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Abstract: This paper presents a perception-aware path planner for active SLAM in dynamic environ-
ments using micro-aerial vehicles (MAV). The “Next-Best-View” planner (NBVP planner) is combined
with an active loop closing, which is called the Active Loop Closing Planner (ALCP planner). The
planner is proposed to avoid both static and dynamic obstacles in unknown environments while
reducing the uncertainty of the SLAM system and further improving the accuracy of localization.
First, the receding horizon strategy is adopted to find the next waypoint. The cost function that
combines the exploration gain and the loop closing gain is designed. The former can reduce the
mapping uncertainty, while the latter takes the loop closing possibility into consideration. Second, a
key waypoint selection strategy is designed. The selected key waypoints, instead of all waypoints,
are treated as potential loop-closing points to make the algorithm more efficient. Moreover, a fuzzy
RRT-based dynamic obstacle avoidance algorithm is adopted to realize obstacle avoidance in dynamic
environments. Simulations in different challenging scenarios are conducted to verify the effectiveness
of the proposed algorithm.

Keywords: perception-aware; key waypoints; path planning; active slam; loop closing; dynamic
environments

1. Introduction

A Micro-Aerial Vehicle (MAV) is an intelligent vehicle that integrates MEMS technol-
ogy, micro-electronics, computer technology, intelligent control and other technologies.
It is characterized by low cost, small size, ease of operation and flexibility and is capa-
ble of performing various tasks such as reconnaissance [1], inspection [2], surveying and
mapping [3–5] and search and rescue [6–8] in complex flight environments such as low
altitude, indoor, marine environments and urban complexes. In recent years, simultaneous
localization and mapping (SLAM) is one of the hot topics in the field of mobile robotics,
and much attention has been paid to this research area. There are many classical SLAM
frameworks and outstanding algorithms being used for autonomous navigation and lo-
calization [9–12]. SLAM focuses mainly on localization and map building rather than
trajectory planning. When SLAM and trajectory planning are considered together, the
problem becomes more complex and challenging, which is called active SLAM [13]. In
active SLAM, a robot, such as an MAV or UGV [14–16], needs to solve a decision-making
problems, in which a collision-free trajectory is planned to improve position estimation
accuracy, as well as to perform other tasks, such as unknown environment exploration [17]
and coverage planning [18]. This problem involves both SLAM and path-planning parts.
The accuracy of localization must be taken into consideration during the planning process.
Therefore, it is regarded as one of the most challenging problems in mobile robotics.

In this work, we focus more on active SLAM used in MAV. The purpose and motiva-
tion of this work is to plan a good trajectory to improve the localization performance of the
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SLAM system, while performing a search and rescue task in unknown complex dynamic
environments. In SLAM systems, loop closure detection is beneficial for improving local-
ization accuracy. Hence, we propose a perception-aware path planning method in dynamic
environments using MAV. The next best view planner is combined with an active loop clos-
ing strategy to make it an active SLAM system. This method increases the number of loop
closures in the planned path as much as possible, while taking into account the efficiency of
the search and rescue. In addition, a dynamic obstacle avoidance algorithm is introduced
in this work to avoid various obstacles that may appear in dynamic environments.

The main contributions of this work are as follows:

(1) A perception-aware path planning method is proposed, which combines the next best
view planner with an active loop closing strategy to perform a trajectory that enables
more accurate localization while performing search and rescue tasks;

(2) A key-waypoint-based active loop closing strategy is proposed to improve the effi-
ciency of active SLAM system;

(3) Fuzzy RRT-based dynamic obstacle avoidance is integrated into the path planning method
to improve the system performance in dealing with complex dynamic environments.

The rest of this paper is structured as follows. Section 2 provides an overview of
related work in path planning and active SLAM. Then, Section 3 presents the system
overview and explains the proposed algorithm in detail, including the next best view
planner, the key-waypoints-based active loop closing, and a fuzzy-RRT-based dynamic
obstacle avoidance algorithm. Subsequently, Section 4 provides qualitative and quanti-
tative results of performance of the proposed method both on different cluster dynamic
environments to demonstrate and analyze the effectiveness of the perception-aware path
planning method and the active SLAM system. Moreover, discussion on the performance
of different algorithms in different scenarios is presented in Section 5. Finally, conclusion
and future work are discussed in Section 6.

2. Related Work

In the mobile robotics area, SLAM and path planning are two hot spot topics in the
research community. Nowadays, with the development of SLAM algorithms becoming
more sophisticated, more and more attention has been paid in the combination of path
planning and SLAM [19–21]. Considering both of these makes the problem more complex
and more challenging. In the field of exploration and coverage planning, a number of path
planning algorithms have achieved very promising results, including the typical-sampling-
based Receding horizon “Next Best View” planner [22], the frontier-based exploration [23]
and more recent variants [17,19,24–32] based on them. For example, in [24], a novel Next-
Best-View (NBV) planner which can perform full exploration and user-oriented exploration
with inspection of the regions of interest using a mobile manipulator robot is proposed.
In [30], a novel exploration method is proposed to generate a complete surface model in an
unknown environment.

Moreover, to reduce the uncertainty of exploration and improve the accuracy of
localization while performing path planning, active SLAM algorithms for autonomous,
uncertainty-aware exploration, localization and mapping of unknown environments are
proposed in [17,19,20,33,34]. In [17], a novel path planning algorithm for the autonomous,
uncertainty-aware exploration and mapping of unknown environments using aerial robots
is proposed to be able to efficiently explore unknown environments. In [19], an uncertainty-
aware path planning strategy is proposed to achieve the autonomous aerial robotic explo-
ration of unknown environments while ensuring mapping consistency on-the-go. In [20],
the paramount importance of representing and quantifying uncertainty to the associated
confidence of the robot’s location estimate is fully discussed. In [33], a novel strategy
is proposed for the autonomous visual saliency-aware receding horizon exploration of
unknown environments using aerial robots. In [34], a novel exploration strategy for MAVs
is proposed to reduce map entropy regarding occupancy probabilities. Meanwhile, the
Active SLAM algorithm is also important when it comes to coverage planning [18,35–37].
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In [35], a hierarchical, hex-decomposition-based coverage planning algorithm is proposed
for unknown obstacle-cluttered environments. In [35], a coverage path planning algorithm
is proposed to find a collision-free path while covering every accessible region within
an environment. In [36], an online coverage and inspection planning for 3D modeling
is proposed to explore an unknown environment using an MAV. In addition, obstacle
avoidance is seen as an integral part of path planning in both static and dynamic environ-
ments [28,38–41]. Specifically, a real-time perception-aware trajectory planner in dynamic
environments is proposed in [38], which plans trajectories that avoid dynamic obstacles
while also keeping them in the sensor field of view and minimizing the blur to aid in object
tracking. A novel depth-based collision-avoidance method for aerial robots is proposed
in [39] to ensure safety without sacrificing speed. A 3-D decentralized and asynchronous
trajectory planner for UAVs that generates collision-free trajectories in environments with
static obstacles, dynamic obstacles, and other planning agents is proposed in [40]. An
environmental adaptive planner is proposed in [41] to adjust the flight aggressiveness. A
robust and perception-aware replanning framework is proposed in [28] to support fast and
safe flights.

The methods above enable systems to adapt to complex dynamic environments. The
contributions proposed in this work differ from the above in the sense that we propose
an improved receding horizon next best view planner to combine trajectory planning
of unknown environments with key-waypoints-based active loop closing, together with
dynamic obstacle avoidance algorithm to enhance the on-the-go mapping behavior of the
MAV in a framework that remains computationally efficient. In this way, a perception-
aware path planning based active SLAM is established and will be introduced in detail in
the next section.

3. Method
3.1. System Overview

The framework of the system can be seen in Figure 1. First, the receding horizon strat-
egy is adopted to perform path planning. Different to [22], in this work, the feature selection
cost is considered to add to the cost function to calculate gain. In this way, the best waypoint
is selected as the next waypoint among the candidates. Second, after the determination of
waypoint, a key waypoint selection strategy is designed and a key-waypoints-based active
loop closing planning (ALCP) method is proposed. In this method, key waypoints instead
of all waypoints are selected to perform loop closing, which balances the efficiency of un-
known space exploration with the accuracy of localization. Moreover, a dynamic obstacle
avoidance algorithm is adopted to realize obstacle avoidance in dynamic environments.

Figure 1. Framework of system.
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3.2. Active Loop Closing Planner

Considering the exploration of unknown space, the proposed algorithm employs a
sampling-based receding horizon path planning strategy and an active loop closing strategy
to generate paths that cover the bounded space V, which is called the Active Loop Closing
Planner (ALCP) in this work. A stereo camera is adopted as a sensing system to sense
the surrounding environment and provide feedback to the MAV controller. All acquired
information is included in a map representing the environment. A fuzzy RRT algorithm is
adopted to generate an obstacle-free path. The details can be seen in Section 3.4. The map
is adopted for the navigation of an MAV and deciding the direction of exploration.

The employed representation of the environment is an occupancy map dividing space
V in occupied grids that can either be marked as free, occupied or unmapped. The resulting
array of voxels is saved in an octree structure, enabling computationally efficient access
such as checking for occupancy and checking for loop closing. Generally, paths are only
planned in the known free space, thus providing collision-free navigation. However, when
the previously passed waypoint is very close to the current MAV state, the MAV is planned
to pass the previous waypoint again to form a loop, which is good for the performance of
localization in the SLAM system. While a collision-free MAV state is denoted by S, a path is
denoted by ε. The corresponding path cost from k− 1 to k is c(εk−1

k ). For a given occupancy
map representing the world W, the set of visible and unmapped voxels from state S is
denoted as Vis(S). From the current state of the MAV, a geometric tree T is incrementally
constructed in the space using the RRT algorithm. The resulting tree contains NT nodes n,
and its edges are given by collision-free paths ε. The information gain of a node Gain(n)
is the summation of the unmapped volume that can be explored at the nodes, as well as
the feature observability. For node k, the corresponding Gain(nk) can be calculated by
Equation (1):

Gain(nk) = Gain(nk−1) + ω1Vis(Sk)e−λc(εk−1
k ) + ω2Loop(Sk)e−λ (1)

where λ is a tuning factor which penalizes high path costs [22,42], and ω1 and ω2 are
weighting factors. Loop(Sk) means the distance to the existing waypoints in the neighbor-
hood around Sk. A trade-off between loop closing possibility and efficiency of exploration
is made in the gain calculation above. After every replanning, the first segment of the
branch to the best node is executed by MAV, and nbest is the node with highest gain. Each
executed node is numbered, and the information of the node will be saved in the map.
When the MAV is close to the saved node, it will be planned to pass the node again to form
a loop. After one loop is formed, a time interval is set to prevent excessive re-exploration of
known maps.

3.3. Key-Waypoints-Based Active Loop Closing

In SLAM systems, the repeated passage of the motion carrier through the same place
will facilitate its own localization accuracy, which is called loop closing. In order to improve
the accuracy of localization efficiently while exploring the space, a key-waypoints-based
active loop closing method (Algorithm 1) is proposed in this section. As mentioned above
in Section 3.2, each best node is determined to be the next waypoint. Each waypoint
has the potential to be the loop closing point when the MAV passes again in the vicinity
of the waypoint. However, considering the efficiency of the system, instead of all the
waypoints, the selected waypoints, which are called key waypoints, are treated as potential
loop-closing points. The criteria for the selection of key waypoints are as follows: (1) the
change in yaw at the current waypoint is greater than 45 degrees from the yaw at the
previous waypoint, and (2) five waypoints have been passed after the last key waypoint
was selected. If one of the two criteria is satisfied, the current waypoint will be selected as
the key waypoint. When the distance of the MAV from a key waypoint is less than a certain
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threshold, the system will initiate the active loop closing process.The distance between the
current position and key waypoint can be expressed by the following Equation (2):

d = ||pcurrent − pwaypointi || (2)

where d denotes the distance, pcurrent denotes the current position and pwaypointi denotes
the position of the ith waypoint. To ensure the efficiency of the path planning, the active
loop closing will be checked under the following situations: (1) after a certain time interval
of planning, the threshold of interval is denoted by Th, and (2) after reaching the maximum
value of iterations, if the iterative step cannot find a proper node with best gain. With the
strategy above, the probability of loop closure in the path planning process can be increased
while considering the planning efficiency.

Algorithm 1: Exploration Planner—Active Loop Closing
Input: Path planning times Countp; Best nodes nbest
Output: Enable active loop closing flag bFlaglc; Planned path ε
1 select key waypoints according to nbest
2 save key waypoints to wpkey as candidate active loop closing point
3 If wpkey 6= ∅ then
4 bFlaglc = true
5 end if
6 If Countp = Th and bFlaglc = true then
7 ε = GetActiveLoopPath
8 Countp = 0
9 break
10 end if

3.4. Fuzzy-RRT-Based Dynamic Obstacle Avoidance

To guarantee collision avoidance in dynamic environments, a fuzzy RRT based plan-
ner is proposed to deal with dynamic obstacle avoidance(Algorithm 2). Fuzzy rules are
designed, and a fuzzy inference system is adopted to output the steering response, which
will be explained in detail in this section.

Algorithm 2: Fuzzy-RRT-based dynamic obstacle avoidance
Input: next best view planner; Obstacle distance threshold Thod
Output: Refined path by fuzzy-RRT ε f−rrt
1 generate path εrrt by nextbestviewplanner (Algorithm 3)
2 follow the planned path
3 calculate the distance from obstacle do in the path
4 If do < Thod then
5 generate refined path ε f−rrt by fuzzy inference
6 else
7 ε f−rrt = εrrt
8 end if
9 return ε f−rrt

Fuzzy control is based on fuzzy theory, fuzzy linguistic variables and fuzzy logic
inference [43]. It is essentially an intelligent control method that can be used to mimic
human fuzzy inference and decision making processes in terms of behaviour. The process
of implementing fuzzy control is as follows: (1) fuzzification of input and output variables
to determine the values of linguistic and language variables; (2) determine the fuzzy mem-
bership function for each linguistic variable value; (3) establish fuzzy rules and perform
fuzzy inference based on the rules; (4) defuzzification, where the amount of fuzziness is
made precise by certain defuzzification methods. Fuzzification, fuzzy membership func-
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tions and fuzzy rules will be described in detail in this section. In this work, the Mamdani
inference method is used to perform fuzzy inference, and the centroid method is adopted
as the defuzzification method. After defuzzification, the output is obtained for refining
the current path. The fuzzy surfaces which represent the relationship between input and
output are shown in Figures 2–4.

The fuzzy-RRT-based method presented in this work is based on RRT for global
path planning and fuzzy inference rules for obstacle avoidance. RRT is a sampling-based
method that grows a finite iteration random tree to explore the entire environment and
incrementally find a connected path from the start to the end (Algorithm 3, line 7). However,
in complex dynamic scenarios, due to the existence of dynamic obstacles, it is hard to find
an obstacle-free path to connect to the tree. The planned path generated by the RRT
algorithm is not always the optimum path with shortest distance from the current to the
next best view waypoint. This is due to the fact that the generated random tree may go
farther around in order to avoid obstacles during the replanning process, which will have a
detrimental effect on exploration efficiency.

In the proposed fuzzy-RRT-based method, fuzzy inference is combined with tradi-
tional RRT for dynamic obstacle avoidance and to generate a path to the next-best-view
waypoint efficiently at the same time. Specifically, the RRT algorithm is executed to per-
form global path planning at the first step, and then fuzzy inference rules are utilized to
perform trajectory refinement at the second step when the obstacles are detected during
flight following the planned path. Finally, an optimized path with several next best view
waypoints is generated for MAV exploration.

Algorithm 3: Exploration Planner—Iterative Step
Input: Initial state S0; Enable active loop-closing flag bFlaglc
Output: Best gain:Gainbest; Planned path ε; Path planning times Countp
1 Initialize path planning times Countp
2 Initialize T with S0
3 Initialize best gain:Gainbest = 0
4 Initial root as best node: nbest =n0(S0)
5 Number of nodes in T: NT
6 Initialize loop time: tloop = 0
7 Waiting for planner call
8 while NT < Nmax or Gainbest = 0 do
9 Add new node nnew to build T incrementally
10 NT = NT + 1
11 tloop = tloop + 1
12 if tloop > tmax then
13 if bFlaglc then
14 ε = GetActiveLoopPath
15 else
16 ε = BackToPreviousPath
17 end if
18 break
19 end if
20 if Gain(nnew) > Gainbest then
21 nbest = nnew
22 Gainbest = Gain(nnew)
23 break
24 end if
25 end while
26 ε = GetBestPath(nbest)
27 Countp = Countp + 1
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Figure 4. Fuzzy surface of relationship between input 2, input 3 and output.

The hollowing are the fuzzy membership functions for inputs and outputs, together
with the fuzzy rules designed for the fuzzy inference system in this work.The system is
designed with three inputs and one output, as defined below:

Input 1: distance to obstacle in the flight direction;
Input 2: distance to obstacle at 45 degrees to the left of the direction of flight;
Input 3: distance to obstacle at 45 degrees to the right of the direction of flight;
Output: steering response based on the fuzzy inference.

Note that in the input, if the obstacle is far away, it is denoted by large. If the obstacle
is close, it is denoted by small. If the obstacle is at a moderate distance, it is denoted by
medium. While in output, we use the angle of turning left to represent the steering response.
Similarly, if a small angle to the left is required, it is denoted by positive small. If a big
angle to the right is required, it is denoted by negative large. If going straight is required,
it is denoted by zero. The fuzzy rules for dynamic obstacle avoidance can be seen in
Table 1. Although there are 27 rules in the fuzzy inference system, it could be trained offline
and output online. Moreover, if the output is negative large or positive large according to
the fuzzy rule list, it will perform replanning immediately instead of performing fuzzy
inference, which improves the efficiency of the system.

As can be seen from the Table 1, if the distance to the obstacle in the flight direction is
small, the distance to obstacle at 45 degrees to the left (right) or the direction of flight is not
large, the system will perform replanning as traditional RRT methods do. That means only
when the distance to the obstacle is not close, the fuzzy inference system would be adopted
to perform dynamic obstacle avoidance. Actually, only 9 fuzzy rules are used instead of 27.
In this work, triangular and trapezoidal membership functions are utilized for inputs and
output of the fuzzy inference system, which can be seen in Figures 5–7.

For inputs, the x-axis denotes the distance, measured in meters, and the y-axis denotes
the degree of membership, which takes on a value between zero and one. For the output,
the x-axis denotes the angle, measured in degrees, and the y-axis denotes the degree of
membership, which has the same range of values as the input membership function.
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Table 1. Fuzzy rules for dynamic obstacle avoidance.

Rule No. Input 1 Input 2 Input 3 Output

1 small small small positive large (replan)
2 small small medium positive large (replan)
3 small small large negative large (replan)
4 small medium small positive large (replan)
5 small medium medium positive large (replan)
6 small medium large negative large (replan)
7 small large small positive large (replan)
8 small large medium negative large (replan)
9 small large large positive large (replan)

10 medium small small positive large (replan)
11 medium small medium negative large (replan)
12 medium small large negative small
13 medium medium small positive large (replan)
14 medium medium medium positive large (replan)
15 medium medium large negative small
16 medium large small positive small
17 medium large medium positive small
18 medium large large positive small
19 large small small positive large (replan)
20 large small medium negative large (replan)
21 large small large negative small
22 large medium small positive large (replan)
23 large medium medium positive large (replan)
24 large medium large negative small
25 large large small positive small
26 large large medium positive small
27 large large large zero
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Figure 5. Membership function for input 1 of fuzzy inference system.
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4. Results and Analysis
4.1. Experimental Settings

In order to systematically evaluate the potential of the proposed exploration planner,
simulations in different scenarios have been performed. For simulation environments, a
small-scale maze map, a medium-scale map and a large-scale map in different environments
based on the Gazebo simulator [44] are selected to test the performance of the proposed
method in different scales and environments, which are shown in Figure 8. The Gazebo
simulator is used to provide the environment model, and the RotorS simulator [45] is used
to provide the parameters of the MAV (see Figure 9), as well as the ground truth. All the
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experiments were run on a laptop with Intel Core i7-10750H at 2.6 GHz. The experiments
are repeated 10 times in each environment. Scenarios of different sizes are considered.
The proposed algorithm is compared to the NBVP approach [22] and ORB-SLAM3 [12] is
adopted to evaluate the accuracy of localization when MAV is carrying out a task. Similar
to [22], the parameter λ in Equation (1) is set to 0.5.

(a)

(b)

(c)

Figure 8. Scenarios in different environments: (a) small-scale, (b) medium-scale, (c) large-scale.
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(a)

(b)

Figure 9. MAV in Gazebo simulator: (a) small-scale and (b) large-scale.

4.2. Results in Different Scenarios

In this section, we evaluate the localization accuracy after the adoption of the proposed
active loop closing planning method when compared to the NBVP method, together with
the comparison of real-time performance and the influence of different flight speeds on
localization accuracy when following the planned path in different scenarios. The size of
scenario 1 (Figure 8a) is about 15 m × 12 m × 3 m, the size of scenario 2 (Figure 8b) is about
50 m × 40 m × 10 m and the size of scenario 3 (Figure 8c) is about 80 m × 60 m × 12 m. In
this work, scenario 1 is a small-scale scenario, and scenarios 2 and 3 are medium-scale and
large-scale scenarios, respectively. The comparison of real-time performance in different
scenarios can be seen in Table 2. Table 3 shows the quantitative evaluation in the small-scale
scenario with different flight speeds. The results in Table 3 are for the small-scale scenario.
Table 4 shows the quantitative evaluation in different scenarios.

Table 2. Comparison of time-consuming performance in different scenarios (v = 0.2 m/s).

Sequence
Planning Time Active Loop Closing Time Planning Times Total Time Spent

NBVP ALCP NBVP ALCP NBVP ALCP NBVP ALCP
(s) (s) (s) (s) (s) (s)

small-scale 0.30 0.32 / 0.35 101 95 361.8 385.6
medium-scale 0.31 0.35 / 0.55 465 453 1161.8 1235.6

large-scale 0.35 0.41 / 0.69 851 783 1779.8 1865.2

Figures 10 and 11 show the trajectory error evaluated by ORB-SLAM3 in different
scenarios. The dashed line represents the groud truth obtained from the Gazebo simulator,
and the blue line represents the state estimation results obtained by ORB-SLAM3. The
poor localization performance in the small-scale scenario is due to the fact that the scenario
consists mainly of walls and is not rich in texture information. Figures 12–14 present the
exploration results of different scenarios. The green lines in the figure represent the planned
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path. As can be seen from Tables 1–4, we can find that in terms of the time required for one
path planning session, the time spent on ALCP is a little bit more than that on the NBVP.
The time spent on active loop closing is similar to that on path planning. The scenario,
together with flight speed, will affect the performance of the localization, which will be
discussed in detail in Section 5. The selection of the active loop closing check threshold
will be discussed as well.

Table 3. Comparison of absolute trajectory RMSE and mean error with different flight speeds.

Speed
NBVP ALCP

RMSE Mean RMSE Mean
(m) (m) (m) (m)

v = 0.2 m/s 3.25 2.56 3.21 2.87
v = 0.5 m/s 3.02 2.32 3.44 2.70
v = 0.8 m/s 4.89 3.66 4.19 3.52
v = 1.2 m/s 3.85 3.48 3.75 3.27
v = 1.5 m/s 10.56 5.05 3.36 2.82

Table 4. Comparison of absolute trajectory RMSE and mean error in different scenarios (v = 0.2 m/s).

Scenarios
NBVP ALCP

RMSE Mean RMSE Mean
(m) (m) (m) (m)

small-scale 3.25 2.56 3.21 2.87
medium-scale 2.32 1.78 1.00 0.91

large-scale 4.89 3.66 3.45 3.49

Figure 10. Trajectory of ORB-SLAM3 in the small-scale scenario.
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Figure 11. Trajectory of ORB-SLAM3 in the medium-scale scenario.

Figure 12. Exploration result in different environments (small-scale).
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Figure 13. Exploration result in different environments (middle-scale).

Figure 14. Exploration result in different environments (large-scale).

5. Discussion

In this section, we mainly discuss the real-time performance of the active loop closing
planning method and influence of different active loop closing check threshold selection
strategies, together with the comparison of the localization accuracy in different scenarios
and different flight speeds mentioned in Section 4.

5.1. Comparison of Real-Time Performance

The time spent on ALCP is a bit more than that on NBVP. The average time spent on
active loop closing is similar to that on path planning. It means the active loop closing
does not significantly degrade the real-time performance system. However, we find that in
large-scale scenarios, the loop closing check takes longer and longer due to the increasing
number of key waypoint candidates during the system execution.

5.2. Comparison of Different Active Loop Closing Check Threshold Selection Strategies

Different active loop closing check threshold selection (such as after every 10, 15, 25, 25,
30 path planning iterations) will influence the performance of the localization. The higher
the frequency of active loop closing, the smaller the localization error. However, as more
loops are detected, the total time spent on exploration becomes longer. As the loop closing
frequency decreases, the contribution of the active loop closing will become weaker, and
the performance of the ALCP planner will be close to the NBVP planner. Table 5 shows the
results of different active loop closing check threshold selection strategies in a small-scale
scenario.
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Table 5. Comparison of different active loop closing check threshold selection strategies (v = 0.2 m/s).

Check Frequency
ALCP

RMSE Mean Planning Times Total Time Spent
(m) (m) (s)

Every 10 path planning 2.94 1.89 113 484.7
Every 15 path planning 3.01 1.94 106 448.3
Every 20 path planning 3.25 2.56 95 385.6
Every 25 path planning 3.21 2.58 92 376.4
Every 30 path planning 3.86 2.73 101 370.2

5.3. Comparison of the Localization Accuracy in Different Scenarios

In terms of localization accuracy, the active loop closing path planning method differs
in its ability to adapt to different scenarios. One of the reasons for this is, of course, the
nature of the SLAM algorithm. Scenario 1 consists mainly of walls, and although ORB-
SLAM3 is able to extract feature points for localization and mapping, the lack of rich texture
features results in poor localization accuracy, even though the active loop closing strategy
is adopted. In scenario 2, the accuracy is much better due to the rich texture information.
As the flight speed increases, the localization accuracy without active loop closing will be
slightly worse than that with active loop closing during the planning, but it is not the main
factor. However, the small-scale scenario in the experiments consists mainly of walls and
is not rich in texture information. It is not good for the localization performance of the
SLAM system. So, the performance is poor even with active loop closing. Moreover, in the
small-scale scenario, the increase in speed is also not good for localization because when
MAV moves, the surrounding keypoints will change, keypoint matching is difficult. As the
flight speed becomes faster, once the localization is lost or there is a large error in the state
estimation, it is difficult for the localization error to converge quickly in a short period of
time without active loop closing, which can lead to large error fluctuations or even failure
of the feature-based SLAM algorithm. Notice that, in this work, we combine path planning
and SLAM, and we pay more attention to localization performance instead of coverage rate
during the exploration.

6. Conclusions

A perception-aware path planner, the Active Loop Closing Planner (ALCP), in dynamic
environments using Micro-Aerial Vehicles is presented in this paper. The combination
of path planning and active loop closing makes the system an active SLAM system. The
planned trajectories can deal with obstacles in both static and dynamic unknown environ-
ments while active loop closing is beneficial to reduce uncertainty in the SLAM system and
further improve the accuracy of localization. During the path planning, the loop closing
cost is proposed to improve the gain cost function, and it takes the loop closing possibility
into account. In addition, a key waypoints selection strategy is designed to list selected key
waypoints, instead of all waypoints, as potential loop closing points to make the algorithm
more efficient. In addition, a fuzzy-RRT-based dynamic obstacle avoidance algorithm is
adopted to realize obstacle avoidance in dynamic environments. Simulations in different
challenging scenarios are conducted to verify the localization accuracy of the proposed
active loop closing path planning based SLAM algorithm.
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