An Investigation on Super- and Sub-Terminal Drops in Two Different Rain Categories and Climate Regimes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Experimental Setup
2.2. Methodology
- a.
- Data are collected in Bologna and Kolkata.
- b.
- The bulk analysis is performed on samples with at least R > 1 mm/h.
- c.
- Convective/Stratiform classification performed.
- d.
- Velocity–diameter relationship in natural rain of the two places is studied.
- e.
- Super- and sub-terminal fractions of drops are computed.
- f.
- Highest slope of DSD is computed for samples with R > 5 mm/h after averaging DSD in 2 min samples.
- g.
- Events are selected as continuous minutes of rain with at least 10 drops/minute with gaps lesser than 60 min.
- h.
- For the impact of break-up and coalescence, we considered only events with at least average rain intensity of 3 mm/h.
- i.
- The non-terminal drops were studied as a function of the peak mean volume diameter and fraction of break-up minutes.
3. Results
3.1. Comparative Rain Microphysical Structure and Non-Terminal Drop Occurrence
3.2. Investigation of Physical Processes Involved in Presence of Non-Terminal Raindrops
3.3. Identification of Causes behind Non-Terminal Drops in Individual Events
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ouyang, L.; Lu, H.; Yang, K.; Leung, L.R.; Wang, Y.; Zhao, L.; Zhou, X.; Chen, Y.; Jiang, Y.; Yao, X.; et al. Characterizing uncertainties in ground “truth” of precipitation over complex terrain through high-resolution numerical modeling. Geophys. Res. Lett. 2021, 48, e2020GL091950. [Google Scholar] [CrossRef]
- Lengfeld, K.; Kirstetter, P.E.; Fowler, H.J.; Yu, J.; Becker, A.; Flamig, Z.; Gourley, J. Use of radar data for characterizing extreme precipitation at fine scales and short durations. Environ. Res. Lett. 2020, 15, 085003. [Google Scholar] [CrossRef]
- Thorndahl, S.; Einfalt, T.; Willems, P.; Nielsen, J.E.; Veldhuis, M.C.; Arnbjerg-Nielsen, K.; Rasmussen, M.R.; Molnar, P. Weather Radar Rainfall Data in Urban Hydrology. Hydrol. Earth Syst. Sci. 2017, 21, 1359–1380. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.; Mahfouf, J.F.; Montmerle, T. Toward a variational assimilation of polarimetric radar observations in a convective-scale numerical weather prediction (NWP) model. Atmos. Meas. Tech. 2020, 13, 2279–2298. [Google Scholar] [CrossRef]
- Chu, Z.; Ma, Y.; Zhang, G.; Wang, Z.; Han, J.; Kou, L.; Li, N. Mitigating Spatial Discontinuity of Multi-Radar QPE Based on GPM/KuPR. Hydrology 2018, 5, 48. [Google Scholar] [CrossRef] [Green Version]
- D’Adderio, L.P.; Porcù, F.; Tokay, A. Identification and Analysis of Collisional Breakup in Natural Rain. J. Atmos. Sci. 2015, 72, 3404–3416. [Google Scholar] [CrossRef]
- Adirosi, E.; Roberto, N.; Montopoli, M.; Gorgucci, E.; Baldini, L. Influence of Disdrometer Type on Weather Radar Algorithms from Measured DSD: Application to Italian Climatology. Atmosphere 2018, 9, 360. [Google Scholar] [CrossRef] [Green Version]
- Guyot, A.; Pudashine, J.; Protat, A.; Uijlenhoet, R.; Pauwels, V.R.N.; Seed, A.; Walker, J.P. Effect of disdrometer type on rain drop size distribution characterisation: A new dataset for south-eastern Australia. Hydrol. Earth Syst. Sci. 2019, 23, 4737–4761. [Google Scholar] [CrossRef] [Green Version]
- Tokay, A.; D’Adderio, L.P.; Porcù, F.; Wolff, D.B.; Petersen, W.A. A field study of footprint-scale variability of raindrop size distribution. J. Hydrometeorol. 2017, 18, 3165–3179. [Google Scholar] [CrossRef]
- Adirosi, E.; Montopoli, M.; Bracci, A.; Porcù, F.; Capozzi, V.; Annella, C.; Budillon, G.; Bucchignani, E.; Zollo, A.L.; Cazzuli, O.; et al. Validation of GPM Rainfall and Drop Size Distribution Products through Disdrometers in Italy. Remote Sens. 2021, 13, 2081. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Arthur, Y.H.; Ramesh, K.K.; Steven, N.; Ardeshir, A.A.; Christian, D.K.; Masahiro, K.; Riko, O.; Kenji, N.; Toshio, I. The Global Precipitation Measurement (GPM) Mission. Bull. Amer. Meteor. Soc. 2014, 95, 701–722. [Google Scholar]
- Seo, E.; Hristova-Veleva, S.; Liu, G.; Ou, M.; Ryu, G. Long-Term Comparison of Collocated Instantaneous Rain Retrievals from the TRMM Microwave Imager and Precipitation Radar over the Ocean. J. Appl. Meteorol. Climatol. 2015, 54, 867–879. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The Global Precipitation Measurement (GPM) Mission for Science and Society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Nelson, K.; Mohr, K.I.; Huffman, G.J.; Levy, R.; Grecu, M. A spatial-temporal extreme precipitation database from GPM IMERG. J. Geophys. Res. Atmos. 2019, 124, 10344–10363. [Google Scholar] [CrossRef]
- Nguyen, P.; Shearer, E.J.; Tran, H.; Ombadi, M.; Hayatbini, N.; Palacios, T.; Huynh, P.; UpdegZaff, G.; Hsu, K.; Kuligowski, B.; et al. The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation data. Nat. Sci. Data 2019, 6, 180296. [Google Scholar] [CrossRef] [Green Version]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydromet. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Kucera, P.A.; Lapeta, B. Leading efforts to improve global quantitative precipitation estimation. Bull. Am. Meteorol. Soc. 2014, 95, ES26–ES29. [Google Scholar] [CrossRef]
- Das, S.; Maitra, A. Characterization of tropical precipitation using drop size distribution and rain rate-radar reflectivity relation. Theor. Appl. Climatol. 2018, 132, 275–286. [Google Scholar] [CrossRef]
- Joss, J.; Waldvogel, A. Ein Spektrograph fur Niederschlagstrophen mit automatischer Auswertung. Pure Appl. Geophys. 1967, 68, 240–246. [Google Scholar] [CrossRef]
- Sheppard, B. Effect of Irregularities in the Diameter Classification of Raindrops by the Joss-Waldvogel Disdrometer. J. Atmos. Ocean. Technol. 1990, 7, 180–183. [Google Scholar] [CrossRef] [Green Version]
- Gunn, R.; Kinzer, G.D. The Terminal Velocity Of Fall For Water Droplets In Stagnant Air. J. Meteorol. 1949, 6, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Beard, K.V.; Pruppacher, H.R. A Determination of the Terminal Velocity and Drag of Small Water Drops by Means of a Wind Tunnel. J. Atmosph. Sci. 1969, 26 Pt 2, 1066. [Google Scholar] [CrossRef] [Green Version]
- Atlas, D.; Srivastava, R.C.; Sekhon, R.S. Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. Space Phys. 1973, 11, 1–35. [Google Scholar] [CrossRef]
- Hosking, J.G.; Stow, C.D. Ground-based measurements of raindrop fall speeds. J. Atmos. Ocean. Technol. 1991, 8, 137–147. [Google Scholar] [CrossRef]
- Foote, G.B.; DuToit, P.S. Terminal velocity of raindrops aloft. J. Appl. Meteor. 1969, 8, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Beard, K.V. Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci. 1967, 33, 851–864. [Google Scholar] [CrossRef] [Green Version]
- Montero-Martínez, G.; Kostinski, A.B.; Shaw, R.A.; García-García, F. Do all raindrops fall at terminal speed? Geophys. Res. Lett. 2009, 36, L11818. [Google Scholar] [CrossRef] [Green Version]
- Thurai, M.; Bringi, V.N.; Peterson, W.A.; Gatlin, P.N. Drop shapes and fall speeds in rain: Two contrasting examples. J. Appl. Meteorol. Climatol. 2013, 52, 2567–2581. [Google Scholar] [CrossRef]
- Thurai, M.; Bringi, V.; Gatlin, P.; Wingo, M. Raindrop fall velocity in turbulent flow: An observational study. Adv. Sci. Res. 2021, 18, 33–39. [Google Scholar] [CrossRef]
- Low, T.B.; List, R. Collision, coalescence, and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup. J. Atmos. Sci. 1982, 39, 1591–1606. [Google Scholar] [CrossRef] [Green Version]
- Pruppacher, H.R.; Klett, J.D. Microphysics of Clouds and Precipitation. D. Reidel 1978, 714. [Google Scholar] [CrossRef]
- Bringi, V.; Thurai, M.; Baumgardner, D. Raindrop fall velocities from an optical array probe and 2-D video disdrometer. Atmos. Meas. Tech. 2018, 11, 1377–1384. [Google Scholar] [CrossRef] [Green Version]
- Florian, W.; Martin, B.; Michael, S.; Detlef, D.; Oliver, B.; Peter, F. Uncertainties in rainfall kinetic energy-intensity relations for soil erosion modelling. Catena 2018, 171, 234–244. [Google Scholar]
- Larsen, M.L.; Kostinski, A.B.; Jameson, A.R. Further evidence for super-terminal drops. Geophys. Res. Lett. 2014, 41, 6914–6918. [Google Scholar] [CrossRef] [Green Version]
- Montero-Martínez, G.; García-García, F. On the behaviour of raindrop fall speed due to wind. Q. J. R. Meteorol. Soc. 2016, 142, 2013–2020. [Google Scholar] [CrossRef]
- Bolek, A.; Testik, F.Y. Rainfall Microphysics Influenced by Strong Wind during a Tornadic Storm. J. Hydrometeorol. 2021, 23, 733–746. [Google Scholar] [CrossRef]
- Ierace, B.; Larsen, M.; O’Dell, K.; Kostinski, A.B. Exploring the Possible Physical Origins of Raindrops falling at Non-Terminal Fallspeeds. In Proceedings of the AGU Fall Meeting, Chicago, IL, USA, 12–16 December 2020. [Google Scholar]
- Montero-Martínez, G.; Fernando, G.; Stefany, A. The change of rainfall kinetic energy content with altitude. J. Hydrol. 2020, 584, 124685. [Google Scholar] [CrossRef]
- Chatterjee, C.; Das, S. On the Association Between Lightning and Precipitation Microphysics. J. Atmos. Sol.-Terr. Phys. 2020, 207, 105350. [Google Scholar] [CrossRef]
- Smith, P.L.; Liu, Z.; Joss, J. A study of sampling-variability effects in raindrop size observations. J. Appl. Meteor. 1993, 32, 1259–1269. [Google Scholar] [CrossRef] [Green Version]
- Jaffrain, J.; Berne, A. Quantification of the small-scale spatial structure of the raindrop size distribution from a network of disdrometers. J. Appl. Meteorol. Climatol. 2012, 51, 941–953. [Google Scholar] [CrossRef]
- Gatlin, P.N.; Thurai, M.; Bringi, V.N.; Petersen, W.; Wolff, D.; Tokay, A.; Carey, L.; Wingo, M. Searching for Large Raindrops: A Global Summary of Two-Dimensional Video Disdrometer Observations. J. Appl. Meteorol. Climatol. 2015, 54, 1069–1089. [Google Scholar] [CrossRef]
- Tokay, A.; Wolff, D.B.; Petersen, W.A. Evaluation of the New Version of the Laser-Optical Disdrometer, OTT Parsivel2. J. Atmos. Ocean. Technol. 2014, 31, 1276–1288. [Google Scholar] [CrossRef]
- Tokay, A.; Short, D.A. Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor. 1996, 35, 355–371. [Google Scholar] [CrossRef] [Green Version]
- Caracciolo, C.; Prodi, F.; Battaglia, A.; Porcù, F. Analysis of the moments and parameters of a gamma DSD to infer precipitation properties: A convective stratiform discrimination algorithm. Atm. Res. 2006, 80, 165–186. [Google Scholar] [CrossRef]
- Li, X.; Tao, W.; Khain, A.P.; Simpson, J.; Johnson, D.E. Sensitivity of a cloud-resolving model to bulk and explicit bin microphysical schemes. Part II: Cloud microphysics and storm dynamics interactions. J. Atmos. Sci. 2009, 66, 22–40. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, K.; Kalina, E.; Masters, F.; Lopez, C. Drop-Size Distributions in Thunderstorms Measured by Optical Disdrometers during VORTEX2. Mon. Weather Rev. 2013, 141, 1182–1203. [Google Scholar] [CrossRef]
- Niu, S.; Jia, X.; Sang, J.; Liu, X.; Lu, C.; Liu, Y. Distributions of Raindrop Sizes and Fall Velocities in a Semiarid Plateau Climate: Convective versus Stratiform Rains. J. Appl. Meteorol. Climatol. 2010, 49, 632–645. [Google Scholar] [CrossRef]
- Kinnell, P. Some observations on the Joss–Waldvogel rainfall disdrometer. J. Appl. Meteor. 1976, 15, 499–502. [Google Scholar] [CrossRef]
- Donnadieu, G. Comparison of results obtained with the VIDIAZ spectropluviometer and the Joss–Waldvogel rainfall disdrometer in a “rain of a thundery type”. J. Appl. Meteor. 1980, 19, 593–597. [Google Scholar] [CrossRef]
- Löffler-Mang, M.; Joss, J. An optical disdrometer for measuring size and velocity of hydrometeors. J. Atmos. Ocean. Technol. 2000, 17, 130–139. [Google Scholar] [CrossRef]
- Voida, A.; Judith, S.; Gary, M. Turbulence in the clouds: Challenges of cloud-based information work. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, France, 27 April–2 May 2013. [Google Scholar]
- Das, S.K.; Simon, S.; Kolte, Y.K.; Krishna, U.V.M.; Deshpande, S.M.; Hazra, A. Investigation of Raindrops Fall Velocity During Different Monsoon Seasons Over the Western Ghats, India. Earth Space Sci. 2020, 7, e2019EA000956. [Google Scholar] [CrossRef] [Green Version]
- Tokay, A.; D’Adderio, L.P.; Wolff, D.B.; Petersen, W.A. A Field Study of Pixel-Scale Variability of Raindrop Size Distribution in the Mid-Atlantic Region. J. Hydrometeorol. 2016, 17, 1855–1868. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishna, B.; Rao, T.N. Statistical characteristics of multipeak raindrop size distributions at the surface and aloft in different rain regimes. Mon. Weather Rev. 2009, 137, 3501–3518. [Google Scholar] [CrossRef]
Kolkata | Bologna | |
---|---|---|
Convective | 1503 | 2137 |
Stratiform | 1760 | 2828 |
Total | 3263 | 4965 |
Kolkata | Bologna | |
---|---|---|
HS < −2 | 88 | 176 |
−2 < HS < −1.5 | 124 | 164 |
−1.5 < HS < −1 | 201 | 187 |
−1 < HS < −0.5 | 120 | 100 |
−0.5 < HS < 0 | 39 | 56 |
HS > 0 | 26 | 22 |
Average Non-Terminal Fraction | No. of Events Higher Non-Terminal Fraction | No. of Events Lower Non-Terminal Fraction | ||
---|---|---|---|---|
Bologna | Super | 0.09 | 9 | 5 |
Sub | 0.08 | 7 | 7 | |
Kolkata | Super | 0.05 | 9 | 17 |
Sub | 0.21 | 8 | 18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatterjee, C.; Porcù, F.; Das, S.; Bracci, A. An Investigation on Super- and Sub-Terminal Drops in Two Different Rain Categories and Climate Regimes. Remote Sens. 2022, 14, 2515. https://doi.org/10.3390/rs14112515
Chatterjee C, Porcù F, Das S, Bracci A. An Investigation on Super- and Sub-Terminal Drops in Two Different Rain Categories and Climate Regimes. Remote Sensing. 2022; 14(11):2515. https://doi.org/10.3390/rs14112515
Chicago/Turabian StyleChatterjee, Chandrani, Federico Porcù, Saurabh Das, and Alessandro Bracci. 2022. "An Investigation on Super- and Sub-Terminal Drops in Two Different Rain Categories and Climate Regimes" Remote Sensing 14, no. 11: 2515. https://doi.org/10.3390/rs14112515
APA StyleChatterjee, C., Porcù, F., Das, S., & Bracci, A. (2022). An Investigation on Super- and Sub-Terminal Drops in Two Different Rain Categories and Climate Regimes. Remote Sensing, 14(11), 2515. https://doi.org/10.3390/rs14112515