can be performed
using the orthogonal Procustes method mentioned above. For this purpose, specific
force measurements expressed jointly in the b-frame and so-frame must be acquired. To
this end, the adjustment manipulation consists this time in giving the GraviMob system
different orientations once it is fixed in the AUV. This manipulation was carried out in the
IFREMER laboratory onshore using a lifting crane that allows the AUV to be given different
orientations according to the roll, pitch and yaw axes (c.f. Appendix A). By doing so,
2N measurement pairs

(
ab

Mα
, aso

Mα

)
i

and
(

ab
Mβ

, aso

Mβ

)
i

for i = 1, 2, . . . , N could be collected.
During this manipulation, the INS was switched on to track the attitude angles of the AUV.
We will now reason with the data for triad α, knowing that the latter is identical in every
respect for triad β. The specific forces aso

Mα
can be obtained from the voltages Vsα delivered

by the accelerometers from Equation (24) as:

aso

Mα
=
(
Csα

so
)−1K−1

α

(
Vsα − Vsα

0
)
, (41)

which is possible once the scale factor matrix Kα, the biais vector Vsα
0 and the elements of

matrix Csα
so and have been determined. The use of the INS during the adjustment process

allows access to the measurements of the specific force ab
C at point C, that is the AUV

reference point. Using Equation (6), this specific force may be related to the gravity vector
gn

C at point C as:

ab
C = Cb

nCn
e
[
Ẍe

P + 2Ωe
ieẊe

P +
(
Ωe

ieΩe
ie + Ω̇e

ie
)
Xe

P
]
+
(

Ωb
ibΩb

ib + Ω̇b
ib

)
Lb

C

−Cb
ngn

C, (42)

where Lb
C =

[−−→
PC

]b
. Similarly, the specific force ab

Mα
at point Mα is expressed as:

ab
Mα

= Cb
nCn

e
[
Ẍe

P + 2Ωe
ieẊe

P +
(
Ωe

ieΩe
ie + Ω̇e

ie
)
Xe

P
]
+
(

Ωb
ibΩb

ib + Ω̇b
ib

)
Lb

α

−Cb
ngn

Mα
, (43)

where Lb
α =

[−−→
PMα

]b
. Subtracting members from Equations (43) and (42) yields:

ab
Mα
− ab

C =
(

Ωb
ibΩb

ib + Ω̇b
ib

)(
Lb

α − Lb
C

)
+ Cb

n
(
gn

C − gn
Mα

)
. (44)

This equation indicates that the difference between the two specific forces depends on
a term related to the lever arm between point Mα and point C and the difference in the
gravitational fields measured at point Mα and point C respectively. The former can be
bounded above using the following inequality:∥∥∥(Ωb

ibΩb
ib + Ω̇b

ib

)(
Lb

α − Lb
C

)∥∥∥ ≤ (ω2
ib + ω̇ib

)∥∥∥Lb
α − Lb

C

∥∥∥,

where ωib denotes the angular rate of the rotation of the b-frame with respect to the i-frame
and ω̇ib its first derivative with respect to time. During static manipulations, this angular
rate of rotation corresponds to that of the Earth’s rotation, and so we can pose:

ωib = ωe = 7.292115× 10−5 rad s−1 and ω̇ib = ω̇e ' 10−18 rad s−2,
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which yields to:∥∥∥(Ωb
ibΩb

ib + Ω̇b
ib

)(
Lb

α − Lb
C

)∥∥∥ ≤ M
∥∥∥Lb

α − Lb
C

∥∥∥ with M = 0.54µGal ·m−1.

The lever arm Lb
α − Lb

C is known, since it was determined from a 3D digital model of
the implementation of the GraviMob system and other sensors in the AUV, and can be
expressed in the b-frame as:

Lb
α − Lb

C =
[−−→
CMα

]b
=

 +2587.9
−4.3

+248.1

b

, (45)

where the values of lever arm vector components are given in millimeters. Hence,∥∥∥Lb
α − Lb

C

∥∥∥ = 2599.8 mm < 2.6 m. The lever arm term is therefore less than 2.6× 0.54 =

1.4µGal, and can therefore be neglected without jeopardising the targeted accuracy at 1 mGal.
As for the difference in gravitational fields, its rigorous estimation presupposes knowledge of
the gravity gradients in the three directions of the n-frame. If we take the value of the free air
gravity gradient, i.e., 0.3µGal.m−1, as the upper limit of the amplitude of the gravity gradients,
we obtain roughly ∥∥gn

C − gn
Mα

∥∥ < 2.6× 0.3 = 0.8 mGal.

We therefore decided to disregard this difference even if this decision is more debatable
here. If ever higher accuracy accelerometers were to be used on the GraviMob system, a
mapping of the gravity gradients in the laboratory site where the adjustment manipulation
is performed would become absolutely essential. By setting

(
ab

Mα

)
i
≈
(

ab
C

)
i

for all
i = 1, 2, . . . , N, the orthogonal Procrustes method leads to:

Cb
so = VUT , (46)

where U and V are the two orthogonal matrices involved in the singular value decomposi-
tion UΣVT of the cross-correlation matrix Sα defined by:

Sα =
N

∑
i=1

(
as0

Mα

)
i

(
ab

Mα

)T

i
. (47)

The method was applied to data acquired for both triads in the IFREMER laboratory for
31 AUV tilts. The results given in Table 3 correspond to the Euler angles derived from the
expression (A17) of matrix Cb

so .

Table 3. Euler angle values that defined the matrices Cb
so for triads α and β respectively. The specific

force measurements needed to determine these values were acquired for N = 31 tilted positions of
the AUV. During this experiment, the average temperature inside the laboratory was 12.4 °C, and
the temperature variation between the beginning and end of the experiment was less than 2 °C. The
differences between the orientations of triads α and β are mainly due to the mounting of the sphere
inside the AUV. It is clear that the values of these angles must be re-estimated regularly and at each
new installation of the sphere in the AUV. These results indicate that the axes of triad α are almost
parallel to those of triad β, which is consistent with the assembly of the two triads shown in Figure 1b.

Angles Triad α Triad β Unit

θx 0.310 0.297 decimal degrees
θy 0.153 0.192 decimal degrees
θz −177.334 −177.142 decimal degrees
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2.4. Method for Processing GraviMob-Measured Data

The gravity vector components are estimated through an Unscented Kalman Filter
(UKF) [34]. This version of the Kalman filter has been preferred to the extended version
(EKF) because it does not require repeating at each iteration, the determination and eval-
uation of the Jacobian matrix which contains the partial derivatives of the observation
function in relation to the parameters sought. This filter is defined by an evolution model
and an observation model. The evolution model links the parameters at a given time to the
one at the previous time. By denoting Xk the vector of parameters at the time kTe where Te
is the sampling period, its components are given by:

Xk =
[

λ λ̇ λ̈ ϕ ϕ̇ ϕ̈ h ḣ ḧ . . .

. . . δ δ̇ δ̈ χ χ̇ χ̈ η η̇ η̈ . . .

. . . ge ġe g̈e gn ġn g̈n gu ġu g̈u
]T

k ,

(48)

where the 27 different quantities are defined as follows:

• λ, ϕ, h are respectively the longitude, latitude and ellipsoidal height of point P, λ̇, ϕ̇, ḣ
and λ̈, ϕ̈, ḧ, their first and second time derivatives;

• δ, χ, η are respectively the yaw, pitch and roll attitude angles of the AUV, δ̇, χ̇, η̇ and
δ̈, χ̈, η̈, their first and second time derivatives;

• ge, gn, gu are respectively the east, north and vertical components in the n-frame of
the gravity vector gP, ġe, ġn, ġu and g̈e, g̈n, g̈u, their first and second time derivatives.

The evolution model may then be expressed mathematically as:

Xk+1 = AXk + Q (49)

where Xk and Xk+1 are respectively the parameter vectors at successive times k and k+ 1, A,
the evolution matrix written as a discrete Wiener stochastic process, and Q the covariance
matrix that gives uncertainty to this evolution model. In Equation (49), A is a square matrix
of order 27 which can be written, according to Bar-Shalom et al. [35], as:

A =

 E 09 09
09 E 09
09 09 E

, (50)

where 09 stands for a square null matrix of order 9 and E is the square matrix of order 9
defined by:

E =



1 Te T2
e /2 0 0 0 0 0 0

0 1 Te 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 Te T2

e /2 0 0 0
0 0 0 0 1 Te 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 Te T2

e /2
0 0 0 0 0 0 0 1 Te
0 0 0 0 0 0 0 0 1


. (51)

The evolution model assumes that the AUV moves at a constant speed when performing
gravity surveys. Its attitude variations along the yaw, pitch and roll axes are also assumed
to evolve at constant angular rotation rates. Moreover, spatial variations in gravity mean
that the values of the components ge, gn, gu recorded by the GraviMob system change at
each time step k due to the movement of the AUV. These components can therefore be
considered as functions of time. With this in mind, the evolution model assumes that the
second time derivatives g̈e, g̈n, g̈u are constants at all times. Given the uncertainty that
affects these assumptions, the evolution model states that the following quantities:
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• λ̈, ϕ̈, ḧ,
• δ̈, χ̈, η̈,
• g̈e, g̈n, g̈u,

are all stochastic processes corresponding to white noise. It should be noted that setting all
these quantities to zero at all times would result in a deterministic but unrealistic evolution
model. White noise is a stochastic process with a mean of zero, and whose dispersion is
fixed by its variance. Let σ2

λ̈
, σ2

ϕ̈, σ2
ḧ

be the respective variances of λ̈, ϕ̈, ḧ, σ2
δ̈

, σ2
χ̈, σ2

η̈ be those
of δ̈, χ̈, η̈ and σ2

g̈e
, σ2

g̈n
, σ2

g̈u
those of g̈e, g̈n, g̈u. Then, the covariance matrix Q associated

with the evolution model may be expressed as [35]:

Q =


FQ(σλ̈, σϕ̈, σḧ) 09 09

09 FQ(σδ̈, σχ̈, ση̈) 09

09 09 FQ(σg̈e , σg̈n , σg̈u)

, (52)

where FQ(σ1, σ2, σ3) is the square matrix of order 9 as a function of σ1, σ2, σ3 defined by:

FQ(σ1, σ2, σ3) = . . .

σ2
1 T4

e /4 σ2
1 T3

e /2 σ2
1 T2

e /2 0 0 0 0 0 0

σ2
1 T3

e /2 σ2
1 T2

e σ2
1 Te 0 0 0 0 0 0

σ2
1 T2

e /2 σ2
1 Te σ2

1 0 0 0 0 0 0

0 0 0 σ2
2 T4

e /4 σ2
2 T3

e /2 σ2
2 T2

e /2 0 0 0

0 0 0 σ2
2 T3

e /2 σ2
2 T2

e σ2
2 Te 0 0 0

0 0 0 σ2
2 T2

e /2 σ2
2 Te σ2

2 0 0 0

0 0 0 0 0 0 σ2
3 T4

e /4 σ2
3 T3

e /2 σ2
3 T2

e /2

0 0 0 0 0 0 σ2
3 T3

e /2 σ2
3 T2

e σ2
3 Te

0 0 0 0 0 0 σ2
3 T2

e /2 σ2
3 Te σ2

3



.

The numerical values of the standard deviations σλ̈ σϕ̈, σḧ, σδ̈, σχ̈, ση̈ were estimated from
a sample of position and attitude underwater data acquired during bathymetric surveys,
carried out with the AUV under the same conditions as for the gravity surveys (same
speed and depth). For this purpose, the position and attitude data were derived twice
by a numerical method using spline functions [36]. Then the standard deviations were
calculated from their statistical distributions. The estimation of the standard deviations
σg̈e , σg̈n , σg̈u was carried out using a mathematical model of the underwater gravity field,
compatible with the environments traditionally explored by underwater gravimetry [37].
The values of gravity components ge, gn, gu were then calculated from the model at the
positions of the same underwater data sample, and the standard deviations obtained from
the same method as those derived from position and attitude data. All the values required
to calculate the variances used in the evolution model are tabulated in Table 4.
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Table 4. Values of the standard deviations that enter the expression of the covariance matrix Q of the
evolution model (49).

Position Value Unit

σλ̈ 5× 10−6 deg s−2

σϕ̈ 4× 10−6 deg s−2

σḧ 0.1 m s−2

Attitude Value Unit

σδ̈ 0.8 deg s−2

σχ̈ 0.5 deg s−2

ση̈ 1.7 deg s−2

Gravity Value Unit

σg̈e 1× 10−3 mGal s−2

σg̈n 1× 10−3 mGal s−2

σg̈u 1× 10−3 mGal s−2

The observation model relates the vector of parameters Xk at the instant k to measure-
ments from both the GraviMob system and the AUV’s position and orientation sensors.
These measurements form the observation vector Zk at the instant k, which consists of the
nine components defined as follows:

Zk =
[

1
2

(
ab

Mα
+ ab

Mβ

)
λ ϕ h δ χ η

]T

k
. (53)

The choice of this observation vector implies that the position (λ, ϕ, h) and orientation
(δ, χ, η) parameters are both observed and estimated with our data processing method.
In contrast, the components of gravity are related to those of the specific forces by the
non-linear relationship (20). Let us consider the function h from R27 to R9 defined by:

h(Xk) =



Cb
nCn

e
[
Ẍe

P + 2Ωe
ieẊe

P
]
− Cb

ngn
P

λ
ϕ
h
δ
χ
η


(54)

The observation model can then be written as follows:

Zk = h(Xk) + R (55)

where R is the covariance matrix containing the uncertainties on the measurements. As-
suming independent measurements, the matrix R can be expressed as:

R =



σ2
a I3 0 0 0 0 0 0
0 σ2

λ 0 0 0 0 0
0 0 σ2

ϕ 0 0 0 0
0 0 0 σ2

h 0 0 0
0 0 0 0 σ2

δ 0 0
0 0 0 0 0 σ2

χ 0
0 0 0 0 0 0 σ2

η


, (56)
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where I3 stands for the identity matrix of order 3, σ2
a are the variance of specific force

measurements, σ2
λ, σ2

ϕ, σ2
h are the variances of the longitude, latitude and ellipsoidal height

respectively, and σ2
δ , σ2

χ, σ2
η are the variances of the raw, pitch and roll angles, respectively.

Given the accuracy of accelerometer measurements (1 mGal) and the uncertainties on
attitude angles estimates (0.05 deg for yaw, 0.005 deg for pitch and roll; see Section 2.1), we
can set the following standard deviation values:

σa = 1 mGal;

σδ = 0.05 deg, σχ = ση = 0.005 deg.

A maximum uncertainty of 2.5 m in planimetric positioning and 30 cm in altimetric positioning
results in the following standard deviations in longitude, latitude and ellipsoidal height:

σλ = 3.07× 10−5 deg, σϕ = 2.25× 10−5 deg, σh = 0.30 m.

Given the matrices A, Q, R and the function h involved in the evolution model (49) and
observation model (55), the application of the unscented Kalman filter becomes possible
provided that we fix an initial vector X0 and its covariance matrix. The detailed for-
mulation of the unscented Kalman filter can be found in Simon J. Julier and Jeffrey K.
Uhlmann [34]. Its application to underwater mobile gravimetry is specifically described
in Roussel et al. [37].

3. Results

The performance of the GraviMob system was assessed from an underwater gravi-
metric survey carried out in the Mediterranean Sea in May 2016 (Figure 8b) [38]. During
the survey, the AUV ran the four profiles located in the eastern and western zones shown
in Figure 8a,c under different survey conditions varying depth and speed and alternating
between constant depth and terrain follow-up survey modes. The surface gravimetric
signal was previously determined on those profiles by the team of the French Marine
Hydrographic and Oceanographic Service (SHOM). Six days of mission made it possible to
complete 26 routes covering a cumulative distance of 169 km. Of those 26 routes, only 10
were found to be directly usable. The other routes require the removal of measurement peri-
ods during which the accelerometers reached saturation and/or the recording of navigation
data was interrupted. In the remainder of the article, we will focus on two opposite routes
taken on a profile named “910-2-S2006-076_TRANSIT” (see Figure 8b) of 9 km length. The
submersible twice followed this profile, under the same navigation conditions at a constant
depth of 1900 m with an average speed of 1.5 m · s−1. From now on, the two routes will be
designated by the numbers 8 and 9 respectively.
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Figure 8. Gravity survey in the Mediterranean Sea carried out with the GraviMob system and
the AUV Asterx. The location of the eastern and western zones is indicated by the black boxes
on map (b). Each zone comprises two profiles along which the surface gravity was measured by
the SHOM. The underwater relief in these two zones is depicted on the bathymetric maps (a,c).
Map (c) indicates the studied profile on which our data processing was tested. The profile was
crossed twice following routes 8 and 9 respectively. Maps were made using Generic Mapping Tools
software [39].
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Monitoring the temperature variations inside the sphere allowed us to verify that the
temperature had stabilised at the time the GraviMob measurements were taken
(Figure 9). More specifically, it was observed that the internal temperature variations
of the GraviMob system during the surveys on routes 8 and 9 remained below 0.04 °C
and 0.004 °C respectively. With a temperature sensitivity of 15 mGal/°C, the impact on
GraviMob measurements is estimated at less than 1 mGal. The hypothesis that the under-
water environment acts as a thermostat keeping the temperature of the GraviMob system
constant has therefore been verified.
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]

° °

Figure 9. Temperature variation inside the sphere of the GraviMob system from the moment the
AUV was launched until it was brought back on board. Once the temperature is stabilised, it remains
remarkably constant at around 14.5 °C.

The surface gravimetric signal provided by the SHOM consists of the free air grav-
ity anomaly, that appears strongly smoothed compared to bathymetry (Figure 10). The
weakness of the surface signal due to the high depths encountered, added to the practical
low-pass filters in marine gravimetry, most probably explains the excessive smoothing of
the free air anomaly towards the high frequencies. It is also worth noting the low signal
variation, which does not exceed ten milligals.
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Figure 10. Depth of the underwater relief and surface free air gravity anomaly both provided by the
SHOM as a function of distance travelled along the studied profile.

The estimation of the three components of the gravity vector at the output of the UKF
is represented in Figure 11. The convergence of the formal error of the UKF deduced from
the covariance matrix of the estimated parameters is reached beyond 1000 computation
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times, which corresponds to a distance along the profile of about 750 m (Figure 12). This
error represents the level of consistency of the estimated components of the gravity field
given the modelling of the problem and the uncertainties in the quantities involved in the
estimation process. However, it does not correspond to the accuracy of the values obtained
for the gravity field components. As the formal error on the gup component is a factor of
four smaller than for the two others, the system modelling, including the evolution and
observation models and their uncertainties, seems to be more appropriate for this vertical
component.

Examination of the variations in gravity components (Figure 11) shows that the fil-
tered signal still contains the contribution of non-gravitational accelerations. This finding
indicates that an additional filtering operation will be necessary to attenuate these contri-
butions. Before doing so, the mean values of components ge, gn and ge on route 8 and 9
were compared with each other. The mean values of the east and north gravity components
were found to be non-identical in the two runs due to the presence of a residual bias. These
components were then corrected for this bias at the output of the UKF. This correction did
not change the vertical component. After correction, the mean values 〈ge〉 and 〈gn〉 of ge
and gn for both routes were respectively estimated to be:{

〈ge〉 = 48.5 mGal
〈gn〉 = −38.3 mGal

(57)

The mean values 〈gu〉 of the vertical component gu following the two runs were respectively
calculated as:

Route 8 : 〈gu〉 = −98, 0160.3 mGal Route 9 : 〈gu〉 = −98, 0169.3 mGal (58)

The difference of 9 mGal observed between the two mean values can be interpreted as an
estimate of the measurement precision at this stage of the processing. This value results
mainly from the effect of the remaining non-gravitational accelerations on the vertical
component of gravity and, to a lesser extent, from uncertainties in the determination of the
internal parameters of GraviMob.

In order to compare the two signals obtained with the SHOM reference free air anomaly,
a normal gravity field model at zero altitude [28] was first subtracted from the estimated
gravity vector intensity ‖gn‖ in order to calculate a gravity anomaly δg. A moving window
filtering of length L = 3000 m allowed to smooth out the high-frequency variations affect-
ing the two newly formed free air anomalies (Figure 13). This operation is not sufficient
to make the GraviMob sea floor gravity anomalies and the SHOM reference anomalies
superimposed. On average, the two were observed to be separated by about 210 mGal.
Among the causes of the observed difference is the influence of the water layer above the
submersible due to the fact that measurements were carried out at 1900 m depth. Correct-
ing measurements from the gravitational effect of the water layer between underwater
topographic and sea surfaces would require an accurate model of the underwater relief
in order to calculate its gravimetric effect at the depth of immersion. In order to compare
the sea floor and reference gravity anomalies, we opted to examine signal trends. It was
therefore considered to adjust a polynomial model on each of the measured and reference
gravity anomalies. A second-order polynomial model for the reference gravity anomalies
was found to be appropriate. The seafloor gravity anomalies were therefore modelled by
a polynomial model of the same order (Figure 14). Since the above-mentioned effects are
difficult to quantify at each point of the gravity profiles, it was decided to estimate a transfer
function that would best bring the trend of undersea measured gravity anomalies to the
trend of reference gravity anomalies. The transfer function thus obtained makes it possible
to calculate the corrections to be applied to any other gravity anomalies measured on the
same profile, given similar navigation conditions. It includes both the gravity anomaly
corrections needed for the upward continuation and those that compensate for the use of
GraviMob’s unadapted, even misestimated internal parameters.
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Figure 11. Variations of the gravity vector components ge, gn, gu along the studied profile along
route 8 (solid blue curve) and route 9 (solid green curve), calculated according to our UKF-based
processing method. The results of route 9 have been reversed to be comparable with the results of
route 8.
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Figure 12. Variations of the formal errors on the east (blue solid curve), north (green solid curve) and
vertical (red solid curve) gravity field components obtained from the covariance matrix given by the
unscented Kalman filter. The three errors all stabilise after about 1000 time steps, which corresponds
to a distance travelled on the profile of 750 m. Once stabilised, the value of σgu is almost four times
smaller than that of σge and σgn .
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Figure 13. Variations of gravity anomaly δg on routes 8 (blue solid curve) and 9 (green solid curve)
respectively, calculated from the gravity vector intensity ‖gn‖ once high-frequency variations were
smoothed out using a 3000 m moving window filter.
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Figure 14. Variations of gravity anomaly trends deduced from SHOM (red solid curve) and GraviMob
measurements on routes 8 (blue solid curve) and 9 (green solid curve). These trends were obtained
by fitting second degree polynomials.

Considering an affine transfer function, the expression of the best transformation law
that brings the gravity anomalies δg measured during route 8 and expressed in milligals to
the reference gravity may be written as:

f8(δg) = 0.21× δg + 0.62 (59)

Once this function is applied on the anomalies measured from route 9, the residuals between
the corrected anomalies, denoted f8(δg9), and the reference anomalies can be calculated. The
histogram of these residuals (Figure 15) shows that they lie within the range between 0.5 and
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3.5 mGal. The same operation can be performed using the anomalies measured during route 9
to estimate the transfer function. In that case, it may be expressed as:

f9(δg) = 0.16× δg − 14.8 (60)

Applied to the anomalies acquired during route 8, the residuals between the corrected
anomalies, denoted f9(δg8), and the reference anomalies lie this time within the range
between 0.5 and −3.5 mGal (Figure 16). These results show that, on this profile, the
maximum measurement error on the estimation of gravity anomaly trends is between 3
and 4 mGal.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Distance along profile [m]

–58

–56

–54

–52

–50

–48

–46

[m
G

a
l]

0.5 1.0 1.5 2.0 2.5 3.0 3.5

[mGal]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Histogram of differencesSHOM free air gravity anomaly

GraviMob gravity anomaly

Figure 15. Left-hand plot: variations of the surface gravity anomaly deduced from that measured on
route 9 (δg9) by upward continuation using transfer function f8. The SHOM anomaly is represented
by the red solid curve. Right-hand plot: histogram of the differences between the two anomalies at
each measured point of the profile.
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Figure 16. Left-hand plot: variations of the surface gravity anomaly deduced from that measured on
route 8 (δg8) by upward continuation using transfer function f9. The SHOM anomaly is represented
by the red solid curve. Right-hand plot: histogram of the differences between the two anomalies at
each measured point of the profile.

Equations (57) and (58) allow us to estimate the mean values of the components of the
deflection from the vertical η and ξ in the east–west and north–south directions respectively by:

〈η〉 = 〈ge〉
g

and 〈ξ〉 = 〈gn〉
g

, (61)
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where g =
√
〈ge〉2 + 〈gn〉2 + 〈gu〉2. Hence we obtain:

〈η〉 ' 10” and 〈ξ〉 ' −8”. (62)

Noting ση , σξ and σg the respective uncertainties on 〈η〉, 〈ξ〉 and any one of the components
ge or gn, then it holds that:

ση = σξ '
σg

g
, (63)

which in our case gives
σg

g
= 2” for σg = 10 mGal. The mean values of the deflection of

vertical were compared to those calculated from recent geopotential models (cf. Table 5)
on the studied profile. For this purpose, the mean values of east–west and north–south
deflection components at 1000 points evenly distributed along the studied profile were
determined by different models (cf. Table 6). The geopotential model values were calculated
from the International Centre for Global Earth Models (ICGEM) [40].

Table 5. Properties of recent global gravity field models used to calculate estimates of the vertical
deflection components on the study profile. The column entitled Data indicates by specific letters
which datasets have been used to compute the geopotential model in question, i.e., A for satellite
altimetry data, S for satellite gravity data (GRACE, GOCE, LAGEOS), G for ground data (terrestrial,
shipborne and airborne gravity measurements) and T for topography data. The letter M represents a
model that derives from a previous model taken as an a priori. The first two models (no 1 and no 2)
calculated from satellite data only have a spatial resolution of 67 km. The last two (no 3 and no 4)
assimilate a wide variety of gravity data, which allows for a finer spatial resolution of 9 km.

Model Number Model Name Year Data Degree Reference

1 EIGEN-GRGS.RL04.MEAN-FIELD 2019 S 300 [41]

2 GO_CONS_GCF_2_TIM_R6 2019 S 300 [42]

3 XGM2019e_2159 2019 A, G, S, T 2190 [43]

4 SGG-UGM-2 2020 A, M, S 2190 [44]

The results obtained (Table 6) show the good adequacy of the value of the north–south
component 〈ξ〉 (-8 arcsec) with that given by the geopotential models. However, the east–
west component 〈η〉 was clearly overestimated (10 arcsec compared to 3–4 arcsec), which
would correspond to an error on the vertical gravity component of 30 mGal to 35 mGal
(cf. Equation (63)). This error is incompatible with the results which indicate agreement
between the vertical gravity component values to within 9 mGal (cf. Equation (58)). As
mentioned before, the gravity components ge and gn were corrected for a residual bias.
This bias can be represented by a disruptive horizontal acceleration whose direction is
close to that of the AUV trajectory along the studied profile. Given its direction, the
profile studied is only inclined 36° to the east–west direction. Therefore, the bias will affect
the estimation of the gravity component ge more strongly. More precisely, a perturbing
horizontal acceleration of 40 mGal along the profile could explain a deviation of 32 mGal,
that 40/ cos 36◦, on the east gravity component. This result shows that the calculation of the
bias correction from only the measurements obtained on a direct and reverse run along the
studied profile is not yet sufficiently accurate, and must therefore be refined by increasing
the number of runs and profiles. The bias is likely to be due to an erroneous estimate of the
orientation of the sensitive axes of the accelerometers relative to those of the vehicle frame.
It can be reduced or even eliminated by refining the estimation of GraviMob’s internal
parameters.
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Table 6. Values of statistical indicators (minimum, maximum, mean and standard deviation) on
the components of the vertical deviation calculated from 1000 measurement points on the studied
profile. The number of significant figures was set according to the value of the standard deviation.
The 4 models were found to be consistent with each other, with the exception of the north–south
deflection components calculated from models 1 and 2. The values of the vertical deviation were
calculated at the height of the profile studied with respect to the reference ellipsoid estimated at
-1850 m. This estimate was determined by considering a depth of 1900 m below the geoid surface,
which in this area is on average 50 m above the surface of the reference ellipsoid. The mean values
derived from these models represent reasonable estimates of the vertical deflection components on
the profile studied.

EW Vertical Deflection η (Arcsec) NS Vertical Deflection ξ (Arcsec)

Model 1 2 3 4 Model 1 2 3 4

Mean 3.56 3.53 3.6 3.0 Mean −8.43 −8.73 −9 −10
Min 3.46 3.30 2.9 2.7 Min −8.46 −8.77 −13 −15
Max 3.64 3.73 4.7 4.0 Max −8.35 −8.64 −5 −6
Std 0.05 0.12 0.5 0.4 Std 0.03 0.04 3 3

4. Discussion

The comparison method used here to quantify the accuracy of the GraviMob system
appears to be the most rigorous given the reference data available to us. The SHOM
surface reference gravity data is certainly not ideal but it is the only existing quality gravity
data that can be used in this case. A bathymetric model of the metric resolution, not
available in this experiment, would require significant work of bathymetric survey but
would nevertheless facilitate the upward continuation of observed data. That said, the
repeatability of the gravimetric signal measurement gives encouraging results, which are
likely to improve significantly with changes to the instrument design and data processing
method. We therefore propose to review the changes that we consider to be the most
important for improving the performance of the GraviMob system.

As seen in Sections 2.3 and 3, the reliable estimation of the internal parameters of the
GraviMob system and their temperature dependence is a crucial point for the processing of
the data acquired by the system. This determination requires a sufficiently wide range of
permitted measurements so that the GraviMob system can be oriented in many different
directions during the parameter adjustment phases without the accelerometers becoming
saturated. This can be achieved by using pyramid-shaped triads (Figure 17), such that the
inclinations of the axes of the three accelerometers with respect to the vertical direction
are identical when the instrument is at rest. By doing so, a measurement range of ±g
with a sensitivity of 0.2 mGal can be achieved without having to add an offset voltage to
any accelerometer. A sensitivity of 0.2 mGal instead of 0.02 mGal is sufficient due to the
uncertainty in the accelerometer measurements. This modification is essential to reduce,
if not cancel, the residual bias that has strongly affected the estimation of the horizontal
gravity components by our calculation method.

As seen in Section 2.2, removing the lever arm that separates the gravity measurement
point from the position measurement point would greatly simplify and make the processing
method more reliable. This would require an assembly that would allow an INS and
the GraviMob system to be arranged concentrically. This solution is possible through a
radical change to the current design of the instrument, which will necessarily involve the
manufacturers of inertial navigation systems.
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Figure 17. (a) Parallelepiped triad versus (b) pyramid-shaped triad. It should be noted that the
pyramid-shaped triad allows equal wear of each accelerometer.

For the data processing method based on the unscented Kalman filter, a first way
to reduce the error bar on the gravity components is to use more accurate position and
orientation measurements. A second way to reduce the uncertainty of the gravity compo-
nents is to modify the evolution model used in the Kalman filter to make it more physically
realistic. As seen in Section 2.4, the evolution model used in the Kalman filter assumes
that the second derivatives of the gravity components are constant within one white noise
process. This assumption amounts to considering that the covariance function of gravity
would have an unbounded support. However, it is known that the covariance function of
real gravity is a decreasing function whose rate of decrease depends on a finite correlation
length. One solution to this problem is to adjust the parameters of the stochastic Markov
model that describes the gravity components to ensure that the corresponding covariance
function coincides with an empirical covariance function determined for the study area. The
method for performing such an adjustment has been described theoretically and simulated
numerically in Verdun et al. [45], based on an idea presented in the book by Jekeli [24]. The
use of this new evolution model should lead to a substantial improvement in the estimation
of the gravity components from the same position and orientation measurements as in our
calculation.

5. Conclusions

In conclusion, we have presented the GraviMob system, an innovative and lightweight
inertial gravity sensor that can be easily installed on an AUV to perform undersea gravity
surveys. GraviMob is a vector gravimeter that allows the determination of the three
components, east, north and vertical of gravity. The sensor is formed by two parallelepiped
triads each containing three electrostatic accelerometers whose geometric axes are mutually
orthogonal. The sensor is enclosed in a sealed spherical enclosure which is then installed in
the AUV head. A data acquisition system associated with a digitiser is used to record the
measurements of the six accelerometers and the internal temperature measurements.

The measurement principle detailed in the article is based on the combined processing
of the GraviMob system measurements with the position and orientation measurements
provided by the AUV’s own navigation system. The measurement processing involves
the prior determination of internal parameters of the GraviMob system, including the
misalignments of the sensitive axes of the accelerometers, the accelerometer biases and
scale factors, and the orientation of the accelerometer axes with respect to those of the
AUV’s inertial navigation system. A comprehensive experimental method for estimating
the values of the internal parameters with high accuracy, described in detail in the article,
has been developed. A calibration of the internal parameters according to temperature
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was also carried out. Further processing of the measurements is based on the use of an
unscented Kalman filter which does not require linearisation of the GraviMob’s observation
equation.

A trial cruise in the Mediterranean sea tested the performance of the GraviMob system
on board an AUV operated by IFREMER immersed at a depth of 1900 m. The validation
of GraviMob’s measurements consisted in comparing them with reference measurements,
namely, surface gravity measurements carried out by the SHOM prolongated downwards
and gravity values calculated from recent global gravity geopotential field models. The
results of an analysis carried out on a profile run in two opposite directions indicate that
the deviations of the vertical component of gravity from the reference remain below 4 mGal.
The east and north components of the vertical deflection deduced from the GraviMob
system measurements were compared with those computed from recent global gravity
field models at the AUV measurement depth. Although the north component of deflection
agrees remarkably well with that given by the models (−8± 2 arcsec), there is a significant
discrepancy on the east component (10± 2 arcsec compared to 3 to 3.5 arcsec on average).
We believe that this discrepancy can be compensated for by improving the estimation of
the orientation angles of the GraviMob’s sensitive axes with respect to those of the AUV’s
inertial navigation system. The replacement of parallelepiped triads with pyramid triads in
the GraviMob system is the key to achieving this goal.

In addition to changing the shape of the triads, further development of the GraviMob
system will involve improving the evolution model used in the Kalman filter to take into
account the natural covariances of the gravity field. The performance of the GraviMob
prototype is undoubtedly very promising and could be further improved by using ac-
celerometers with better resolution or by enhancing the AUV pose estimation. With the
planned improvements, we hope to obtain an estimate of the three components of gravity
with an uncertainty of less than 2 mGal.
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Appendix A. Definition of Useful Coordinate Reference Frames

In the paper, use is made of six coordinate reference systems designated respectively
by i-frame, e-frame, n-frame, b-frame, s-frame and so-frame. These are defined as follows.

1. The i-frame (inertial frame) is a non-rotating, inertial reference frame which has its
origin at the centre O of the Earth and axes aligned with the directions of fixed stars
(Figure A1). This frame consists of an orthogonal, right-handed axis set defined by
the axes Oxi, Oyi and Ozi with Ozi coincident with the Earth’s polar axis assumed
to be invariant in direction. The i-frame is the only reference frame where Newton’s
Second Law of motion is valid.

2. The e-frame (Earth frame) is the Earth fixed, reference frame used for location defi-
nition. Its origin is at the centre O of the Earth and axes are fixed with respect to the
Earth (Figure A1). This frame consists of an orthogonal, right-handed axis set Oxe,
Oye, Oze typically defined with Oze parallel to the Earth’s polar axis and Oxe lying
along the intersection of the Greenwich meridian with the Earth’s equatorial plane.
The e-frame rotates with respect to the i-frame at a angular rate ωe about the axis Oze.

3. The n-frame (navigation frame) is a local geographic frame which has its origin C
at the point whose position is effectively measured by the AUV navigation system
(Figure A1). The frame consists of an orthogonal, right-handed axis set whose axes
Cxn, Cyn and Czn are aligned respectively with the directions of east, north and the
upward normal to a reference ellipsoid passing through the point C. Thus, the n-frame
moves with the submersible and the movement of its origin C can be determined
with respect to the e-frame using the AUV navigation system. The components of the
gravity vector gn are usually expressed in the n-frame, thus giving respectively its
east ge, north gn and vertical gu components.
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Figure A1. View of the inertial reference frame Oxiyizi (i-frame), the Earth fixed, reference frame
(Oxeyeze) (e-frame) and the navigation reference frame (Cxeyeze) (n-frame). The point O corresponds
to the centre of the Earth represented by an ellipsoid of revolution whose axis of revolution is the pole
axis (Ozi). The number triplet (λ, ϕ, h) denote respectively the longitude, the geographic latitude
and the ellipsoidal height of the point C.

4. The b-frame (body frame) consists of a orthogonal, right-handed axis set which axes
Cxb, Cyb and Czb are aligned respectively with the pitch, roll and yaw axes of the
submersible. Its orientation with respect to the n-frame is used for defining the
attitude of the submersible (Figure A2). In the paper, we assume that the b-frame and
the n-frame have both the same origin C. The point C will henceforth be called the
AUV reference point.

5. The s-frame (sensor frame) is an acceleration sensor coordinate frame with axes
parallel to the sensor input axes of one given accelerometer (Figure A2). These axes
are non-coplanar, but not necessarily orthogonal depending on both the design of
the accelerometer supporting triad and the misalignments which affect unavoidably
the sensor input axis directions. Each triad of accelerometers defines its own s-frame
the origin of which is at the intersection of its three input axes. In the paper, we
denote by Mα (resp. Mβ) the origin of the s-frame sα (resp. sβ) defined by the triad of
accelerometers labelled by α (resp. β).

6. The so-frame (orthogonal sensor frame) is also an acceleration sensor coordinate frame
whose origin is at Mα (resp. Mβ) for the triad α (resp. β). Unlike the s-frame, the
so-frame is an orthogonal, right-handed reference frame whose x-axis is parallel to the
x-axis of the s-frame (Figure A2). To be more specific, let

(
esα

x , esα
y , esα

z
)

be a set of three

unit vectors of the sα-frame axes xsα , ysα and zsα respectively. Let
(

eso
x , eso

y , eso
z

)
be a

set of three orthogonal unit vectors of the so-frame axes xso
, yso

and zso
respectively.

The vectors eso
α

x , eso
α

y , eso
α

z can be defined as follows:

• eso
α

x = esα
x ;

• eso
α

y belongs to the plane defined by the two vectors esα
x and esα

y whilst being

orthogonal to the vector eso
α

x ;
• eso

α
z = eso

α
x × eso

α
y .
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The same reasoning can be used to define the frame sβ for the second triad. The so-frame is
essentially used within the processing to determine GraviMob’s internal parameters (cf.
Section 2.3).

Figure A2. (a) View of triplets of unit vectors (in red) which defined respectively the sensor reference

frames for the triads α (top)
(
esα

x , esα
y , esα

z
)

and β (bottom)
(

e
sβ
x , e

sβ
y , e

sβ
z

)
. The shaded areas indicate the

arrangement of the accelerometers in the two parallelepiped triads. The misalignment angles have
been deliberately exaggerated to make the figure easier to read. The corresponding triplet of unit,
mutually orthogonal vectors (in black) which defined the orthogonal sensor frames for the triads α

(top) and β (bottom) are also represented. (b) View of relative positions of points C (AUV reference
point), P (GraviMob’s sensitive point), Mα and Mβ (centres of α and β triads respectively) in the
AUV. The locations of sα, so

α, sβ, so
β s-frame and b-frame reference frames are also given. (CP) is the

revolution axis of the AUV (roll axis). The angles η, χ, δ are repectively the roll, pitch and yaw angles.
It should be noted that the vectors

−→
CP,
−→
PMα and

−→
PMβ can be considered as lever arms. (c) Location

of the b-frame (Cxbybzb) in the AUV. The revolution axis (CP) can also be seen.

Appendix B. Coordinate and Matrix Transformations

The five coordinate frames i-frame, e-frame, n-frame, b-frame and so-frame are assumed
to be defined by three consecutively numbered (or lettered) vectors which are mutually
perpendicular to one another in the right-hand sense. In this case, the transformation matrix
from a2 coordinate frame to a1 coordinate frame is defined as a square 3× 3 matrix the
columns of which are an orthogonal set of unit vectors, each equal to a unit vector along axis
of coordinate frame a2 as projected onto the axes of coordinate frame a1; thus,

Ca1
a2 =

[
ua1

1a2
ua1

2a2
ua1

3a2

]
, (A1)

where ua1
ia2

is the unit vector along a2 frame axis i projected on coordinate frame a1 axes.
From this definition, it results that the element in row i, column j of Ca1

a2 equals the cosine of
the angle between frame a1 axis i and frame a2 axis j, and that the transpose of Ca1

a2 equals
its inverse, that is

Xa1 = Ca1
a2 Xa2 ⇐⇒ Xa2 = Ca2

a1 Xa1 , (A2)

where
Ca2

a1 = (Ca1
a2 )
−1 = (Ca1

a2 )
T , (A3)
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or, equivalently
Ca2

a1 Ca1
a2 = Ca1

a2 Ca2
a1 = I3, (A4)

where I3 is the identity matrix of order 3. Matrix Ca1
a2 may be called more specifically the

direction cosine matrix. If one of the coordinate frames is not orthogonal such as s-frame,
the relation (A2) is still valid but the corresponding set of vectors is no longer orthogonal.
Thus, the inverse of matrix Ca1

a2 has to be explicitly calculated.
Let us now consider three coordinate frames a1, a2, a3. In that case the transformation

matrix Ca3
a1 from a1 to a3 may be expressed as a function of the transformation matrices

from a1 to a2 and a2 to a3 respectively as:

Ca3
a1 = Ca3

a2 Ca2
a1 . (A5)

The previous equation can be generalised for an arbitrary number p of reference frames a1,
a2, a3, ...,ap−1, ap by multiplying the successive transformation matrices as follows:

C
ap
a1 = C

ap
ap−1 C

ap−1
ap−2 . . . Ca3

a2 Ca2
a1 . (A6)

The time rate change of a direction cosine matrix is important to later mathematical
developments. Let Ca1

a2 be a direction cosine matrix, and ωa1a2 the angular velocity of the
a2-frame with respect to the a1-frame. Then, the time rate of change Ċa1

a2 of Ca1
a2 is given by

Ċa1
a2 = (ωa1a2×)C

a1
a2 = Ωa1

a1a2 Ca1
a2 , (A7)

where Ωa1
a1a2 is the skew symmetric matrix associated with the angular velocity ωa1a2

coordinatised in the a1-frame.
The skew symmetric matrix coordinatised in the a1-frame can be related to the skew

symmetric matrix coordinatised in the a2-frame by using

Ωa1
a1a2 = Ca1

a2 Ωa2
a1a2 Ca2

a1 . (A8)

Thus, an equivalent form of Equation (A7) may be expressed as

Ċa1
a2 = Ca1

a2 Ωa2
a1a2 . (A9)

It should be noticed that Equation (A8) is still valid for any matrices Γa1 and Γa2 expressed
respectively in the a1-frame and a2-frame thus giving:

Γa1 = Ca1
a2 Γa2 Ca2

a1 . (A10)

The first and second-order time derivative of equation Xa1 = Ca1
a2 Xa2 can be calculated

using Equation (A9); it thus follows respectively:

Ẋa1 = Ca1
a2 Ẋa2 + Ca1

a2 Ωa2
a1a2 Xa2 ; (A11)

Ẍa1 = Ca1
a2 Ẍa2 + 2Ca1

a2 Ωa2
a1a2 Ẋa2 + Ca1

a2

(
Ωa2

a1a2 Ωa2
a1a2 + Ω̇a2

a1a2

)
Xa2 . (A12)

Appendix C. Explicit Forms of Transformation and Skew Symmetric Matrices

Appendix C.1. Earth Frame to Navigation Frame

By denoting λ the longitude, and ϕ the latitude of the AUV reference point, the
transformation matrix Cn

e from the e-frame to the n-frame may be expressed as:

Cn
e =

 − sin λ cos λ 0
− cos λ sin ϕ − sin λ sin ϕ cos ϕ
cos λ cos ϕ sin λ cos ϕ sin ϕ

. (A13)
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Appendix C.2. Body Frame to Navigation Frame

The attitude of the AUV corresponds to the relative orientation of the b-frame with
respect to the n-frame. This orientation is defined by the three angles of yaw (δ), pitch (χ)
and roll (η). These angles are such that the b-frame can be deduced from the n-frame by the
following successive transformations:

•
(π

2
− δ
)

angle, clockwise rotation around the inital z−axis;

• χ angle, counter-clockwise rotation around the intermediate y−axis;
• η angle, counter-clockwise rotation around the final x−axis.

When these three angles are zero, the axes of the b-frame are directed north, west and
vertical respectively. The transformation matrix Cn

b from the b-frame to the n-frame is given
by:

Cn
b = . . . (A14) sin δ cos χ sin δ sin χ sin η − cos δ cos η sin δ sin χ cos η + cos δ sin η

cos δ cos χ cos δ sin χ sin η + sin δ cos η cos δ sin χ cos η − sin δ sin η
− sin χ cos χ sin η cos χ cos η

.

Appendix C.3. Orthogonal Sensor Frame to Sensor Frame

The transformation matrix Csα
so (resp. C

sβ

so ) from the so-frame to the sα-frame (resp. sβ-frame)
can be expressed according to the definition of the so-frame given in Appendix A. Columns
of the matrix Csα

so (resp. C
sβ

so ) are each formed by the components of the unitary vectors along
so-frame axes expressed relative to the sα-frame (resp. sβ-frame). We therefore have:

Csα

so =

 1 τxy τxz
0 τyy τyz
0 0 τzz

. (A15)

The misalignment of the axes of s-frame being small, the components of the column vectors
are almost those of orthogonal unit vectors. We therefore have at first order:

τyy ≈ 1, τzz ≈ 1, τxy ≈ 0, τxz ≈ 0, τyz ≈ 0.

The inverse Cso
sα

of transformation matrix Csα
so is given by Equation (37).

Appendix C.4. Orthogonal Sensor Frame to Body Frame

The transformation matrix Cb
so from the so-frame to the b-frame is essentially an

orthogonal matrix that defines the relative orientation of two orthogonal right-handed
reference frames. Noting θx, θy, θz, the three rotation angles, also known as Euler angles,
such that the so-frame can be deduced from the b-frame by the following successive
transformations:

• θz angle, counter-clockwise rotation around the inital z-axis;
• θy angle, counter-clockwise rotation around the intermediate y-axis;
• θx angle, counter-clockwise rotation around the final x-axis.

We then have

Cb
so = . . . (A16) cos θz cos θy − sin θz cos θx + cos θz sin θy sin θx sin θz sin θx + cos θz sin θy cos θx

sin θz cos θy cos θz cos θx + sin θz sin θy sin θx − cos θz sin θx + sin θz sin θy cos θx
− sin θy cos θy sin θx cos θy cos θx

.
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Appendix C.5. Earth Frame with Respect to Inertial Frame

The skew symmetric matrix Ωe
ie and its first time derivative Ω̇e

ie are respectively given by:

Ωe
ie =

 0 −ωe 0
ωe 0 0
0 0 0

, Ω̇e
ie =

 0 −ω̇e 0
ω̇e 0 0
0 0 0

, (A17)

where ωe is the Earth angular velocity and ω̇e its first time derivative.

Appendix C.6. Body Frame with Respect to Inertial Frame

The skew symmetric matrix Ωb
ib is associated with the angular velocity vector ωb

ib.
The components of this vector can be directly provided by the measures of three gyros
the sensitive axes of which are mutually orthogonal. The same can also be obtained
from position and orientation measurements such as those made on GraviMob from the
following equation:

ωb
ib = Cb

n(C
n
e ωe

ie + ωn
en) + ωb

nb, (A18)

where, denoting by λ the longitude, ϕ, the latitude, δ, χ, η, the yaw, pitch and roll angles,

ωe
ie =

 0
0

ωe

, ωn
en =

 −ϕ̇
λ̇ cos ϕ
λ̇ sin ϕ

, ωb
nb =

 δ̇ sin χ + η̇
−δ̇ cos χ sin η + χ̇ cos η
−δ̇ cos χ cos η − χ̇ sin η

. (A19)

Once the components
(

ωb
ib,x, ωb

ib,y, ωb
ib,z

)
of ωb

ib have been determined, the skew symmetric

matrix Ωb
ib may be expressed as:

Ωb
ib =

 0 −ωb
ib,z ωb

ib,y
ωb

ib,z 0 −ωb
ib,x

−ωb
ib,y ωb

ib,x 0

. (A20)

The first time derivative Ω̇b
ib of the matrix Ωb

ib can either be calculated analytically or
numerically. It should be noted that the use of two triads in the GraviMob system avoids
the need to calculate the matrices Ωb

ib and Ω̇b
ib in order to process the data.

Appendix D. Constrained Optimisation

As seen in Section 2.3.2, estimating the direction cosines cx,i, cy,i and cz,i for each incli-
nation consists in minimizing N independent cost functions fi as (34) under the constraints
stating that c2

x,i + c2
y,i + c2

z,i = 1 for all i varying from 1 to N. If we omit for simplicity index
i, then we can formulate the minimisation problem as the determination of:

min
c

f (c) with h(c) = 0,

where c =

 cx
cy
cz

 and h(c) = c2
x + c2

y + c2
z − 1.

The solution proposed by Yang et al. [32] is based on Karush–Kuhn–Tucker condition [46]
defined by the following equation:

L(c, u) = ∇ f (c) + u∇h(c) = 0, (A21)

where L is the lagrangian function of the problem and u the Lagrange multiplier associated
with the constraint h(c) = 0.
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Equation (A21) can be iteratively solved by using the Newton method. Given an initial
solution (c0, u0), then we have at iteration k:

ck+1 = ck + δc and uk+1 = uk + δu, (A22)

with (δc, δu) that satisfy the following linear system:[
∇2L(c, u) ∇h(c)
[∇h(c)]T 0

][
δc
δu

]
= −

[
∇L(c, u)
[h(c)]T

]
. (A23)

The explicit content of the linear system (A23) is obtained from the equations given below.
Denoting

µ =

 µx
µy
µz

 =

 ‖gn
M‖kxx cx + ‖gn

M‖kxy cy + ‖gn
M‖kxz cz + v0

x
‖gn

M‖kyy cy + ‖gn
M‖kyz cz + v0

y
‖gn

M‖kzz cz + v0
z

,

the different elements of the matrices involved in Equation (A23) are expressed as follows:

h(c) = c2
x + c2

y + c2
z − 1;

∇h(c) = 2

 cx
cy
cz

;

∇L(c, u) =

 ∂L
/

∂cx
∂L
/

∂cy
∂L
/

∂cz

;

=

 2‖gn
M‖kxx(µx − vx) + 2u cx

2‖gn
M‖kxy(µx − vx) + 2‖gn

M‖kyy(µy − yy) + 2u cy
2‖gn

M‖kxz(µx − vx) + 2‖gn
M‖kyz(µy − vy) + 2‖g‖kzz(µz − vz) + 2u cz

;

∇2L(c, u) =

 lxx lxy lxz
lyx lyy lyz
lzx lzy lzz

,

with:

lxx =
∂2L
∂c2

x
= 2‖gn

M‖2k2
xx + 2u,

lxy =
∂

∂cy

∂L
∂cx

= 2‖gn
M‖2kxxkxy,

lxz =
∂

∂cz

∂L
∂cx

= 2‖gn
M‖2kxxkxz,

lyx =
∂

∂cx

∂L
∂cy

= 2‖gn
M‖2kxykxx,

lyy =
∂2L
∂c2

y
= 2‖gn

M‖2k2
xy + 2‖gn

M‖2k2
yy + 2u,

lyz =
∂

∂cz

∂L
∂cy

= 2‖gn
M‖2kxykxz + 2‖gn

M‖2kyykyz,

lzx =
∂

∂cx

∂L
∂cz

= 2‖gn
M‖2kxzkxx,

lzy =
∂

∂cy

∂L
∂cz

= 2‖gn
M‖2kxzkxy + 2‖gn

M‖2kyzkyy,

lzz =
∂2L
∂c2

z
= 2‖gn

M‖2k2
xy + 2‖gn

M‖2k2
yz + 2‖gn

M‖2k2
zz + 2u.
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