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Abstract: Monitoring drought precisely and evaluating drought effects quantitatively can establish
a scientific foundation for understanding drought. Although solar-induced chlorophyll fluorescence
(SIF) can detect the drought stress in advance, the performance of SIF in monitoring drought and
assessing drought-induced gross primary productivity (GPP) losses from lush to senescence remains
to be further studied. Taking the 2019 drought in the middle and lower reaches of the Yangtze River
(MLRYR) as an example, this study aims to monitor and assess this drought by employing a new
global, OCO-2-based SIF (GOSIF) and vegetation indexes (VIs). Results showed that the GPP, GOSIF,
and VIs all exhibited significant increasing trends during 2000–2020. GOSIF was most consistent
with GPP in spatial distribution and was most correlated with GPP in both annual (linear correlation,
R2 = 0.87) and monthly (polynomial correlation, R2 = 0.976) time scales by comparing with VIs.
During July–December 2019, the precipitation (PPT), soil moisture, and standardized precipitation
evapotranspiration index (SPEI) were generally below the averages during 2011–2020 and reached
their lowest point in November, while those of air temperature (Tem), land surface temperature (LST),
and photosynthetically active radiation (PAR) were the contrary. For drought monitoring, the spatial
distributions of standardized anomalies of GOSIF and VIs were consistent during August–October
2019. In November and December, however, considering vegetation has entered the senescence stage,
SIF had an obvious early response in vegetation physiological state monitoring compared with VIs,
while VIs can better indicate meteorological drought conditions than SIF. For drought assessment, the
spatial distribution characteristics of GOSIF and its standardized anomaly were both most consistent
with that of GPP, especially the standardized anomaly in November and December. All the above
phenomena verified the good spatial consistency between SIF and GPP and the superior ability of
SIF in capturing and quantifying drought-induced GPP losses. Results of this study will improve
the understanding of the prevention and reduction in agrometeorological disasters and can provide
an accurate and timely method for drought monitoring.
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1. Introduction

Drought is a complex process involving soil, vegetation, the atmosphere, and other
factors. The decrease in precipitation and the increase in air temperature will often cause
a rise in surface evapotranspiration and lead to drought occurrence and intensification,
which will bring significant uncertainty to drought monitoring [1]. In the context of global
climate change, drought, as one of the longest and most destructive extreme climate
events, has been a concern by scholars worldwide for a long time. The occurrence of
large-scale drought events tends to weaken carbon deposition in terrestrial ecosystems and
exacerbate the conflict between food demand and biofuel production [2]. Moreover, the
occurrence of extreme drought events, even in areas with well-irrigated facilities, can also
have a significant impact on food production and the social economy [3]. It is reported that
by the end of the 21st century, the global annual average air temperature is expected to rise
by 0.3~4.8 ◦C, and the probability of drought occurrence will also increase under future
climate scenarios, which will pose a significant risk to vegetation growth [4]; therefore, it
is crucial to study the spatial–temporal evolution characteristics of drought events and
evaluate their impacts quantitatively.

With the rapid development of satellite remote sensing technology, it is now possible
to observe drought characteristics at regional and global scales continuously, especially in
areas with limited field observation data, which also provides a new way to monitor and
assess the impact of large-scale drought events on surface vegetation [5]. The vegetation
index obtained from remote sensing data is a quantitative indicator of vegetation greenness,
which can indirectly reflect vegetation’s physiological state. Presently, traditional vegetation
indexes (VIs, such as normalized differential vegetation index (NDVI) and enhanced
vegetation index (EVI)) have been widely used to monitor the vegetation’s physiological
state and evaluate the effect of water stress on vegetation productivity. Although traditional
VIs can represent the physiological state of vegetation, they can only reflect the vegetation’s
pigment content change, which is not directly related to the actual photosynthesis of plants,
let alone the evolution of their instantaneous photosynthetic rate [6]; therefore, the response
of traditional VIs to the situation of vegetation water loss is slow, cannot reflect the dynamic
response process of vegetation to various water stresses immediately and has an evident
lag in capturing vegetation drought information, which highly restricts its applicability in
early drought monitoring [7,8]. Solar-induced chlorophyll fluorescence (SIF) is a spectral
signal (650~800 nm) emitted by the photosynthetic center of chlorophyll molecules in the
form of fluorescence under solar illumination conditions, with two peaks in the red band
(about 690 nm) and near-infrared band (about 740 nm) [9]. Solar radiation absorbed by
vegetation can be used for photosynthesis, heat dissipation, and re-release of fluorescence.
Of those, chlorophyll fluorescence is the energy re-stimulated by vegetation photosynthesis
after absorbing light, so it can directly reflect the dynamic changes of a plant’s actual
photosynthesis [10]. As a direct probe of the plant’s actual photosynthesis, compared with
traditional VIs, SIF can achieve rapid response and early warning when plants are subjected
to environmental stress (such as water stress, heat stress, etc.) [6–8,11]. In recent years,
global SIF remote sensing datasets have been successfully retrieved from SCIAMACHY,
GOSAT, GOME-2, OCO-2, TROPOMI, and other space-borne sensors, making it possible to
study plant photosynthesis on a large scale and providing new data sources for regional
vegetation growth and environmental stress monitoring [9,12]. At present, SIF data based
on satellite inversion has been adopted to monitor and evaluate large-scale drought events
in Russia [13], Texas, the central great plains of the United States [14–16], Europe [17],
Yunnan province [8], the North China plain [6] of China, Australia [1,18], etc.
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As one of the main abiotic stress factors affecting plant growth and production, drought
can directly or indirectly inhibit photosynthesis [19]. The inhibition of photosynthesis by
drought stress can be divided into stomatal and non-stomatal restrictions. Stomatal restric-
tion mainly refers to the decline of leaf water potential and the stomatal closure in mild
drought conditions, which inhibits photosynthesis by limiting the entry of photosynthetic
substances (carbon dioxide, CO2) into plants. The non-stomatal restriction generally refers
to the damage to the protein metabolic process of the photosynthetic system II reaction
center and the changes in chloroplast structure of crops caused by severe drought, which
inhibits the activity of Rubisco activase, thus reducing plant photosynthesis [20,21]. Gross
primary productivity (GPP) reflects the ability of green plants to produce organic matter
through photosynthesis. It measures the photosynthetic rate and is a crucial component of
the global carbon cycle. Studies have shown that SIF is directly related to the actual photo-
synthesis of plants, and the good linear relationship between SIF and GPP provides a direct
method for remote sensing estimation of GPP [22]; however, when plants are suffering from
environmental stresses (e.g., drought and heatwave), the linear relationship between SIF
and GPP will be uncertain, which will lead to a decrease in the accuracy of vegetation GPP
monitoring by remote sensing under stress [23]; therefore, further exploration of the effects
of drought stress on the SIF-GPP relationship is of paramount significance for assessing the
ability of SIF to capture and quantify drought-induced GPP losses.

To the best of the author’s knowledge, few studies have been undertaken to explore the
recent 2019 drought impacts on vegetation in the middle and lower reaches of the Yangtze
River (MLRYR). Moreover, the performance of SIF in drought monitoring and in assessing
drought-induced GPP losses during vegetation growth from lush to senescence still needs
to be further investigated. Thus, the specific objectives of this study are (1) to investigate
the spatiotemporal variations of GPP, GOSIF, and VIs during 2000–2020; (2) to analyze
the spatiotemporal evolution characteristics of the continuous drought in summer and
autumn from July to December in 2019; (3) to evaluate the impacts of drought on vegetation
physiological and ecological indicators and reveal the performance of SIF in vegetation
drought monitoring; (4) to explore the effects of drought on vegetation productivity and
clarify the potential of SIF in capturing and quantifying drought-induced GPP losses.

2. Materials and Methods
2.1. Study Area

The MLRYR region (23◦33′~35◦08′N, 108◦21′~123◦10′E), including Hubei, Hunan,
Anhui, Jiangxi, Jiangsu, Zhejiang, and Fujian provinces, has a subtropical monsoon climate
with a warm temperature and abundant precipitation, and is a crucial grain, oil, and cotton
production base in China [24] (Figure 1b,c). The land-use types in this region are croplands,
forests, grasslands, urban/built-up lands, water bodies, permanent wetlands, and barren
(Figure 1a). The watershed area is 80 × 104 km2, and the landform types are mainly plains,
hills, and mountains [25]. The elevation ranges from −142~3090 m (Figure 1c). The main
crops are winter wheat and rice (single-cropped and double-cropped rice). In addition,
the MLRYR has the most abundant water resources in China, with the highest density
of river networks and the most concentrated distribution of freshwater lakes, including
Poyang lake, Dongting lake, Taihu lake, Chao lake, etc. The annual mean temperature and
precipitation are 17.9~29.9 ◦C and 793.8~2390.1 mm, respectively (Figure 1d,e). Moreover,
the MLRYR is densely populated, especially in Jiangsu and Zhejiang; however, when
crops are mature (August–October each year), the East Asian Summer Monsoon retreats
southward. The monsoon rain band anomaly leads to drought and flood disasters in this
region. Combined with the increasing demand for water resources, drought has become
one of the critical disasters in this region [26].
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equatorial Pacific Sea surface temperature and anthropogenic warming were possibly re-
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From late July to mid-November in 2019, the average precipitation among Hubei,
Hunan, Jiangxi, Jiangsu, Anhui, Zhejiang, and Fujian provinces was 246.2 mm, 40% less
than that in the same period of the previous year (417.8 mm) and the lowest since 1961.
The average air temperature was 1.4 ◦C higher than that of the same period last year, the
highest in history. Prolonged periods of low rainfall and high temperature have resulted in
a continuous drought in summer and autumn in this region, especially from September
to early October and early November. Ma et al. [27] also revealed that the warm central
equatorial Pacific Sea surface temperature and anthropogenic warming were possibly
responsible for this drought event. This drought greatly impacted agricultural production
in the seven provinces mentioned above, with some crops in the arid areas being affected
and water levels in rivers, lakes, and reservoirs decreasing significantly [26,28].

2.2. Data Source
2.2.1. Meteorological Data

The meteorological datasets adopted in this research were the newest routine meteoro-
logical observation data from 545 weather stations in the middle and lower reaches of the
Yangtze River during 1961–2020, which were provided by the China Integrated Meteoro-
logical Information Sharing System (CIMISS) of the China Meteorological Administration
(CMA). The datasets include daily average air temperature (Tem, ◦C) and precipitation
(PPT, mm). The annual (monthly) mean Tem and annual (monthly) mean accumulative PPT
for analysis were obtained by averaging and summing the daily data of all meteorological
stations in the MLRYR to the annual (monthly) time scale. Quality control of the datasets
has already been conducted by the National Meteorological Information Center (NMIC)
of CMA.

2.2.2. Soil Moisture Data

The monthly root-zone soil moisture (SMroot) and surface soil moisture (SMsurf)
datasets at a 0.25◦ spatial resolution from the latest version (v3.5) of the Global Land
Evaporation Amsterdam Model (GLEAM) (https://www.gleam.eu/, accessed on 21 March
2021) were adopted in this study. The above global datasets are based on satellite and reanal-
ysis data and span a 41-year period from 1 January 1980 to 31 December 2020. Furthermore,
the datasets were validated in the field across a wide range of ecosystems [29,30].

https://www.gleam.eu/
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2.2.3. Standardized Precipitation Evapotranspiration Index (SPEI) Data

The near real-time information about drought conditions at the global scale with
a 1◦ spatial resolution and a monthly time resolution offered by the SPEI Global Drought
Monitor was employed to analyze the spatiotemporal patterns of short-term meteorological
drought and identify drought events (https://spei.csic.es/, accessed on 18 September
2021). The near real-time character of the SPEI Global Drought Monitor makes it the most
suitable for drought monitoring and early warning purposes [31]. Due to the fact that the
SPEI with 3 months or more time scales can better reflect the severity and duration of the
agricultural drought, the 3-month SPEI (SPEI03) was adopted here. The specific ranking
division standard is shown in Table 1.

Table 1. The ranking division standard of the standardized precipitation evapotranspiration in-
dex (SPEI).

Value Range SPEI ≤ −2 −2 < SPEI ≤ −1.5 −1.5 < SPEI ≤ −1 −1 < SPEI ≤ −0.5 SPEI > −0.5

Drought
classification

Exceptional
drought Severe drought Middle drought Moderate drought No drought

2.2.4. GOSIF Data

The GOSIF datasets (W·m−2·µm−1·sr−1) consolidated the discrete Orbiting Carbon
Observatory-2 (OCO-2) SIF soundings, remote sensing data from the Moderate Resolution
Imaging Spectroradiometer (MODIS), and meteorological reanalysis data, with high spatial
and temporal resolutions (i.e., 0.05◦ spatial resolution and 8 day, monthly and annual
temporal resolution) [32]. The GOSIF has finer spatial resolution, globally continuous
coverage, and a much longer record (from March 2000 to December 2020) obtained from
the website (http://data.globalecology.unh.edu/data/GOSIF_v2, accessed on 20 April
2021). At present, GOSIF is useful for assessing terrestrial photosynthesis and ecosystem
function and benchmarking terrestrial biosphere and Earth system models. In this study,
the 0.05◦ monthly GOSIF data were employed to examine the performance of SIF in drought
monitoring and the relationship between SIF and GPP.

2.2.5. MODIS Data

The MODIS products, including Normalized Difference Vegetation Index (NDVI), En-
hanced Vegetation Index (EVI), Near-infrared Reflectance (NIR), Land Surface Temperature
(LST ◦C), Land Cover type (LC), and Gross Primary Productivity (GPP, gC·m−2·month−1)
were adopted in this research (https://e4ftl01.cr.usgs.gov/, accessed on 10 June 2021).
NDVI, EVI, and NIR were monthly data with 0.05◦ of spatial resolution from the MOD13C2
product. LST was monthly data with 0.05◦ of spatial resolution from the MOD11C3 prod-
uct. LC based on the International Geosphere-Biosphere Programme (IGBP) classification
scheme is an annual dataset with 500 m resolution from the MCD12Q1. GPP was an 8-day
data with 500 m of spatial resolution from the MOD17A2H product. The monthly GPP
data with 0.05◦ spatial resolution used in this study were synthesized, converted from
8-day data, and weighted based on the number of days in each month [33]. Moreover,
the Near-infrared Reflectance of Vegetation (NIRv) adopted in this study is obtained by
multiplying NDVI and NIR [34].

2.2.6. Photosynthetically Active Radiation (PAR) Data

The monthly Photosynthetic Active Radiation (PAR) datasets with 1◦ spatial resolution
were obtained from the Cloud and Earth’s Radiant Energy System (CERES) at NASA
Langley Research Center. The CERES datasets provide long-term continuous (from March
2000 to present) global radiative fluxes to examine the radiation budget of the Earth’s
surface. Here, we adopted the PAR in Synoptic Top-of-Atmosphere (TOA) and Surface
Fluxes and Clouds (SYN) Edition 4.1 (https://ceres.larc.nasa.gov/order_data.php, accessed

https://spei.csic.es/
http://data.globalecology.unh.edu/data/GOSIF_v2
https://e4ftl01.cr.usgs.gov/
https://ceres.larc.nasa.gov/order_data.php
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on 6 July 2021). The total PAR is the sum of the surface direct and diffusive PAR under all
sky conditions [35].

2.2.7. Flux Tower Observation

The Qianyanzhou flux observation station (115.07◦E, 26.74◦N) was located in
Qianyanzhou Red Soil Hilly Agricultural Comprehensive Development Experimental
Station of China Ecological Research Network; the micrometeorological observation tower
was established in August 2002. The underlying surface slope of the station is between
2.8◦ and 13.5◦, and the forest coverage rate around the tower is more than 90%. GPP
observed by the eddy covariance method in the Qianyanzhou ecosystem observatory
(Figure 1a) was employed to verify the reliability of MODIS GPP data and explore the
correlation between GPP and SIF. The datasets are available monthly during 2003–2005
(http://www.chinaflux.org/index.aspx, accessed on 9 September 2021).

2.3. Methods
2.3.1. Unification of Data Spatiotemporal Resolution

The resolutions of different datasets used in this study varied in spatial and temporal
scales. To minimize the errors caused by the mismatch in spatial and temporal resolution,
we unified all variables at 0.05◦ spatial resolution and monthly temporal resolution to
maintain consistency with GOSIF data resolution. ArcGIS 10.7 software was used to
interpolate the monthly mean air temperature and accumulated precipitation data to 0.05◦

grid points to match GOSIF for further collaborative analysis.

2.3.2. Standardized Anomaly Index

In order to obtain signals related to water stress, we calculated the spatial distribution
of standardized anomalies of each variable at the pixel level in this study [8,33,36]. The
pixel (i, j) values of 2019 are compared with the average pixel (i, j) values for the period
2011–2020, and then standardized according to their standard deviation (SD). The specific
calculation formula is as follows:

Var2019 anomaly(i, j) =
Var2019(i, j)−mean(Var2011–2020(i, j))

SD(Var2011–2020(i, j))
(1)

where Var2019 anomaly(i, j) denotes the standardized anomaly of the pixel (i, j) in 2019;
Var2019(i, j) denotes the original value of pixel (i, j) in 2019; mean(Var2011–2020(i, j)) denotes
the mean value of pixel (i, j) during 2011–2020; SD(Var2011–2020(i, j)) denotes the standard
deviation of pixel (i, j) during 2011–2020. The calculated results indicate the degree to which
each month of the drought year (2019) deviates from its associated multi-year (2011–2020)
average, representing the drought conditions for each pixel.

2.3.3. Trend and Correlation Analysis

In this study, the following linear equation was used to evaluate the change trends of
meteorological factors, VIs, GOSIF, and GPP during the research period:

y = ax + b (2)

where y is the annual trend of each variable; x is the year; a and b are the slope and intercept,
respectively; a positive value of a indicates an increasing trend, while a negative value
indicates a decreasing trend. A significance level (p) of 0.05 was used for linear trend
analysis and the significance level represents the confidence level of the trend value.

http://www.chinaflux.org/index.aspx
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In order to explore the correlation between two indicators, Pearson correlation analysis
was used to calculate the correlation coefficient and test the corresponding significance [37].
The specific calculation formula is as follows:

corr(X, Y) =
∑n

i=1
(
Xi − X

)(
Yi −Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi −Y

)2
(3)

where corr(X, Y) is the Pearson correlation coefficient; Xi and Yi are the ith number in X
and Y, respectively; X and Y are the mean values of X and Y, respectively. The Pearson
correlation coefficient is between −1 and 1.

3. Results
3.1. Spatial–Temporal Variations of GPP, GOSIF, and VIs during 2000–2020

To investigate the effects of drought on vegetation GPP, firstly, we verify the applica-
bility of MODIS GPP product data in the MLRYR by adopting the monthly observed GPP
datasets from the Qianyanzhou flux tower during 2003–2005. As shown in Figure 2a, the
monthly observed GPP and MODIS GPP exhibited a consistent variation trend, and the
MODIS GPP was generally underestimated, especially in 2004. In addition, the effect of
scattering fitting between the observed GPP and MODIS GPP is satisfactory, with the R2

value of 0.854 and the p-value less than 0.05 (Figure 2b). The above phenomena manifested
that the overall accuracy of MODIS GPP product data is high and can effectively reflect the
GPP variation in this region.
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Figure 2. Comparison between the monthly observed GPP in Qianyanzhou flux tower and the
monthly MODIS GPP (a) and their linear fitting (b) during 2003–2005.

To explore the correlation between GPP and GOSIF, NDVI, EVI, and NIRv, the spatial
characteristics of these variables during 2000–2020 are displayed in Figure 3. As shown in
Figure 3, the annual mean GPP exhibited a gradually decreasing trend from south to north.
The spatial difference is evident, with the high values mainly distributed in forests and
grasslands. Although GOSIF, NDVI, EVI, and NIRv showed similar spatial distribution
characteristics to GPP, the spatial differences between these factors were still apparent.
For example, the values of EVI and NIRv were high in the northern parts of Jiangsu and
Anhui provinces; the spatial difference of NDVI in the central and southern regions was not
noticeable, and there was no gradual change. Moreover, the linear fitting R2 between GPP
and SIF, NDVI, EVI, and NIRv at pixel scale is 0.681, 0.676, 0.590, and 0.548, respectively,
with all p-values less than 0.05; therefore, the spatial distribution characteristics of GOSIF
and GPP are most similar by comparison.
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Moreover, as shown in Figure 4a, the GPP, GOSIF, NDVI, EVI, and NIRv all ex-
hibited significant increasing trends during the past 21 years, with the change rate of
8.60 gC·m−2·a−2, 0.002 W·m−2·µm−1·sr−1·a−1, 0.004 a−1, 0.003 a−1, and 0.002 a−1, respec-
tively. In terms of the changing trend, the GOSIF was also closest to the GPP. To reveal
the correlation between GPP and other VIs, the annual scatter fittings between GPP and
GOSIF, NDVI, EVI, and NIRv are displayed in Figure 4b–e. The relationship between GPP
and each vegetation index exhibited linear correlation; the corresponding R2 values were
0.87, 0.83, 0.79, and 0.80, respectively, with all p-values less than 0.05, which verified that
the GOSIF is most correlated with GPP on an annual basis time scale.
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accumulated PPT among all meteorological stations from August to November in the past 
60 years were analyzed. As shown in Figure 6a, the Tem exhibited a significant upward 
trend (0.017 °C a−1, p < 0.05), with a significant downward trend before 1990 and a signifi-
cant upward trend after that. In 2019, the Tem reached 21.91 °C, slightly higher than in 
1998—the highest in the past 60 years. In addition, unlike Tem, PPT generally showed a 
nonsignificant fluctuation upward trend (0.647 mm·a−1, p > 0.05) during 1961–2020; how-
ever, in 2019, PPT was only 229.5 mm, slightly lower than 1966, with the lowest in the past 
60 years (Figure 6b). High Tem and less PPT led to this typical continuous drought in 2019 
summer and autumn in this region. 

Figure 4. Temporal variations of annual mean MODIS GPP and GOSIF, NDVI, EVI, and NIRv (a) and
their linear fit (b–e) during 2000–2020.

The monthly GPP, GOSIF, NDVI, EVI, and NIRv exhibited evident interdecadal
variation characteristics (Figure 5a). In addition, the correlation between monthly GPP
and GOSIF, NDVI, EVI, and NIRv during 2000–2020 presented polynomial distribution
(Figure 5b–e). The fitting R2 are 0.976, 0.891, 0.948, and 0.945, respectively, which further
verified that the GOSIF is also most correlated with GPP on the monthly time scale.
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3.2. Spatial–Temporal Patterns of Standardized Anomalies of Drought Indices during the
2019 Drought

To reflect the intensity of the drought process in the MLRYR, the average Tem and
accumulated PPT among all meteorological stations from August to November in the
past 60 years were analyzed. As shown in Figure 6a, the Tem exhibited a significant
upward trend (0.017 ◦C a−1, p < 0.05), with a significant downward trend before 1990 and
a significant upward trend after that. In 2019, the Tem reached 21.91 ◦C, slightly higher than
in 1998—the highest in the past 60 years. In addition, unlike Tem, PPT generally showed
a nonsignificant fluctuation upward trend (0.647 mm·a−1, p > 0.05) during 1961–2020;
however, in 2019, PPT was only 229.5 mm, slightly lower than 1966, with the lowest in the
past 60 years (Figure 6b). High Tem and less PPT led to this typical continuous drought in
2019 summer and autumn in this region.
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To further reveal the intensity and scope of the 2019 drought event process, seven
drought indexes, namely PPT, SMsurf, SMroot, SPEI, Tem, LST, and PAR, were selected
for this research. Moreover, in order to explore the drought process more specifically, we
extended the study period by one month, namely from July to December 2019. The spatial–
temporal characteristics of standardized anomalies of each index from July to December
2019 are analyzed in Figure 7. As shown in Figure 7a, except for July, PPT in other months
of 2019 was all below the averages during 2011–2020. From July to September, the monthly
average of PPT showed a significant downward trend in 2019. It reached a low point in
September (33.1 mm), where the difference between the monthly average of 2019 and that
during 2011–2020 was the largest (79.1 mm). Then, the PPT increased slightly in October
and reached its lowest point in November (26.6 mm). After that, the PPT increased steadily
and was close to the average level during 2011–2020 in December (46.7 mm). In Figure 7b,c,
the SMsurf and SMroot presented similar variation characteristics. The soil moisture was
slightly higher than the average in July, then exhibited a significant decreasing trend and
reached the lowest point in November (0.287 m3·m−3). The difference between the monthly
average of 2019 and that during 2011–2020 was the largest (0.078 m3·m−3). After that,
the soil moisture increased somewhat in December, especially in the SMsurf. As shown in
Table 1, a similar phenomenon can also be detected from SPEI in Figure 7d, especially from
September to December; the SPEI values were lower than 0.5 and reached the lowest in
November (−1.66).

Contrary to other variables, as can be seen in Figure 7e,f, the Tem and LST in July of
2019 were both below the multi-year average during 2011–2020; however, the Tem and
LST are significantly higher than the multi-year average in other months. Similar change
characteristics could also be found in PAR except for October, while in October, the PAR in
2019 is virtually indistinguishable from the 2011–2020 average (Figure 7g).

Figure 8 presents the standardized anomalies of PPT, SMsurf, SMroot, SPEI, Tem, LST,
and PAR spatially. The standardized anomaly of SPEI showed a similar variation charac-
teristic as that on the temporal scale (Figure 7d). During July–August, the negative SPEI
standardized anomalies were mainly distributed in the northern part of MLRYR, namely
HB, AH, and JS provinces. From September to November, the negative standardized
anomalies of SPEI gradually expanded from north to south and almost the entire area. In
December, the location of the negative SPEI standardized anomaly has shrunk. In July,
the negative PPT standardized anomaly area was mainly distributed in the northern part
of MLRYR, while in August and September, the negative area gradually expanded to the
whole location. In October, the negative PPT standardized anomaly area decreased and
was mainly distributed in the central region. In November, the negative PPT standardized
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anomaly area covers almost the entire area. In December, the precipitation increased ob-
viously. The distribution characteristics of SMsurf and SMroot were consistent with that of
SPEI, especially the SMsurf, which is due to the fact that the negative area tends to shrink
towards the center region. The spatial distributions of Tem and LST were consistent and
matched with the distribution characteristics of soil moisture. The spatial distribution
trend of the standardized anomaly of PAR is most compatible with PPT. In addition, it is
noteworthy that, although both PPT and SPEI indicated that the drought trend eased in
December, soil moisture and Tem data remained at abnormal levels.
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shaded areas denote the ±1 standard deviation of the multi-year monthly averages.
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3.3. Spatial–Temporal Patterns of Standardized Anomalies of GOSIF and VIs during the
2019 Drought

As shown in Figure 9, the monthly variation trends of GOSIF, NDVI, EVI, and NIRv
were similar and gradually decreased from July to December; however, on the temporal
scale, the differences between the monthly average of 2019 and that of 2011–2020 averages
for SIF and each vegetation index are not significant. This phenomenon may be due to the
averaging of high and low values across the region. Considering the complexity of regional
drought, the comparison of monthly average changes between 2019 and 2011–2020 from
July to December still cannot reflect the intensity of the drought occurrence in 2019. Thus,
it is necessary to explore the standardized spatial anomalies of SIF and vegetation indices.
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Figure 9. Variations of GOSIF (a), NDVI (b), EVI (c), and NIRv (d) from July to December 2019. Note:
The black curves denote the multi-year monthly averages of these variables during 2011–2020; the
red curves denote the monthly average of these variables in 2019; the grey shaded areas denote the
±1 standard deviation of the multi-year monthly averages.

To further reveal the impact of drought on vegetation in 2019, the spatial distributions
of the standardized anomalies of GOSIF, NDVI, EVI, and NIRv from July to December 2019
are displayed in Figure 10. In July, the negative anomaly of GOSIF was mainly distributed
in the southern part of the MLRYR; however, the corresponding PPT, SPEI, SMsurf, and
SMroot were positive. In addition, the negative anomalies of NDVI, EVI, and NIRv exhibited
relatively sparse distribution, especially the NDVI. In August, the negative anomaly of
GOSIF was mainly distributed in Hubei province. Unlike GOSIF, the negative anomaly
region of NDVI in Jiangxi province was apparent.

Moreover, the negative anomaly areas of EVI and NIRv were enlarged to most of
Hunan province, northern Fujian Province, central and southern Zhejiang, and Anhui
province. The spatial negative anomaly distribution of GOSIF, NDVI, EVI, and NIRv is
generally consistent. In September, the hostile anomaly areas of GOSIF, NDVI, EVI, and
NIRv were mainly distributed in Hubei, Hunan, and Jiangxi provinces. In October, the
negative anomaly areas between GOSIF and NDVI and EVI and NIRv were consistent;
however, in November, the negative anomaly area of GOSIF had been reduced, which was
mainly distributed in the central and northeastern regions of MLRYR. Unlike GOSIF, the
negative anomalies of NDVI, EVI, and NIRv were still severe; the distribution characteristics
were similar to those of GOSIF. In December, the negative anomaly area of GOSIF was
further reduced, while NDVI, EVI, and NIRv decreased slowly and were mainly distributed
in central and southern Anhui province, most parts of Jiangxi province, western Zhejiang
and Fujian provinces, and the eastern parts of Hubei province.
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Figure 10. Spatial distributions of the standardized anomalies of GOSIF, NDVI, EVI, and NIRv from
July to December 2019.

3.4. Spatial–Temporal Patterns of Standardized Anomalies of GPP during the 2019 Drought

As shown in Figure 11, the monthly variations of GPP during July–December 2019
were consistent with GOSIF and VIs in Figure 9, and generally exhibited a gradually
decreasing trend. In addition, the GPP in July and October of 2019 was slightly lower
than the monthly average during 2011–2020, especially in October (the difference is
8.8 gC·m−2·month−1); however, in other months of 2019, the GPP was higher, especially
in November and December (the differences are 7.3 gC·m−2·month−1 and
8.2 gC·m−2·month−1, respectively).

Figure 12 shows the spatial distributions of the standardized anomalies for GPP from
July to December 2019. We found that the negative GPP anomaly was more evident dur-
ing August–October. In August, the region with a negative GPP anomaly was mainly
distributed in the northern part of the MLRYR, especially the central and eastern parts
of Hubei province and the northern part of Anhui province. In September, the negative
anomaly areas were more prominent and had extended to some areas of Hunan and Jiangxi
Provinces. In October, most regions of MLRYR exhibited negative anomalies, especially
Hubei, Hunan, Jiangxi, Anhui, and Jiangsu provinces; however, the negative anomaly areas
shrank gradually in November and December, especially in December. Combining with
Figure 10, we found the distribution characteristics of the GPP standardized anomaly dur-
ing the drought in 2019 are more similar to that of GOSIF, especially obvious in November
and December.
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3.5. Spatial Consistency between MODIS GPP and GOSIF, NDVI, EVI, and NIRv during the
2019 Drought

To further reveal the correlation between MODIS GPP and GOSIF, NDVI, EVI, and
NIRv during the 2019 drought event, we analyzed the spatial consistency between GPP
and GOSIF, NDVI, EVI, and NIRv (Figure 13), as well as the spatial consistency between
standardized anomalies of GPP and GOSIF, NDVI, EVI, and NIRv (Table 2), respectively. As
shown in Figure 13, the linear fitting R2 value between MODIS GPP and GOSIF, NDVI, EVI,
and NIRv were 0.742, 0.646, 0.664, and 0.674, respectively; all were positively correlated.
Similar to the results in Figure 5, the relationship between MODIS GPP and SIF is also poly-
nomial dependent, while that between GPP and NDVI, EVI, and NIRv were different. As
displayed in Table 2, similar to Figure 13, the relationship between standardized anomalies
of GPP and SIF, NDVI, EVI, and NIRv at pixel scale was also positively correlated during
July–December. In July and October 2019, the NDVI performed better, with R-values of
0.157 and 0.451, respectively. While in other months, SIF performed better, with the linear
fitting R-values of 0.341, 0.525, 0.368, and 0.367. The above phenomenon further verified the
good spatial consistency between SIF and GPP compared with other VIs and the superior
ability of SIF in capturing and quantifying drought-induced GPP losses.
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Figure 13. Scatter fitting between MODIS GPP and GOSIF (a), NDVI (b), EVI (c), and NIRv (d) during
July–December 2019. Note: Each dot denotes the monthly value for each pixel (0.05◦ × 0.05◦); N
indicates the data size.

Table 2. Spatial consistency between standardized anomalies of MODIS GPP and that of SIF, NDVI,
EVI, and NIRv during July–December in 2019.

VIs July August September October November December

SIF 0.138 0.341 0.525 0.430 0.368 0.367
NDVI 0.157 0.271 0.345 0.451 0.355 0.281
EVI 0.143 0.159 0.187 0.413 0.232 0.278

NIRv 0.142 0.205 0.191 0.413 0.220 0.282
Note: The bold font represents the most correlation factor.

4. Discussion
4.1. Responses of SIF and VIs to Drought

From the change characteristics of SPEI, SMsurf, and SMroot in Figures 7 and 8, the
drought still existed in the MLRYR in November and December 2019. Although the drought
in December 2019 was alleviated compared with that in November 2019, the standardized
anomalies of SPEI and soil moisture were still negative and Tem, LST, and PAR were posi-
tive. Correspondingly, the standardized anomalies of NDVI, EVI, and NIRv still changed
considerably during November and even December of 2019, while those of SIF did not
change significantly (Figure 10). As SIF is a direct probe of photosynthesis, it can capture the
physiological state information of vegetation directly. During November–December 2019
and the same period throughout the year in the MLRYR, the vegetation generally entered
the senescence stage and its photosynthetic capacity declined. Despite being affected by
drought during this period, vegetation senescence information played a dominant role in
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the SIF signal changes, which resulted in the little anomaly change of regional SIF; however,
VIs (e.g., NDVI, EVI, and NIRv) are vegetation greenness indices [38], which are not as
closely related to the physiological state of vegetation as SIF and cannot capture the changes
of vegetation senescence stage sufficiently; therefore, VIs had an obvious delayed response
in monitoring the physiological state of vegetation compared with SIF. This phenomenon
is consistent with previous studies [6–8,33,39,40]. Moreover, the vegetation was sparse
and the leaf area index (LAI) was low during this time period; the VIs were significantly
affected by soil background [41], which determined the dominant role of drought in NDVI,
EVI, and NIRv changes ultimately. The above explanation could also be responsible for
the apparent negative standardized anomalies of NDVI, EVI, and NIRv in central MLRYR.
The results were echoed by Wang et al. [15], who pointed out that the decrease in SIF was
more significant than that of NDVI during the peak growth period in the Great Plains,
while the reduction in NDVI continued and that of SIF eased during the senescence stage.
Wang et al. [42] also indicated that SIF is better than NDVI in determining the end date
of the vegetation growing season. Moreover, as shown in Figure 14, the relative higher
coefficients in September 2019 and the lower coefficients in December 2019 between the
standardized anomalies of SIF and those of drought indices can also give a reasonable
and quantitative explanation for the responses of SIF and VIs to drought in this study. In
general, when vegetation enters the senescence stage gradually in autumn and winter, the
VIs better reflect meteorological drought conditions if the drought continues.
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4.2. Impacts of Drought on GPP

This study investigated the MODIS GPP product accuracy by employing the monthly
observed GPP datasets from the Qianyanzhou flux tower. The overall accuracy of MODIS
GPP product data is good. Further studies should also combine with other GPP prod-
ucts [43,44] (e.g., the Global LAnd Surface Satellite (GLASS) GPP [45] and the Fluxcom
GPP [46]) to explore the regional GPP variation accurately. Furthermore, it is notable
that in Figure 12, the negative standardized anomalies areas for GPP during November
and December in 2019 decreased significantly, which was consistent with that of GOSIF,
while the standardized anomalies areas of VIs are still significant (Figure 10). This phe-
nomenon indicated that the responsibility of NDVI to short-term precipitation is limited,
which may lead to delayed expression of vegetation production recovery. As shown in
Figure 7d, the most severe meteorological drought occurred in November 2019; while the
reduction in GPP was not noticeable (Figure 12), this phenomenon could be explained by
the difference between meteorological drought and agricultural drought. Although the VIs
can indicate the agricultural drought potentially [47–49], considering the reduction in VIs
was significant in November and December, which was not found for GOSIF, the actual
agricultural drought that emphasizes yield reduction, or GPP losses may be less severe in
the MLRYR [15]. Moreover, Liu et al. [24] also reported that the well-known 2019 drought
event that occurred in the MLRYR had a much less severe impact on vegetation than
expected; this is mainly due to the lack of Pre, leading to an increase in sunshine and heat
resources, which in turn improved crop growth in most areas; therefore, compared with
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VIs, SIF can better monitor the vegetation’s physiological state changes (e.g., senescence)
and GPP variations even when suffering from agricultural drought. In addition, due to
the fact that the crop water demand (e.g., rice and wheat) in MLRYR can be satisfied by
irrigation when drought occurs [24,50], the mitigation of drought effects on crop GPP by
irrigation and groundwater storage [15] and the impacts of climatic impacts of irrigation
on crop growth [50,51] deserve more attention and need further research in this region.

4.3. Relationship between GPP and SIF

This research verified that the GOSIF is most correlated with GPP compared with
VIs in both spatial and temporal time scales and that the relationship between annual
GOSIF and GPP is linear (Figure 4). A similar result was consistent with Ma et al. [22], who
reported that the Vegetation Photosynthesis Model (VPM)-based GPP (namely GPPVPM)
is compatible with GOME-2 SIF at multiple spatial–temporal scales in China, and the
monthly GPPVPM and SIF showed a significant positive linear correlation in most areas.
The linear correlation relationship provides a theoretical basis for the subsequent estimation
of GPP by SIF at sites or ecosystem levels [52]; however, the correlation between monthly
GOSIF and GPP during 2000–2020 presented a polynomial distribution in the MLRYR
(Figure 5) and the polynomial fitting R2 is as high as 0.976. Similar results could be
found in Figure 13a. Paul-Limoges et al. [53] found that SIF was more susceptible to the
environmental conditions (e.g., drought and heat stresses, incoming photosynthetic photon
flux density, vegetation types, etc.) than GPP; this is worthy of further study, aiming to
provide the possibility of reliable estimation of GPP from the perspective of remote sensing
observations. Wohlfahrt et al. [54] studied that SIF cannot track GPP variation well during
a short-term heatwave in ENF, further revealing that the nonlinear and complex SIF–GPP
relationship exists at different time scales. The research of He et al. [55] showed the broken
linear SIF–GPP relationship at high-light levels since the GPP tends to saturate while SIF
still increases, especially for C3 crops. Kim et al. [56] also reported a strongly nonlinear
relationship (hyperbolic regression function) between GPP and SIF in a temperate Evergreen
Needleleaf Forest (ENF) at daily and seasonal time scales, which was mainly due to the
different physiological mechanisms. In addition, canopy structure and vegetation coverage
of diverse communities may be the main influencing factors of spatial heterogeneity of
the SIF–GPP relationship [36]. Huang et al. [57] indicated that the tides play an important
role in regulating SIF–GPP relationships. Due to the tides, inundation attenuated the
role of plant physiology and canopy structure in explaining the relationship between SIF
and photosynthesis, thus negatively affecting SIF-based GPP estimates. Martini et al. [58]
revealed that the heatwave reversed the photosynthesis–fluorescence relationship at canopy
and leaf scales, and the highly non-linear relationship between GPP and SIF is formed
by Non-Photochemical Quenching (NPQ), a dissipative mechanism that prevents the
adverse effects of high light intensity. To preliminarily investigate the nonlinear relationship
between monthly SIF-GPP in this research more clearly, the monthly GPP, SIF, NDVI, EVI,
and NIRv variations in 2019 were analyzed, as shown in Figure 15; we see that the monthly
variation characteristics of SIF, NDVI, EVI, and NIRv were similar. At the same time,
the GPP increased significantly from February to May and decreased considerably from
September to December, which was different from that of SIF and VIs. This phenomenon
might be responsible for the nonlinear relationship between GPP and SIF. Moreover, we
found a polynomial relationship between monthly GPP and SIF in both drought (2019)
and non-drought years; however, the findings of Song et al. [36] claimed a constant SIF–
GPP relationship under both drought and non-drought conditions, although the drought
stress increased the spatial heterogeneity of the SIF–GPP relationship; therefore, it will be
uncertain to explore the influence of environmental stress on the GPP–SIF relationship
only from a satellite remote sensing scale. Furthermore, Liu et al. [59] found that the
nonlinear relationship between SIF and GPP generally existed in eight major biomes (ENF,
EBF, DBF, MF, SHR, SAV, GRA, and CRO), and the exponential regression model was
the best method to capture the nonlinear relationship between SIF and GPP at the site
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level. Thus, significant errors will exist in estimating GPP or evaluating GPP loss caused
by drought at regional scale only by relying on a simple fixed linear model between SIF
and GPP [6,44]. In addition, whether different GPP products and SIF inversion data will
affect the SIF–GPP relationship remains to be further studied. Subsequent studies can
carry out field crop water stress experiments by adopting the high-resolution fiber optic
spectrometer (e.g., QE-PRO spectrometer, Ocean Optics, Inc., Dunedin, FL, USA) and then
investigate the effect of environmental stress on the SIF–GPP relationship through more
refined experimental observation data.
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5. Conclusions

In this research, the performance of SIF and vegetation indexes in monitoring and
evaluating the effects of the well-known 2019 drought in the MLRYR on vegetation was com-
pared and analyzed, aiming to provide a decision-making reference for regional drought
remote sensing monitoring. The main results are presented as follows:

1. MODIS GPP can reflect the GPP variation in the MLRYR effectively. The GPP, GOSIF,
NDVI, EVI, and NIRv all exhibited significant increasing trends during 2000–2020.
When compared to VIs, the spatial distribution characteristics of GOSIF and GPP
were most similar, and GOSIF was most correlated with GPP in both annual (linear
correlation, R2 = 0.87) and monthly (polynomial correlation, R2 = 0.976) time scales.

2. From July to December, the PPT, SMsurf, SMroot, and SPEI in 2019 were generally
below the averages during 2011–2020 and reached their lowest point in November,
while those of Tem, LST, and PAR, on the contrary, were higher. Similar results could
also be verified from the standardized anomalies of the above variables on the spatial.

3. The differences between the monthly averages of 2019 and 2011–2020 for SIF and
VIs are not significant on a temporal scale. Spatial distributions of standardized
anomalies of SIF and VIs were consistent during August–October 2019. In November
and December, however, the regional difference in SIF anomaly was small, and that of
VIs still changed significantly.

4. When vegetation was entering the senescence stage in November and December,
the VIs had an obvious delayed response in monitoring vegetation’s physiological
state compared with SIF, while the VIs could better indicate meteorological drought
conditions compared with SIF.

5. The distribution characteristic of the GPP standardized anomaly during the 2019
drought was more similar to that of GOSIF, especially obvious in November and
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December, which exhibited the superior ability of SIF in capturing and quantifying
drought-induced GPP losses.

This study revealed that SIF has good performance in drought monitoring at the
normal vegetation growth stage and can evaluate drought-induced GPP losses. Subsequent
studies should focus on how to bring the above potential into play and then solve the
scientific problem of how to apply SIF to monitor and evaluate the intensity of drought
events systematically, e.g., the construction of a drought stress fluorescence monitoring
index based on SIF.
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