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Abstract: Gravity data have been frequently used in researching the subsurface to map the 3D
geometry of the density structure, which is considered the basis for further interpretations, such
as the estimation of exploration potential in mineral exploration. The gravity inversion, practically
employed to map the density structure, can be achieved by different methods. The method based
on Tikhonov regularization is the most commonly used among them. Usually, the subsurface is
discretized into a set of cells or voxels. To recover a stable and reliable solution, constraints are
introduced into the Tikhonov regularization. One constrained inversion introduces a quadratic
penalty (L2 norm) into the inversion, which imposes smooth features on the recovered model.
Another gravity inversion, known as sparse inversion, imposes compactness and sharp boundaries
on the recovered density structure. Specifically, the L1 norm and L0 norm are favored for such a
purpose. This work evaluates the merits of the gravity data inversion in cooperation with different
model norms and their applicability in exploration potential estimation. Because these norms
promote different features in the recovered models, the reconstructed 3D density structure reveals
different geometric features of the ore deposit. We use two types of synthetic data for evaluating
the performances of the inversion with different norms. Numerical results demonstrate that L0

norm-based inversion provides high-resolution recovered models and offers reliable estimates of
exploration potential with minimal deviation from theoretical mass compared to inversions equipped
with the other two norms. Finally, we use the gravity data collected over the iron ore deposit at
the Dida mining area in Jilin province (Northeast China) for the application. It is estimated that the
exploration potential of the iron ore deposits is about 3.2 million tons.

Keywords: gravity; 3D inversion; exploration potential estimation; L2 norm; L1 norm; L0 norm;
Jilin province

1. Introduction

The economic evaluation of a deposit is an essential factor in opening a new mine or
planning investments for future mine operations. However, this economic assessment relies
on the accuracy of the associated exploration potential estimation. A reliable estimation
of exploration potential in tonnage is crucial for the subsequent investment during the
exploration phase. Furthermore, the profitability of mining projects usually relies on the
quality assessment results obtained during the exploration potential estimation process.
Therefore, reliable exploration potential estimates for deposits such as iron ore are critical
to successful and profitable mining operations.

Traditionally, geoscientists have utilized geometric and geostatistical methods to
evaluate a total mass estimate for the exploration target [1–7]. Specifically, the geometric
method, such as the classical polygon method, is usually applied when a sufficiently
large database is not available, and it provides a rough estimate of the tonnage of a
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mineral deposit [8,9]. The geostatistical method, which models an ore deposit using
the spatial distribution of the ore grades, is treated as a more sophisticated method and
receiving increasing attention [3,10–12]. However, these two methods rely heavily on the
availability of core samples, which can be expensive for large, deep deposits. The accuracy
of geostatistical inferences can also vary widely depending on the distribution of core
samples and the method used. In general, geometric and geostatistical methods are suitable
when the deposit is shallow or sufficient geological information is available.

By contrast, methods based on geophysical inversion offer an alternative. Geophysical
inversion converts remotely sensed physical fields into the distribution of physical property.
Ore exploration potential can then be estimated from the distribution of certain physical
property values that are empirically classified as ore in a particular exploration environment.
Exploration potential estimation based on geophysical inversion is highlighted for efficiency
and cost-effectiveness. Recently, the authors of [13] used airborne magnetic data to evaluate
the iron (magnetite) deposits via 3D inversion equipped with L2 norm; exploration potential
in tonnage was calculated from volume and estimated mean density. Other geophysical
surveys can similarly be used for exploration potential estimation. In fact, gravity surveys
and the resulting density distribution can be instrumental since tonnage can be directly
calculated as the product of the recovered density and the corresponding volume, avoiding
conversions between other physical properties and densities.

In terms of gravity inversion, it is an ill-posed optimization problem. The widely
applied Tikhonov regularization imposes constraints on the recovered model to stabilize
the minimization process. Traditionally, the L2 norm penalty, known as the smoothness
constraint, is introduced to yield a simple, minimum structure that fits the observed data to
a reasonable level [14,15]. However, the L2 model norm-based inversion tends to recover
a fuzzy structure because the quadratic model norm penalty introduces a certain degree
of smoothness into the inverted structure. These features will be more pronounced if
further smoothing constraints on the model (first- or second-order difference operators)
are introduced in the objective function. The compact or sparse constraint has attracted
increasing attention in mineral surveys because it produces a model of blocky features that
facilitates further interpretation and sets the stage for subsequent mineral exploration. Re-
garding sparse constraints, the L0 norm is favored, which penalizes the number of non-zero
model parameters while ignoring their magnitude [16]. The L0 norm has been widely used
in different fields, including anisotropic point cloud denoising [17], signal recovery [18],
image reconstruction [19], face recognition [20], and spectrum reconstruction [21]. The L0
norm also highlights its position in geophysical data processing and inversion. The author
of [22] used the L0 norm for potential field and seismic data reconstruction. The author
of [23] employed the L0 norm for electrical resistivity tomography and demonstrated its
characteristic in imaging small-scale targets with sharp boundaries. In seismic impedance
inversion, the L0 gradient minimization regularization provides a blocky solution that
makes the formation interfaces and geological edges more precise and keeps the inversion
procedure robust even if random noise exists in the seismic data [24]. The L0 norm has
been further developed in the potential field data inversion. Different approximate expres-
sions for the L0 norm have been successfully applied in the inversion [25–28], and sharp
boundaries feature the inversion results. Alternatives to the L0 norm penalty, such as the
L1 norm penalty, are also popular in the geophysics community [29,30]. Different norm
penalties have advantages and disadvantages in terms of application scenarios, recovery of
geometric and physical properties of density structures, time consumption, etc.

Forward modeling is an integral part of inversion. In gravity forward modeling,
according to the basic geometric model used, it can be divided into the stack of rectangular
prisms [31], the stack of polygonal prisms [32], and the polyhedron [33]. Due to the
convenience of discretization and integration, the stack of rectangular prisms is widely
used in practice and adopted in our work. The closed-form expressions of the gravity effect
due to a rectangular prism have been derived by many researchers [31,34,35]. However,
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their differences are slight, and the interested readers are recommended to refer to [36] for
a complete comparison of different closed-form expressions.

This paper explores the exploration potential estimation problem using 3D gravity
inversion equipped with different norm penalties. Our work builds an objective function
that comprises the data misfit, model penalty (L2 norm, L1 norm, and L0 norm), and
the bound constraints using a logarithmic barrier term. When minimizing the objective
function, the iteratively reweighted least-squares (IRLS) [37] technique is utilized, and
the regularization parameter is determined with a line search principle. In the following,
we first present the forward modeling and inversion methods involved in this research.
Then we test the effectiveness of exploration potential estimation using 3D inversion with
different norm penalties based on two synthetic datasets. Finally, gravity data collected
from the Dida area in northeast China were used to verify the applicability of various
model norms in estimating ore exploration potential in a real mining scenario.

2. Methods

Regarding a real field survey, the estimation of exploration potential comprises three
main steps (Figure 1). Firstly, the raw gravity data were processed to obtain residual
Bouguer gravity anomalies; these procedures include various corrections, field separation,
and denoising. Furthermore, petrophysical information was gathered from the literature
and rock sample measurements. Secondly, we adopted different norm-based inversions
in cooperating with the petrophysical information to obtain recovered models. Finally,
the recovered model was utilized to perform an estimation of the exploration potential.
Since gravity data and density distribution correlate directly, the exploration potential was
estimated by multiplying the exploration target involved volume and inverted density.
In particular, the L2 norm inverted model had smooth features, so a cutoff process was
required to extract the cropped model relevant to the exploration target. The remainder of
this section focuses on the inversion method (light blue parts in Figure 1) and presents the
details related to the forward modeling and inversion equipped with different norms.

Remote Sens. 2022, 14, 2537 3 of 20 
 

 

differences are slight, and the interested readers are recommended to refer to [36] for a 
complete comparison of different closed-form expressions. 

This paper explores the exploration potential estimation problem using 3D gravity 
inversion equipped with different norm penalties. Our work builds an objective function 
that comprises the data misfit, model penalty (L2 norm, L1 norm, and L0 norm), and the 
bound constraints using a logarithmic barrier term. When minimizing the objective func-
tion, the iteratively reweighted least-squares (IRLS) [37] technique is utilized, and the reg-
ularization parameter is determined with a line search principle. In the following, we first 
present the forward modeling and inversion methods involved in this research. Then we 
test the effectiveness of exploration potential estimation using 3D inversion with different 
norm penalties based on two synthetic datasets. Finally, gravity data collected from the 
Dida area in northeast China were used to verify the applicability of various model norms 
in estimating ore exploration potential in a real mining scenario. 

2. Methods 
Regarding a real field survey, the estimation of exploration potential comprises three 

main steps (Figure 1). Firstly, the raw gravity data were processed to obtain residual 
Bouguer gravity anomalies; these procedures include various corrections, field separa-
tion, and denoising. Furthermore, petrophysical information was gathered from the liter-
ature and rock sample measurements. Secondly, we adopted different norm-based inver-
sions in cooperating with the petrophysical information to obtain recovered models. Fi-
nally, the recovered model was utilized to perform an estimation of the exploration po-
tential. Since gravity data and density distribution correlate directly, the exploration po-
tential was estimated by multiplying the exploration target involved volume and inverted 
density. In particular, the L2 norm inverted model had smooth features, so a cutoff process 
was required to extract the cropped model relevant to the exploration target. The remain-
der of this section focuses on the inversion method (light blue parts in Figure 1) and pre-
sents the details related to the forward modeling and inversion equipped with different 
norms. 

 
Figure 1. Flowchart of the inversion-based estimation of the exploration potential. 

  

Figure 1. Flowchart of the inversion-based estimation of the exploration potential.



Remote Sens. 2022, 14, 2537 4 of 19

2.1. Closed-Form Solution of Gravity Field

Considering the Cartesian coordinate systems, we adopted the coordinates (x, y, z) for
a survey point and (ξ, η, ζ) for a geological body (Figure 2a). The vertical axes (z and ζ), the
north axes (x and ξ), and the east axes (y and η) were arranged in a right-handed system.
The gravity effect g caused by a rectangular cell with a constant density ρ at survey point
(x, y, z) is given by [36]

g = −γρ
2

∑
i=1

2

∑
j=1

2

∑
k=1

µijk ×
[

xi ln
(

yj + rijk

)
+ yj ln

(
xi + rijk

)
+ zkarctan

zkrijk

xiyj

]
, (1)

where γ is the universal gravitational constant, xi = x—ξi, yj = y—ηj, zk = z—ζk,

rijk =
√

xi
2 + yj

2 + zk
2, and µijk = (−1)i+j+k. Coordinates of the rectangular cell are limited

by ξ1 ≤ ξ ≤ ξ2, η1 ≤ η ≤ η2, and ζ1 ≤ ζ ≤ ζ2.

Remote Sens. 2022, 14, 2537 4 of 20 
 

 

2.1. Closed-Form Solution of Gravity Field 
Considering the Cartesian coordinate systems, we adopted the coordinates (x, y, z) 

for a survey point and (ξ, η, ζ) for a geological body (Figure 2a). The vertical axes (z and 
ζ), the north axes (x and ξ), and the east axes (y and η) were arranged in a right-handed 
system. The gravity effect g caused by a rectangular cell with a constant density ρ at sur-
vey point (x, y, z) is given by [36] 

( ) ( )
2 2 2

1 1 1
ln ln arctan k ijk

ijk i j ijk j i ijk k
i j k i j

z r
g x y r y x r z

x y
γρ μ

= = =

 
= − × + + + + 

  
 , (1)

where γ is the universal gravitational constant, xi = x—ξi, yj = y—ηj, zk = z—ζk, 
2 2 2

ijk i j kr x y z= + + , and μijk = (−1)i+j+k. Coordinates of the rectangular cell are limited 

by ξ1 ≤ ξ ≤ ξ2, η1 ≤ η ≤ η2, and ζ1 ≤ ζ ≤ ζ2. 
The geological body with arbitrary geometry could be approximated using a set of 

rectangular cells. For each cell, we assumed that its density was a constant. Then, accord-
ing to the superposition principle, the gravity anomaly of the arbitrary density distribu-
tion at survey locations was obtained by summing the contributions from all cells (Figure 
2b). The matrix-vector form of the forward modeling can be expressed as: 

d = Gm, (2)

where d is an N-length vector composed of observed data (gravity anomalies in this pa-
per). m denotes the M-length vector composed of the model parameters (density vector 
in this paper). G represents the sensitivity or the Jacobi matrix, with a size of N × M, which 
characterizes the contribution of changes in model parameters on the observed data. 

 
Figure 2. (a) Graphical illustration of calculating the gravity effect produced by a model cell with 
respect to survey point (x, y, z). (b) Model cells and survey locations, only part of model cells are 
shown [38]. 

  

Figure 2. (a) Graphical illustration of calculating the gravity effect produced by a model cell with
respect to survey point (x, y, z). (b) Model cells and survey locations, only part of model cells are
shown [38].

The geological body with arbitrary geometry could be approximated using a set of
rectangular cells. For each cell, we assumed that its density was a constant. Then, according
to the superposition principle, the gravity anomaly of the arbitrary density distribution at
survey locations was obtained by summing the contributions from all cells (Figure 2b). The
matrix-vector form of the forward modeling can be expressed as:

d = Gm, (2)

where d is an N-length vector composed of observed data (gravity anomalies in this paper).
m denotes the M-length vector composed of the model parameters (density vector in this
paper). G represents the sensitivity or the Jacobi matrix, with a size of N × M, which
characterizes the contribution of changes in model parameters on the observed data.

2.2. Principles of Inversion Approaches

This section presents inversion methods using the different model norm constraints. It
is well-known that geophysical data inversion is an ill-posed problem. From the data point
of view, measurements were performed at discrete, limited locations, and the measured
responses were usually inaccurate. From the model’s perspective, the complex subsurface
structure increased the ill-posedness of the problem. As a result, the traditional least-squares
inversion would most likely produce an unreliable model. The Tikhonov regularization-
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based inversion increased the model’s reliability by adding constraints to the inverted
model and ultimately reducing the interpretation ambiguity. In this work, the Tikhonov
regularization was utilized as [39]

φ(m) = ‖Wd(d−Gm)‖2
2 + µ‖Wmm‖p

p, (3)

where φ(m) denotes the objective function. The first term of the right-hand side (RHS)
is called data misfit, which evaluated the fitting error of the inverted model’s forward
response with respect to the observed data d. The second term of RHS is the model
norm, which was introduced to stabilize the minimization process. Wd is a diagonal data
weighting matrix, which provided an estimation of the uncertainty of observed data. Wm
denotes the model weighting matrix, set as the cell volume weighting operator. It was
noted that both G and m are normalized by a depth weighting matrix to compensate for
the decay of the kernel function [15,40]. The µ represents the regularization parameter,
balancing the relative importance between the data misfit and the model norm during the
inversion process. The choice of µ plays a vital role in the inversion; available options were
the L-curve method [41], generalized cross-validation method [42], the cooling method [43],
etc. During the iteration, we calculated the µ using the line search strategy to decrease
the data misfit. The following equation was used to calculate the initial regularization
parameter [43]

µ =
smax

(
GTWT

d WdG
)

smax

(
WT

mWm

) , (4)

where smax (A) denotes the largest singular value of the matrix A.
For different p values, the second term on the RHS of Equation (3) varies its form as

follows [44,45]

‖m‖0
0 =

M

∑
i=1

log(m2
i + ε2), (5)

‖m‖1
1 =

M

∑
i=1

(
m2

i + ε2
)1/2

, (6)

‖m‖2
2 =

M

∑
i=1

m2
i , (7)

where ε is a small number to avoid singularity and is set to 10−10. Figure 3 illustrates the
penalties for different norms. Theoretically, the L2 norm is very sensitive to the amplitude
of the model parameter due to squaring. While the L2 norm is the most common usage,
it is mostly blind to geometry and tends to recover model with smaller parameters than
the actual case. The L1 norm inverted model could be interpreted as a minimal geometric
description, which is somewhat sensitive to amplitude information. Most of the model
parameters restored using the L1 norm tend to be zero, and a small number of model
parameters have high values. However, the boundary of the target was blurred due to
the nature of the L1 norm. The L0 norm was the least amplitude-dependent norm since
it was counted regardless of the magnitude (if the absolute value of a number is raised
to the power of 0, then it is 1 or 0). During the minimization, the vast majority of model
parameters became 0, and only a few model parameters, used to characterize the geological
bodies, had non-zero value and sharp-boundary features [46]. To sum up the above, the
inversion equipped with the L0 norm tended to provide more robust and interpretable
results than other norms.
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In the minimization phase, the L2 norm-based inversion was solved using a classical
Gauss-Newton approach [47]. The L0 and L1 norm-based inversions were solved as an
iteratively reweighted least-squares (IRLS) problem [37]. We refer the reader to [37,44] for
detailed explanations. Here, we briefly review the process. In the IRLS framework, the
minimization of the L0 and L1 model norm-based inversion was equivalent to solving an
L2 norm-based inversion as follows

φ(m) = ‖Wd(d−Gm)‖2
2 + µ‖WnWmm‖2

2, (8)

where Wn is the diagonal weighting matrix related to the Equations (5) and (6), and its
diagonal element has the form of [44]

Wjj
n =

(∣∣mj
∣∣2 + ε2

) p−2
4 , (9)

where p equals 0 or 1 according to the model norm, and the mj represents the model
parameter of the jth cell. It was noted that Wn is a variable weighting operator which
depended on the model parameters while Wm remains unchanged.

2.3. Bound Constraint

During the minimization of Equations (3) and (8), the program searched for the so-
lution in the feasible domains under the model norm constraints. However, the solution
could be ambiguous from the perspective of interpretation. One of the reasons is that the
recovered model mismatched the petrophysical information from the drill holes or geologi-
cal mapping. Fortunately, several mathematical techniques were available for adding such
a constraint into the recovered model, which substantially reduced the uncertainty of the
inversion and improved our confidence in the interpretation. In our implementation, we
employed the logarithmic barriers method to impose the bound constraints on the inverted
model. Specifically, an additional term was added to the RHS of the Equations (3) and (8),
which was expressed as

φbnd(m) = −
M

∑
i=1

[
log
( mj −mmin

mmax −mmin

)
+ log

( mmax −mj

mmax −mmin

)]
(10)

where the mmin and mmax are the model parameters’ lower and upper bounds for each
cell, respectively.

A practical technique for minimizing Equations (3) or (8) with the constraints of
equation (10) was based on the standard IRLS algorithm. Specifically, we first updated the
model m with a fixed Wn, then updated Wn with the latest m, and repeated this process
until the model update fell below the tolerance. In other words, the IRLS algorithm included
two loops. The inner loop updated the model m by solving a bound-constrained L2 norm
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minimization problem, while the outer loop updated the variable weighting matrix Wn.
Interested readers can find a detailed description of the minimization process in [37,44].

3. Results
3.1. Synthetic Data Examples

To illustrate the effectiveness of the gravity inversion with different model norms on
exploration potential estimation, we present the results of their application to synthetic
gravity data produced by a two-block model shown in Figure 4a. Two blocks are paral-
lelepipeds of dimensions 100× 100× 100 m, situated at 50 and 100 m depths. The densities
of the southwest and northeast blocks are 1 g/cm3 and 1.5 g/cm3, respectively. The gravity
data caused by two blocks are simulated at equidistant stations laterally spaced at 20 m
with a height of 1 m, shown in Figure 4b. All data are contaminated with 2% Gaussian
noise to simulate the real scenario.
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Figure 4. (a) A 3D view of the true density model for the first synthetic data example. (b) Gravity
data produced by the model in (a), 2% Gaussian noise is added.

We have inverted the synthetic data using the L0, L1, and L2 model norms, as in-
troduced in the previous section. The inversion domain is discretized into rectangular
cells with a horizontal cell size of 20 × 20 m and a vertical size of 20 m for a total cell
count of 32,000. The inversions of three model norms are constrained within the bound of
0–1.5 g/cm3. All of the inversions were successfully terminated when the data misfit was
decreased to the tolerance. Horizontal and vertical sections of the true and inverted models
are presented in Figure 5.

It was found that the L2 norm-based inversion tended to produce a smooth model
(Figure 5d–f), which can only roughly show the locations of the density bodies; however, the
geometries and edges of the density bodies are very far from the ground truth (Figure 5a–c).
The inversion result using the L1 norm penalty provides a reasonable model with an
improved delineation of the geometries yet has fuzzy edges (Figure 5g–i). In contrast, the
L0 norm-based inversion generates a blocky model that clearly defines the density bodies’
locations and geometries (Figure 5j–l). The predicted gravity anomalies from the inverted
models with three model norms are displayed in Figure 6, which all match the observed
gravity anomalies at similar levels. We also found that the L2 norm-based inversion
takes the least time compared to other inversions (Table 1). Furthermore, we performed
exploration potential estimations using the inverted models (Table 1). Concerning the L2
norm-based inversion model, a cutoff value of 0.2 g/cm3 was used to approximate the
geometries of the density bodies. Compared to the theoretical mass of 1.0 × 107 tons, the
L0 norm-based inversion provided the closest estimation.
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north of 500 m. The first row is the true model. The second to fourth rows give the inverted models
using the L2, L1, and L0 norms. The black boxes indicate the location of the true models.
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Table 1. Summary of the inversion for synthetic data I. The second column presents the predicted
noise level (standard deviation) from the recovered models.

Model Norm Noise Level (mGal) Time (s) Exploration Potential (tons)

L2 1.10 × 10−2 139 5.20 × 107

L1 6.00 × 10−3 512 1.71 × 107

L0 5.20 × 10−3 431 1.01 × 107

Another synthetic test was performed to explore the ability of the inversion with dif-
ferent norm penalties to reconstruct more complex structures and estimate the exploration
potential of the interested target. Figure 7 demonstrates the perspective view of this model
that comprises four density bodies and the gravity anomalies produced by the model with
2% Gaussian noise added. The survey setup, inversion domain, and model discretization
are the same as the previous synthetic data test. The inversions of three model norms are
constrained within the bound of –1 to 2 g/cm3.
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Figure 7. (a) Perspective view of the complex model comprises four density bodies. (b) Gravity
anomalies produced by the model in (a), 2% Gaussian noise is added.

The recovered models and corresponding predicted gravity anomalies are displayed
in Figures 8 and 9, respectively. All of the inversions fit the observed gravity anomalies at
similar noise levels regarding data misfit. When the L2 norm is concerned, the recovered
model is too blurred, and the density bodies are poorly modeled, especially at a deeper
depth (Figure 8f). For the L1 and L0 norm penalties, the recovered models are featured by
sharp boundaries, and the density body located at deeper depth is observed. However,
inversion with an L0 norm penalty provides a fully compact model for shallow and deep
density bodies; further, L0 norm-based inversion result has minimal redundant structures
compared to other inversions’ results.

Exploration potentials are estimated based on the inversion results resulting from
different model norm penalties (Table 2). For this case, we assume that the ore deposits
correspond to the positive density bodies. A cutoff value of 0.2 g/cm3 is used for the L2
norm-based inversion result to approximate the geometries of the ore deposits. As expected,
the L0 norm-based inversion yields a reliable estimation comparable to the theoretical mass
of 2.30 × 106 tons.
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Figure 8. Inversion results of the second synthetic data. (a,d,g,j) present horizontal sections at a depth
of 60 m. (b,e,h,k) present horizontal sections at a depth of 90 m. (c,f,i,l) present horizontal sections at
a depth of 150 m. The first row is the true model. The second to fourth rows give the inverted models
using the L2, L1, and L0 norms. The black boxes indicate the location of the true models.
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Table 2. Summary of the inversion for synthetic data II. The second column presents the predicted
noise level (standard deviation) from the recovered models.

Model Norm. Noise Level (mGal) Time (s) Exploration Potential (tons)

L2 1.03 × 10−2 106 5.57 × 106

L1 7.30 × 10−3 412 5.36 × 106

L0 5.50 × 10−3 549 2.32 × 106

3.2. Real Data Application

In this section, the gravity data of the Dida iron ore deposit is employed to verify the
applicability of inversion with different norm penalties (Figure 10). The study area is small
skarn-type magnetite, and gravity exploration is carried out to expand exploration potential.
The tectonic trend of the study area is NNE, which is consistent with the neocathaysian
structural system. The ultrabasic rock belt is located in the Late Paleozoic fold belt and
consists of sixteen large and small plutons. The plutons are intruded into the Silurian-
Devonian Erdaogou group monoclinic stratum controlled by the vertical thrust fault, and it
is banded. The plutons have the same trend as the surrounding rock, but the inclination is
the opposite [48].
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The raw gravity data were obtained in the 1970s by measuring at the surface using a
quartz spring gravimeter [48]. The available data were archived as the Bouguer gravity
data set that has previously been used to test the field separation [49,50]. The Bouguer
gravity anomalies (Figure 10a) are digitized carefully from Figure 6 in [49]. The digitization
is fulfilled using the open-source software GeoGoku [51]. The digitizing function takes the
picture as input, reads contour lines interactively, and finally outputs scatter coordinates
and corresponding values. In the process of reading the contour line, one needs to set
the value corresponding to the contour line and then manually click the position of the
contour line. Then the program will automatically recognize its position and record it.
After digitization, the scattered data are re-gridded into 41 × 41 data points with a spacing
of 20 m using a Taylor series expansion-based interpolator [52]. We use trend analysis to
remove the regional anomalies from the Bouguer gravity anomalies. The first-order trend
surface is used to characterize the regional anomalies by trial and error. The corresponding
residual gravity anomalies are calculated by subtracting regional anomalies from Bouguer
gravity anomalies, presented in Figure 10b. As expected, the iron-caused anomalies are
highlighted. Gravity, magnetic interpretation, and drilling results show that the northwest
ore body has high magnetization and density relative to the surrounding rock (Figure 10b,
northwest of the enclosed black line). In contrast, the southeast ore body (enclosed black
line) has low magnetization and high density relative to the surrounding rock [48,53]. From
the knowledge of the drilling, the Z2 drilling finds no ore deposit, while the Z1 drilling
reveals an iron orebody and its extent up to ~200 m deep [48].

In the inversion phase, we discrete the subsurface of the study area into 100× 100× 40 rect-
angular cells with a spacing of 10 m. The inversion domain is extended by 100 m horizontally
to reduce the boundary effects. The bound constraint of the recovered model is determined
based on the measurements of the rock samples and is set to –1 to 1.2 g/cm3 [48]. The
noise’s uncertainty is set to 5% data magnitude plus a floor of 1× 10−3 mGal. The recovered
models from the inversions based on L2, L1, and L0 norms are displayed in Figure 11, and
their predictions of the residual gravity anomalies are shown in Figure 12.

Unsurprisingly, the L2 norm-based inversion result is rather smooth and provides
limited information about the target iron ore deposits. Compared to the L2 norm inversion,
the L1 and L0 norm-based inversion results present non-smooth and blocky features. The
recovered model is positively correlated with drilling information. In terms of the L0
norm-based inversion, the geometry and location of the ore deposit are clearly recovered.
The exploration target is located in the center of the study area. The horizontal plane shows
that the possible extent of the iron ore deposits (Figure 11f) is smaller than that inferred
from the drillings (Figure 10b). Further, the vertical section (Figure 11c) shows that the
iron ore at the Z1 starts from a depth of 100 m and ends at about 200 m. Compared with
the drilling results [48], the estimated top interface of the ore body is shallowly buried.
These mismatches are mainly affected by factors such as the accuracy of field separation,
the influence of coherent noise in the field data [39], and the bias of the upper and lower
bounds of the model parameters caused by the measurement error of the rock samples.

The predicted gravity anomalies (Figure 12) from three inverted models are highly
consistent with the input residual gravity anomalies in Figure 10b, demonstrating that the
inversions are well solved. We also note that the inversion with the L2 norm takes the
shortest time consumption (271 s), while the L1 (802 s) and L0 (2153 s) norm-equipped
inversions need more time to converge for searching a compact model.

Finally, we perform the exploration potential estimation based on recovered models
with different norms. Since the interested ore bodies are located in the center of the
study area, we cropped the inverted models to 100–600 m in the north, 300–700 m in
the east, and 80–200 m in depth. Concerning L2 norm-based inversion, a cutoff value of
0.15 g/cm3 is applied to the recovered model to approximate the exploration target. There
are 6166 cells with a density greater than or equal to 0.15 g/cm3. Here, we employ the
average density of the rock samples (3.67 g/cm3), and it yields an exploration potential
of 7,339,200 tons. Regarding L1 and L0 norm-based inversions, their estimations are
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6,345,600 and 3,153,600 tons, respectively. It is found in the synthetic data tests that the L2
or L1 norm-based inversion tends to overestimate the exploration potential, so it is expected
that the exploration potential of the iron ore deposit in Dida is about 3.2 million tons.
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Figure 11. Inversion results of the Dida gravity anomalies. (a–c) present the vertical sections at north
390 m. (d–f) show the planes at a depth of 160 m. The first to third rows give the inverted models
using the L2, L1, and L0 norms. The red dots represent the drilling locations.
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4. Discussion

Exploration potential estimation is crucial in the early stage of mineral exploration and
development. However, the currently popular methods all rely on in-situ petrophysical
parameters from geological mapping or drilling projects, which are costly and resource-
intensive. They are challenging to carry out in large-scale areas. In contrast, geophysical
inversion provides an efficient and economical method for estimating exploration poten-
tial, which can be used in large mining areas and has great application prospects. The
authors of [13] used inversion results from aeromagnetic data to estimate the exploration
potential of deep deposits, yet they only used inversion based on the L2 model norm
penalty. Nonetheless, their results reveal the value of inversion-based exploration potential
prediction techniques.

Although inversion with different norm penalties has caused a research boom in
recent years, however, to our knowledge, studies based on other norms-based inversions
in exploration potential estimation have not been reported. This contribution shows the
practical value of inversion results of different norms (including the classical L2 model
constraints and the recently popular L1 and L0 norm constraints) for exploration potential
estimation. We approximate the L1 and L0 norms with equivalent formulations, which
allow us to evaluate the merits of multiple norms in a numerically feasible way. We
added a boundary constraint, commonly used for most geophysical inversions, into the
inversion to constrain the recovered model. Benefiting from the characteristic of the L0
norm penalty, that is, minimizing the number of non-zero model parameters regardless
of their magnitude, we found that the L0 norm-based inversion can better reconstruct
the subsurface density structure than other norms. Ultimately, the exploration potentials
estimated from L0 norm-based inversion result also have the slightest deviation compared
to the theoretical mass.

This paper compares the applicability of inversion equipped with different norm
penalties in exploration potential estimation. However, there are still some issues that
need further in-depth research. One valuable research point is to assess the impact of
inexact boundary constraints of the inversion on exploration potential estimation. Inexact
boundary information is inevitable because the actual measured petrophysical properties
(e.g., density) from rock samples are not fixed values but vary within an interval, which
presents challenges in setting appropriate upper and lower bounds in the inversion stage.
Another research point is the inevitable coherent noise in the data for inversion. In our
research experience, this type of noise is often difficult to handle, unlike random noise [34].
Coherent noise may be caused by various factors such as observation error, simulation
error, and data processing error. Our future research will focus on these issues.

5. Conclusions

Inversion plays a crucial role in the quantitative interpretation of gravity data. Re-
gardless of the prior information, the model norm penalty in the object function largely
determines the interpretability of the recovered model. This paper presents a comparison
of inversions with different norm penalties and their applications in the exploration of
potential estimation in mineral exploration. Regarding the inversion, depth weighting
and cell volume weighting are incorporated into all kinds of norm penalties. Further-
more, a commonly used bound constraint is introduced into the inversions to reduce the
ambiguity of the inversion. The L1 and L0 norm-based inversions are solved using an
IRLS technique. We test the applicability of the different model norms with respect to the
fidelity of the inverted model, and we evaluate the performance of the inverted models
with different norms for the exploration potential estimation, which is of increasing interest
in mineral exploration.

Synthetic data tests and real data applications demonstrate that the inversion equipped
with the L2 norm leads to the generation of a smooth featured model that is difficult to
interpret. The L1 norm penalty can yield a sparse model recovery and improve the in-
terpretability. However, a more compact model characterized by clear boundaries and
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minimal redundant structure is preferred to clarify the deeper situated structures’ geome-
tries and provide a geologically acceptable model. By our tests, the L0 norm equipped
inversion shows evident merit in estimating the exploration potential.
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