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Abstract: Evapotranspiration (ET) is an essential part of the global water cycle, and accurate quan-
tification of ET is of great significance for hydrological research and practice. The Priestley-Taylor
Jet Propulsion Laboratory (PT-JPL) model is a commonly used remotely sensed (RS) ET model. The
original PT-JPL model includes multiple vegetation variables but only requires the Normalized
Difference Vegetation Index (NDVI) as the vegetation input. Other vegetation inputs (e.g., Leaf Area
Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)) are estimated
by the NDVI-based empirical methods. Here we investigate whether introducing more RS vegetation
variables beyond NDVI can improve the PT-JPL model’s performance. We combine the vegetation
variables derived from RS and empirical methods into four vegetation input schemes for the PT-JPL
model. The model performance under four schemes is evaluated at the site scale with the eddy
covariance (EC)-based ET measurements and at the basin scale with the water balance-based ET
estimates. The results show that the vegetation variables derived by RS and empirical methods are
quite different. The ecophysiological constraints of the PT-JPL model constructed by the former are
more reasonable in spatial distribution than those constructed by the latter. However, as vegetation
input of the PT-JPL model, the scheme derived from empirical methods performs best among the
four schemes. In other words, introducing more remotely sensed vegetation variables beyond NDVI
into the PT-JPL model degrades the model performance to varying degrees. One possible reason for
this is the unrealistic ET partitioning. It is necessary to re-parameterize the biophysical constraints of
the PT-JPL model to ensure that the model obtains reasonable internal process simulations, that is,
“getting the right results for right reasons.”

Keywords: evapotranspiration; PT-JPL model; vegetation variables; remote sensing

1. Introduction

Evapotranspiration (ET) is an essential part of the global water cycle, which is the
second-largest water flux behind precipitation. Approximately 60% of global land precipi-
tation returns to the atmosphere through ET [1]. ET even accounts for more than 90% of
annual precipitation in some arid regions [2]. In this sense, the ratio of ET to precipitation
directly determines the regional water availability on the mean annual scale. Therefore,
accurately quantifying ET is of great importance for hydrological practices such as water
resources management, crop yield prediction, and drought forecasting [3–6]. However,
ET is a complex natural process, regulated by multiple interacting factors such as climate,
topography, soil, and vegetation, and often has great variability in space and time [7,8].
Accurately quantifying the spatial-temporal change in ET at large spatial scales is challeng-
ing. Unlike other water balance components (e.g., precipitation and runoff), ET cannot be
measured directly due to its invisibility. Existing indirect measurement methods (e.g., the
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lysimeter, Bowen ratio, and eddy-covariance) can only provide the site-scale ET measure-
ments [9]. It is impractical to directly extrapolate the site-scale observations to regional
scales due to the high spatial heterogeneity of ET. The site-scale ET observations are more
often used as reference data to validate ET simulations of various methods [10]. Moreover,
ground-based ET observations often suffer from various issues such as data gaps, short
time spans, sparse gauge distribution, and uncontrollable error sources [9]. These issues
further complicate the large-scale ET estimation.

Remote sensing (RS) technology provides various types of land surface information
with high temporal and spatial resolution and thus has great potential in regional ET
modeling [5,11]. Over the past three decades, RS-based ET estimation has evolved into
a variety of methods. The surface energy balance method is one of the earliest RS-based
ET methods, which treats ET as a residual term (the latent heat) of the surface energy
balance [12–14]. This method typically uses the RS vegetation information to allocate
available energy to different evaporating surfaces [11] or parameterize the state variables
of ET models [15]. The surface energy balance method can provide accurate ET estimation
if the energy budget terms other than the latent heat (e.g., the net radiation, sensible heat,
and ground heat flux) can be accurately measured or estimated. However, it is challenging
to accurately obtain these energy budget terms because the measurement of surface energy
terms requires sophisticated instruments and skilled operators [5]. Conventional weather
stations do not directly measure these energy terms. In practice, the surface energy terms
are often estimated by some indirect methods [9]. However, any errors in measured and/or
estimated energy terms can be directly propagated to ET estimates [5,10,16].

The Penman-Monteith (PM)-type [17,18] methods combine aerodynamic and radiative
terms affecting ET and are widely used for large-scale ET estimates [19]. A major difficulty
of applying the PM-type methods is how to reasonably estimate the canopy resistance [9,11].
Although numerous canopy resistance models have been developed [11,16,20–22], most
of these models are essentially empirical or semi-empirical and focus on single or limited
factors affecting the canopy resistance. In fact, the canopy resistance is sensitive to multiple
environmental factors such as soil moisture, light, temperature, and plant types [9,20,23,24].
It is difficult to reasonably parameterize this resistance at large spatial scales due to the
complexity and heterogeneity of the influencing factors [9].

The Priestley-Taylor method [25] provides a simple but effective method to estimate
ET under saturated surfaces (this is, the potential ET), avoiding parameterizing aerody-
namic and canopy resistances in PM-type methods. Based on the Priestley-Taylor method,
Fisher et al. [26] constructed multiple biophysical constraints to reduce the potential ET to
actual ET and developed a simple remotely sensed ET model, namely the PT-JPL model.
This model has a clear physical meaning, low requirements for forcing data, and shows
good applicability in many regions of the world [27–29]. The PT-JPL model uses multi-
ple vegetation variables to partition ET components and construct ecophysiological con-
straints. The vegetation variables used in the original PT-JPL model include LAI, Fraction
of Absorbed Photosynthetically Active Radiation (FAPAR), and Fraction of Intercepted
Photosynthetically Active Radiation (FIPAR). All these vegetation variables in the origi-
nal PT-JPL model can be estimated by NDVI-based empirical equations [26]. However,
the development of RS technology provides an alternative way to obtain these variables.
Various global RS vegetation variables have been developed recently, and they are easily
accessed from various internet data-sharing platforms. Increasingly, scholars have tended
to use the RS-based rather than empirically based vegetation variables to drive the PT-JPL
model [2,30,31]. This raises the question of whether RS-based vegetation variables yield
better ET estimates than the empirically based variables? As far as we know, little relevant
research has been carried out up to the present.

To fill this gap, we introduce two RS vegetation variables beyond NDVI into the PT-JPL
model and investigate the influence of different vegetation input schemes on ET estimates.
Specifically, we first combine vegetation variables estimated by empirical methods and
RS products into four vegetation input schemes for the PT-JPL model (Section 2.2). Then,
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the model performance under the four schemes is systematically evaluated at the site and
basin scales. Note that empirical methods are not entirely free of RS vegetation information,
and they require RS NDVI to estimate other vegetation variables (LAI, FAPAR, and FIPAR).

2. Methods and Data
2.1. Description of the PT-JPL Model

The Priestley-Taylor equation has been widely used for calculating potential ET
under unstressed conditions [25]. The general form of the Priestley-Taylor equation is
expressed as:

LE= α
∆

∆ + γ
(Rn − G) (1)

where α is the Priestley-Taylor coefficient over wet surfaces, ∆ is the slope of saturated
vapor pressure curve (kPa ◦C−1), γ is the psychrometric constant (~0.066 kPa ◦C−1), Rn
and G are net radiation and ground heat flux (W m−2), respectively. G is often ignored in
some ET algorithms since it is small compared to Rn, especially when the land surface is
fully covered by vegetation or the calculation time steps are daily or longer [19]. For the
underlying surface of bare soil or sparse vegetation, however, G may play an important
role in ET estimation. Here, an empirical formula based on vegetation coverage is used
for G estimation [32]. Based on the Priestley-Taylor equation, Fisher et al. [26] developed a
RS-based ET algorithm that uses multiple biophysical constraints to reduce the potential ET
to actual ET. The model assumes that NDVI can well capture the chlorophyll changes of a
canopy because these vegetation indices based on NIR differences (e.g., NDVI) are sensitive
to chlorophyll changes. Based on this assumption, other vegetation variables (e.g., LAI,
FAPAR, and FIPAR) in the model can be calculated by NDVI. It balances the complexity
and accuracy of the model well and has been widely used for regional or global-scale ET
simulations [30,33]. The PT-JPL model runs at the daily timescale, and it partitions ET
into canopy transpiration (ETc), soil evaporation (ETs), and interception evaporation (ETi).
Detailed formulas of the PT-JPL model are shown in Table 1.

Unlike the original PT-JPL model, here we use the daily average (rather than midday)
relative humidity (RH) and vapor pressure deficit (VPD) to calculate the soil moisture
constraint (f SM) because of the better model performance obtained from the daily average
values (see Table S1). The optimum plant growth temperature (Topt) used in the function
plant temperature constraint (see Table 1) is set to 25 ◦C following [2], which is different
from the original setting of the PT-JPL model. Topt = 25 ◦C can provide better ET simulations
than the original parameterization of Topt [26] in the PT-JPL model at both site and basin
scales (see Table S2). The LAI used in the original PT-JPL model is the total LAI that
includes the green and non-green leaf area of a canopy per unit ground area [26], while
RS LAI is essentially the green LAI. Strictly speaking, RS LAI does not meet the input
requirements of the original PT-JPL model. However, it is difficult to obtain reliable total
LAI globally, either by RS or empirical methods [34]. In practice, RS LAI data are widely
used for allocating energy availability to the canopy and soil surface [35].

Priestley and Taylor [25] suggested an average of 1.26 for α. In practical applications,
the coefficient α was found to vary from 0.72 to 1.57, depending on surface vegetation
and microclimatic conditions [36]. Here, we insist on using the original coefficient of the
Priestley-Taylor model since it has commanded substantial experimental support, especially
in humid regions [37,38].
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Table 1. Summary of parameters and equations for the PT-JPL model. Rn is the net radiation, Rnc

is net radiation to the canopy (Rn − Rns), Rns is net radiation to the soil (Rn exp(−kRn LAI)), RH is
relative humidity (%), Tmax is maximum air temperature, Topt is optimum plant growth temperature,
and the default value of Topt is 25 ◦C [2], VPD is saturation vapor pressure deficit, FAPARmax is the
maximum value of FAPAR in a year, kRn is extinction coefficient (kRn = 0.60) [39], kPAR = 0.5 [40],
β = 1.0 kPa, m1 = 1.2 × 1.136, b1 = 1.2 × (−0.04) [41], m2 = 1.0, b2 = −0.05 [26], SAVI is soil adjusted
vegetation index (NDVI × 0.45 + 0.132) [28].

Variables Description Equation References

ET Evapotranspiration ETc+ETs+ETi
ETc Canopy transpiration (1 − fwet) fg fT fMα ∆

∆+γ Rnc [25,26]
ETs Soil evaporation ( fwet + fSM(1 − fwet))α

∆
∆+γ (Rns − G) [25,26]

ETi Interception evaporation fwetα
∆

∆+γ Rnc [25,26]
f wet Relative surface wetness if RH< 70, fwet= 0, otherwise fwet = RH4 [26]
f T Plant temperature constraint exp(−(

Tmax−Topt
Topt

)
2
) [42]

f g Green canopy fraction FAPAR/FIPAR [26]
f M Plant moisture constraint FAPAR/FAPARmax [26]
f SM Soil moisture constraint RHVPD/β [26]
G Ground heat flux Rn(0.05 + 0.265(1 − FIPAR)) [32]

FAPAR Fraction of Absorbed PAR m1SAVI + b1 [41]
FIPAR Fraction of Intercepted PAR m2NDVI + b2 [26]

LAI Total leaf area index − ln(1 − fc)/kPAR [40]
f c Fractional total vegetation cover FIPAR [26]

2.2. The Setting of Vegetation Input Schemes for the PT-JPL Model

The PT-JPL model contains three vegetation variables: LAI, FAPAR, and FIPAR. LAI
and FAPAR can be obtained from multiple RS data sources [43–47], while global RS FIPAR
product is not available. Here we combine LAI and FAPAR estimates from empirical meth-
ods and RS products into four vegetation input schemes for the PT-JPL model (Figure 1):

(I) empirically based LAI and FAPAR (the baseline scheme),
(II) empirically based LAI and RS-based FAPAR,
(III) RS-based LAI and empirically based FAPAR,
(IV) RS-based LAI and FAPAR.

Figure 1. The setting of four vegetation input schemes for the PT-JPL model. Empirically based LAI
and FAPAR represent LAI and FAPAR estimated by empirical equations. RS-based LAI and FAPAR
represent remote sensing retrieved LAI and FAPAR products.

The specific empirical equations used for LAI and FAPAR estimation can be found
in Table 1. RS-based LAI and FAPAR refer to the GLASS LAI and FAPAR products [44].
The GLASS LAI product is generated from general regression neural networks, and it
showed high accuracy during comparison with similar products and validation with in
situ observations [48]. The GLASS FAPAR product is derived from the GLASS LAI product
through a series of algorithms [45]. The two products have a spatial resolution of 0.05◦ and
a time span from 1981 to 2018. The NDVI dataset is obtained from the Global Inventory
Monitoring and Modeling System (GIMMS) project [49]. This dataset is generated from
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multiple satellite sensors and considers multiple factors affecting data quality, such as
calibration loss, orbital drift, and volcanic eruptions [50].

2.3. The Forcing Data and Evaluation Data for the PT-JPL Model

The forcing data of the PT-JPL model includes meteorological data and albedo data in
addition to vegetation input data. Meteorological data includes daily temperature, relative
humidity, wind speed, and sunshine duration. We use a professional meteorological
interpolation software, namely the Anusplin [51], to interpolate the gauge-based data to
gridded data. The Anusplin’s algorithm can consider the effect of terrain on interpolated
variables. The albedo and sunshine duration data are used to calculate the Rn, following
the method of Allen et al. [19]. We validate Rn estimates with flux site observations. The
results indicate that there is a good agreement between our estimated Rn and observed
Rn (see Figure S1). The resolution of original NDVI data is 1/12 degree, and the data is
resampled to 0.05◦ × 0.05◦ with the nearest neighbor resampling approach [52]. The 8-day
or half-month RS vegetation data are linearly interpolated to the daily data to match the
time step at which the model runs. Natural runoff data from 1981 to 2000 are provided by
the Hydrological Bureau of the Ministry of Water Resources in China. More information on
the forcing and validation data of the PT-JPL model can be found in Table 2.

Table 2. Details of model forcing data and evaluation data.

Data Type Name Sources

Meteorological
forcing data

Precipitation CMA (http://data.cma.cn/) (accessed on 15 May 2022)
Relative humidity Idem
Temperature Idem
Wind speed Idem
Sunshine duration Idem

Land surface data

NDVI [1/12 degree] https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1 (accessed on 15
May 2022)

Albedo [0.05 degree] http://www.glass.umd.edu/Download.htm (accessed on 21 May 2022)
LAI [0.05 degree] Idem
FAPAR [0.05 degree] Idem

Evaluation data
River discharge Hydrological Bureau of the Ministry of Water Resources in China

ET flux

ChinaFLUX (http://www.chinaflux.org/) (accessed on 30 March 2022),
FLUXNET2015 (https://fluxnet.org/data/fluxnet2015-dataset/) (accessed on
26 January 2022), and Science Data Bank
(http://www.sciencedb.cn/dataSet/handle/939) (accessed on 18 May 2022)

GLEAM v3.5 [0.25 degree] https://www.gleam.eu/ (accessed on 16 February 2022)

The performance of the PT-JPL model under four vegetation input schemes is eval-
uated at the site and basin scales. At the site scale, the EC-based ET measurements from
10 ChinaFlux sites are used as the benchmark data to evaluate the model performance
(see Table 3). These flux sites cover different types of ecosystems in China, including three forest
sites, four grassland sites, one shrubland site, and two cropland sites (Figure 2 and Table 3).
The main crop types at the two cropland sites are winter wheat and summer maize. The
observation data from rainy days (daily precipitation greater than 0.5 mm) are excluded
from model evaluation given the potentially large observation errors on rainy days. At the
basin scale, the water balance-based ET estimates are used to validate the PT-JPL model’s
performance. The water balance method assumes that the total storage change (∆S) can be
ignored on the mean annual scale. Then, mean annual ET can be estimated as the difference
between precipitation (P) and runoff (R): ET = P-R. This method has been widely used
for the basin-scale ET evaluation [53,54]. A total of 286 basins are used here (Figure 2),
and these basins cover diverse climatic and landscape conditions, with the aridity index
ranging from 0.47 to 2.73 [55]. The basin-scale model evaluation is only performed for the
period 1982–2000 because runoff data outside this period are not available. In addition, the

http://data.cma.cn/
https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1
http://www.glass.umd.edu/Download.htm
http://www.chinaflux.org/
https://fluxnet.org/data/fluxnet2015-dataset/
http://www.sciencedb.cn/dataSet/handle/939
https://www.gleam.eu/
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Global Evaporation Amsterdam Model (GLEAM) ET product (version 3.5) [56,57] is used
to evaluate the reliability of ET component partitioning for the PT-JPL model.

Table 3. The information on the ten flux sites. MAP: mean annual precipitation; MAT: mean annual
temperature.

Station Ecosystem Type Elevation (m) MAP (mm/Year) MAT (◦C) Time Range

CBS Mixed forests 738 713 3.6 2003–2010

QYZ Evergreen
Needleleaf Forests 110 1542 17.9 2003–2010

DHS Evergreen
Broadleaf Forests 300 1956 20.9 2003–2010

NMG Grasslands 1200 338 0.9 2007–2010
DL Grasslands 1350 319 2.0 2006–2008
DX Grasslands 4333 450 1.3 2004–2010
CL Grasslands 171 315 7.5 2007–2010
HB Shrublands 3190 535 −1.2 2003–2010
YC Croplands 28 582 13.1 2003–2010
LC Croplands 50 490 12.9 2007–2013

Figure 2. Locations of the meteorological stations (grey dots), flux stations (red stars) and 286 test
basins. The insert shows the spatial pattern of the aridity index, which is defined as the ratio of
potential ET (PET) to precipitation (P) at the mean annual scale.

2.4. Model Performance Assessment

Three model performance indicators are used: coefficient of determination (R2), per-
cent relative bias (Bias, %), and Kling-Gupta efficiency (KGE) [58]. The value of R2 ranges
from 0 to 1, and R2 = 1 is the optimal value. Bias measures the degree to which simulations
are overestimated (positive value) or underestimated (negative value) relative to observa-
tions, and it ranges from −∞ to +∞, with an optimal value of zero. KGE is a comprehensive
indicator to measure the consistency between simulations and observations. It integrates
three independent indicators (bias, variance, and correlation) into one function [59]. The
value of KGE is in the range between −∞ and 1.0, with an optimal value of 1.0.



Remote Sens. 2022, 14, 2573 7 of 18

3. Results
3.1. Comparison of Vegetation Variables Estimated by Empirical and Remote Sensing Methods

We compare LAI and FAPAR estimated by empirical methods and RS (GLASS) prod-
ucts. Figure 3 shows the spatial patterns of mean annual LAI (FAPAR) estimates from the
two methods and their difference across China. The empirically based LAI shows a similar
spatial pattern to RS LAI, with a decreasing trend from southeast to northwest China
(Figure 3a,b). However, the two methods have significant differences in LAI estimates,
particularly in well-vegetated areas (Figure 3c). On a national scale, mean annual LAI
estimates from the empirical method and RS product are 0.81 and 0.92 m2/m2, respectively.
The empirically based LAI has lower values than RS LAI in most areas. The FAPAR esti-
mated by the two methods shows a similar spatial pattern to the LAI (Figure 3d,e), and
empirically based FAPAR in most areas is higher than RS FAPAR (Figure 3f).

Figure 3. The spatial pattern of mean annual (1982–2015) LAI estimated by the empirical method
(a) and RS (GLASS) product (b), and their differences (∆LAI) (c). The right column (d–f) is same as
the left column, but for the FAPAR. AVE: National average.
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We also compare the interannual changes of national-scale LAI (Figure 4a) and FA-
PAR (Figure 4b) estimated by the two methods from 1982 to 2015. The empirically based
LAI is apparently less than RS LAI, but the empirically based FAPAR is always larger
than RS FAPAR. The annual trends of the two vegetation variables from RS products
((LAI: 2.9 × 10−3, FAPAR: 7 × 10−4) are larger than those from empirical methods
(LAI: 2.7 × 10−3, FAPAR: 4 × 10−4).

Figure 4. The interannual changes in national-scale LAI (a) and FAPAR (b) estimated by empirical
methods and RS (GLASS) products from 1982 to 2015.

3.2. The Difference in ET Estimates under Four Vegetation Input Schemes

We compare mean annual ET estimates of the PT-JPL model under four vegetation
input schemes (Figure 5). Mean annual ET estimates from the four schemes show a
consistent spatial pattern: a decreasing trend from southeast to northwest China. How-
ever, there are pronounced differences in national average ET estimates under the four
schemes. Mean annual ET estimates from schemes I and III are close (440.6 mm/year versus
445.7 mm/year), and their values are significantly larger than those obtained from schemes
II (394.4 mm/year) and IV (416.6 mm/year). Spatial differences in mean annual ET esti-
mates under the four schemes are mainly reflected in areas with higher ET values, such as
southeast China.

We also compare the interannual variability and seasonal cycle of national average ET
estimates under the four schemes from 1982 to 2015 (Figure 6). National-scale annual ET
estimates show similar interannual variability but different trends under the four schemes.
The trends in annual ET under the four schemes (from I to IV) are 0.05, 0.02, 0.08, and
−0.14 mm/year, respectively. The four schemes produce a reverse V-shape intra-annual
variation of ET, and the highest values occur in July (Figure 6b). Mean monthly ET estimates
from schemes I and III are close to each other, and their values are apparently higher than
those from schemes II and IV.

3.3. ET Assessment at the Site and Basin Scales

We use the EC-based ET observations from ten flux sites to evaluate the performance
of the PT-JPL model under four vegetation input schemes (Figure 7). In terms of the KGE
score, scheme I performs best and slightly outperforms scheme III, followed by schemes II
and IV. The average KGE values of the ten flux sites under the four schemes are 0.65, 0.51,
0.64, and 0.52, respectively. In terms of ecosystem types, scheme I still outperforms other
schemes. For example, the average KGE scores of the forest sites (CBS, QYZ, and DHS)
under the four schemes are 0.74, 0.66, 0.72, and 0.60, respectively.
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Figure 5. The spatial pattern of mean annual (1982–2015) ET estimates from the PT-JPL model under
four vegetation input schemes. AVE: National average.

Figure 6. The interannual change (a) and seasonal cycle (b) of national average ET estimates under
four vegetation input schemes from 1982 to 2015.

We also evaluate mean annual ET estimates under the four schemes using the water
balance-based ET estimates (Figure 8). As shown in Figure 8, scheme I is generally superior
to other schemes, which performs best in terms of R2 and KGE. The R2 values obtained by
the four schemes (from I to IV) are 0.72, 0.65, 0.71, and 0.65, respectively. The KGE values
under the four schemes are 0.81, 0.80, 0.80, and 0.80, respectively. In addition, scheme III is
slightly inferior to scheme I, but it generally outperforms the other two schemes.
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Figure 7. Comparison of the performance of the PT-JPL model at ten flux sites under the four schemes.

Figure 8. Scatterplots of simulated versus water balance-based mean annual ET at 286 test basins
from 1982 to 2000. The dots represent mean annual ET of test basins; the solid line represents the
regression line; the dashed line represents the 1:1 line.
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4. Discussion
4.1. Why Does Introducing More RS Vegetation Variables beyond NDVI Degrade the Performance
of the PT-JPL Model?

Some RS ET models require multiple vegetation variables as inputs to allocate the
energy and construct environmental constraints for ET [2,26,30,60,61]. There are usually
two strategies to obtain these vegetation variables. The first strategy is to use the existing
RS data as much as possible [2,62,63]. The second strategy is to use a single RS vegetation
variable (e.g., NDVI) in combination with empirical equation(s) to estimate other vegetation
variables (e.g., LAI and FAPAR). Both strategies have their advantages and shortcomings.
The first strategy can make full use of multi-source RS vegetation information, but the
uncertainties of RS vegetation variables from different sources may also be propagated
into ET simulations [35]. The second strategy simplifies the model’s vegetation inputs
but may introduce the uncertainty of empirical equation(s) into ET simulations [64]. This
study evaluated the performance of the PT-JPL model under the above two strategies
and their combinations. We first compared the differences in two vegetation inputs (LAI
and FAPAR) estimated by empirical methods and RS products. The results indicated that
there are considerable differences in the LAI and FAPAR estimated by the two methods
(Figures 3 and 4). Considering that the RS LAI and FAPAR products are generated based
on complex algorithms and have been extensively verified globally [48,65], we have reason
to believe that the two vegetation variables estimated by empirical methods have larger
uncertainties than RS products. Figure 9 confirms our hypotheses that the RS-derived green
canopy fraction (f g) and plant moisture constraint (f M) (see Table 1) are more reasonable on
spatial patterns than those estimated by empirical equations. The RS-derived f g and f M
show similar spatial patterns to LAI and aridity index (Figure 9a,c), respectively, which
match the physical meaning represented by the two state variables. In contrast, the empiri-
cally based f g and f M are much higher than those derived by RS products, and their spatial
patterns are unreasonable in terms of the physical meaning they represent. However, why
do better f g and f M estimates not yield better ET simulations? To answer this question,
we further examined the proportion of ET components (ETi, ETs, and ETc) across China
under the four vegetation input schemes. An extensively validated global ET product,
namely the Global Land Evaporation Amsterdam Model (GLEAM v3.5) [56,57], was used
as benchmark data to evaluate the reliability of ET component partitioning for the PT-JPL
model. Under the four vegetation input schemes, the PT-JPL model yields a much larger
contribution from ETi (13–15%) than the GLEAM (6%) product in China (Figure 10), and
the contribution of ETi to ET even exceeds 40% in parts of southern China (see Figure S2).
Some studies have also reported the overestimation of ETi by the PT-JPL model [66,67].
The reason for the overestimation of ETi in the PT-JPL model is most likely the unreason-
able parameterization of relative surface wetness (f wet, it is also called the faction of wet
canopy). The PT-JPL model uses relative humidity (RH) to parameterize f wet (f wet = RH4) if
RH > 70%. This implies that ETi occurs as long as RH > 70%, even in the absence of precip-
itation. This assumption is problematic since RH and precipitation are often decoupled,
especially in humid regions of China, where there are many days during a year when
RH > 70% but no precipitation occurs.
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Figure 9. The spatial pattern of mean annual (1982–2015) green canopy fraction (f g) estimated by RS
(GLASS) FAPAR (a) and empirically based FAPAR (b). The bottom two panels (c,d) are same as the
top two panels, but for the soil moisture constraint (f M) estimation. AVE: National average.

Figure 10. Pie charts illustrate the national average contribution of each component to total ET for
GLEAM and PT-JPL model. ETi: Interception evaporation; ETs: Soil evaporation; ETc: Canopy
transpiration.

In addition to the overestimation of ETi, the proportion of transpiration (ETc) to ET
from the PT-JPL model is likely to be underestimated (see Figure 10). Three potential
reasons contribute to the low proportion of ETc to ET across China. First, the energy
allocated to the canopy layer was underestimated due to the underestimation of LAI (see
Figure 4a). The LAI defined in the original PT-JPL model is the total LAI, while GLASS
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LAI is essentially the green LAI. In theory, the GLASS LAI should be less than or equal to
total LAI if a reasonable LAI parameterization is used. However, the NDVI-derived LAI is
significantly smaller than the RS LAI (see Figure 4a). Second, ETc may be over-constrained
in the PT-JPL model: three biophysical constraints (f g, f T, and f M) are used in the model.
A low value for any of these constraints would make ETc much smaller than its potential
value (the value under unstressed conditions). By contrast, the GLEAM uses the same
method of potential evaporation as the PT-JPL but only uses a soil water constraint to
reduce potential evaporation to actual evaporation [56,57]. Third, the proportion of ETs
to ET may be overestimated in the PT-JPL model to offset the underestimation of ETc,
thereby ensuring the rationality of ET simulations. The overestimation of ETs is achieved
by the underestimation of LAI and the overestimation of soil moisture constraint (f SM). The
model calculates the f SM with daily relative humidity and VPD. This constraint may well
reflect the soil moisture status in humid areas but not in arid areas [68]. For example, the
desert and Gobi areas of northwest China have extremely dry climates, where the mean
annual aridity index exceeds 5.0 (see Figure S3). The real f SM in these areas should be
close to zero, but f SM estimates in these areas range from 0.3 to 0.6. Overall, the PT-JPL
model provides an efficient tool to simulate ET, but the rationality of ET partitioning needs
to be revisited. The unrealistic ET portioning is largely attributable to inadequate model
constraint schemes, that is, “getting the right results for the wrong reasons.” This explains
why introducing more remote sensing variables other than NDVI degrades the model’s
performance to varying degrees.

From the perspective of the model application, it is redundant to introduce more RS
vegetation variables beyond NDVI, if we only pursue the rationality of ET simulations.
However, model users sometimes need to divide ET components reasonably. In this case, it
is necessary to re-parameterize the biophysical constraints of the PT-JPL model to achieve a
reasonable ET partitioning. Specific model improvement suggestions are summarized as
follows: (i) increasing the exponent of the f wet function (f wet = RH4) to reduce the fraction
of ETi to ET, (ii) introducing RS LAI and FAPAR data, and (iii) re-parameterizing the
biophysical constraints based on multi-source ET observations.

4.2. The Model Sensitivity to Vegetation Variables

The differences in ET simulations between different vegetation input schemes essen-
tially reflect the model sensitivity to vegetation input variables. For example, the LAI
estimates from schemes I and III differ greatly (Figure 4a), but little difference in ET esti-
mates was found between the two schemes. This means that the model is not sensitive to
the input of LAI. To fully demonstrate the model sensitivity to vegetation input variables
(LAI, FAPAR, and FIPAR), we exerted four perturbations (−10%, −5%, 5%, 10%) to each
vegetation variable one by one and then calculated the relative difference in ET simulations
(∆ET, %) from baseline simulations (the results of the scheme I). The larger the ∆ET, the
more sensitive the model is to the change in vegetation variable. The results show that
the PT-JPL model is most sensitive to the change in FAPAR, followed by FIPAR and LAI
(Figure 11). This result explains why schemes I and III behave similarly, while considerable
differences exist between the scheme I and schemes II and IV.
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Figure 11. The model sensitivity to changes in vegetation variables (LAI, FAPAR, and FIPAR) for
the PT-JPL model. The larger the slope of the line, the more sensitive the model is to the change in
vegetation variable. ∆ET: The relative difference in ET simulations (%).

4.3. Potential Uncertainty Sources

Many factors can cause uncertainty in the evaluation results. First, the EC-based ET
measurements have two inherent deficiencies: the non-closure of energy balance compo-
nents and the scale mismatch during the “site-to-pixel” model evaluation [4]. The issue of
energy balance non-closure has been observed on almost all flux stations globally [69–71].
The non-closure degree of surface energy components in some European sites is generally
between 10–30%, as reported by Mauder et al. [72]. Numerous factors affect the closure
degree of the energy balance components, including the sampling errors, instrument
bias, neglected energy sinks, and horizontal and/or vertical advection of heat and water
vapor [69]. In addition, the spatial representation of an EC flux tower is about several
hundred square meters, depending on the measured height above the canopy layer and
wind speeds [9]. However, the grid area of the model calculation is about 18–29 km2

(depending on the altitude). The scale mismatch also has the capacity to skew evaluation
results, given the nature of considerable spatial heterogeneity in ET [4]. The uncertainty
in the water balance-based ET estimates may also affect the evaluation results. The water
balance method assumes that the changes in water storage (S) can be ignored on the mean
annual timescale, and then the basin-average ET is estimated as the difference between
precipitation and runoff. However, the assumption of S = 0 may not hold, especially in
small basins [53,73]. Small basins often have frequent water exchange with neighboring
basins, and ignoring this part of the water may result in a large bias in ET estimation from
the water balance method [74].

The uncertainty of the forcing data is an important error source for ET simulations [75].
In this study, the meteorological variables from 824 meteorological stations were interpo-
lated into gridded data to drive the PT-JPL model. However, the spatial distribution of these
stations is sparse and uneven, especially in the western regions (see Figure 2). This may
affect the accuracy of the interpolated meteorological data. In addition, Rn is the key input
for the PT-JPL model, and its error may greatly affect the output of the PT-JPL model [26,75].
However, Rn is not a routine observation item of meteorological stations in China. Here
we use the sunshine duration, RS albedo, and FAO-56 PM method to calculate the daily
Rn [19]. Rn is calculated as the difference between incoming and outgoing radiation of both
short and long wavelengths. This method itself has some flaws. It uses the air temperature
instead of the land surface temperature to calculate the outgoing longwave radiation since
the land surface temperature data before 2000 are not available. This may result in bias in
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Rn estimates [31]. Nevertheless, the validation results at flux sites indicated that the Rn
estimates from the FAO-56 PM method are generally reliable.

The PT-JPL model under the four vegetation input schemes systematically underes-
timates the ET at the two cropland sites (see Figure 7). This may be due to the effect of
agricultural irrigation, which can significantly increase the regional ET rate. However, the
PT-JPL model does not take into account the effect of irrigation on ET, thus underestimating
ET estimates at these sites. Previous studies have also reported the underestimation of ET
at these cropland sites [76,77]. In addition, a single RS vegetation data source (i.e., GLASS)
was used here, and these data inevitably have varying degrees of uncertainty. Replacing
GLASS with other RS data sources may have the effect of skewing the evaluation results.

5. Conclusions

The major purpose of this study is to investigate whether introducing more vegetation
variables beyond NDVI into the PT-JPL model can improve the model’s performance.
The vegetation variables estimated by empirical methods and RS (GLASS) products were
combined into four different vegetation input schemes for the PT-JPL model. We then
evaluated the performance of the PT-JPL model under four schemes at the site and basin
scales. The main conclusions are as follows.

(1) Introducing more RS vegetation information beyond NDVI degrades the accuracy of
ET simulations for the PT-JPL model to varying degrees.

(2) A possible reason for this is the misinterpretation of ET components caused by unrea-
sonable parameterization schemes of biophysical constraints.

(3) It is necessary to re-parameterize the biophysical constraints of the PT-JPL if the
rationality of ET component simulations is sought.

This study highlights the importance of vegetation variable inputs from different
sources to ET simulations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs14112573/s1, Table S1: The performance of the PT-JPL model
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model performance obtained from two Topt schemes: Topt = 25 ◦C versus the empirical formula used
in the original PT-JPL model; Figure S1: Scatterplots of net radiation (Rn) estimates and observations
at flux sites; Figure S2: Spatial distribution map of the contribution of each component to total ET for
GLEAM product and PT-JPL model; Figure S3: The spatial pattern of mean annual (1982–2015) soil
moisture constraint (f SM) (a) and the aridity index (b) across China.
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