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Abstract

:

Infrared hyperspectral remote sensing has been widely used in the field of meteorology. Many scientists have carried out research on inversion methods of meteorological elements such as thermodynamic profile, boundary layer height, cloud base height, etc. In this study, a method based on machine learning for cloud detection using ground-based infrared hyperspectral radiation data is proposed. The features of outliers, the cloudy and cloud-free data of Atmospheric Emitted Radiance Interferometer (AERI) radiation are extracted. The “reference values” of cloudy and cloud-free are determined based on the observation data of Vaisala CL31 ceilometer within the time range of 8 min before the corresponding time of AERI. A support vector machine (SVM) algorithm is used for training. The dataset comes from the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site and North Slope Alaska (NSA) site from 2015 to 2017, and the ARM West Antarctic Radiation Experiment (AWARE) site in 2016 is also analyzed. The instruments used in this paper include AERI, ceilometer, etc. The experimental results reveal that the agreement of cloud detection results between the proposed algorithm and ceilometer is about 93% at each site. However, for high clouds or optically thin clouds, the agreement will decrease.
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1. Introduction


Hyperspectral remote sensing was first proposed in the 1970s, and further developed by geologists and geophysicists [1,2]. Compared with multispectral remote sensing, hyperspectral remote sensing can acquire many, narrow, contiguous spectral bands and had higher spectral resolution [3]. In addition, it can provide a more in-depth examination of features and details on Earth [4]. Therefore, hyperspectral remote sensing has been widely used in the field of meteorology. Hyperspectral sensors on satellites can provide data covering the globe on a regular basis, containing valuable information on atmospheric temperature and humidity profiles, greenhouse gases, clouds, and other near-surface characteristics [5]. Since the 1990s, satellite-based infrared hyperspectral sounders have been developed, including the polar-orbiting Interferometric Monitor for Greenhouse Gases (IMS) [6], the grating-based Atmospheric Infrared Sounder (AIRS) on Aqua [7,8], the first operational interferometer called Infrared Atmospheric Sounding Interferometer (IASI) on Meteorological Operation (MetOp) [9], and the Cross-Track Infrared Sounder (CrIS) on the Suomi National Polar-Orbiting Partnership (Suomi NPP) satellite (replacing NOAA’s legacy broadband IR sounder, HIRS) [10,11]. In addition, China has also developed its own infrared hyperspectral sounder named Geostationary Interferometric Infrared Sounder (GIRRS) which was launched by FengYun-4 (FY-4) [10,12].



Satellite-based infrared hyperspectral remote sensing has wide space coverage and high horizontal resolution, but it is significantly affected near the surface. Contrarily, the ground-based sounder receives the atmosphere downward radiation that is less affected by the surface. In 1988, at the Ground-based Atmospheric Profiling Experiment (GAPEX), Smith and Frey placed a High-resolution Interferometer Sounder (HIS) on the ground to observe the sky, which revealed the feasibility of ground-based sounder to detect the temperature and humidity of the lower atmosphere [13,14]. On the basis of HIS, the first Atmospheric Emitted Radiance Interferometer (AERI) instrument was designed and fabricated to measure the atmospheric downward infrared radiation on the earth’s surface with high absolute accuracy in 1989 [15].



At present, AERI radiation observations have been used in a wide range of scientific applications including improving infrared radiative transfer models [16,17], measuring the boundary layer height [18], detecting characteristics of aerosols and dust in troposphere [19], and retrieving the content of ozone and other trace gases [20,21]. Moreover, it can also carry out cloud remote sensing including cloud phase [22], cloud-based height [23], effective cloud emissivity [24], and cloud microphysical parameters [25,26]. It is worth noting that the AERI observations are sensitive to the evolution of the thermodynamic profile in the boundary layer below 3 km [27]. Therefore, AERI can detect the temperature and humidity profiles near the ground by observing the radiation spectrum [28,29], and the corresponding value-added product which AERIPROF has formed [30]. Before these applications, cloud detection is necessary. However, cloud detection currently needs to be realized with the assistance of ceilometer [31] or lidar [32].



In fact, the atmospheric downward infrared hyperspectral radiation data contain information that can distinguish between cloudy and cloud-free conditions [33]. In recent years, based on typical cloud-free measurement data, Joon-Sik Cho et al. used ±60% of the 760–1000 cm−1 radiation data as the threshold to judge the cloudy condition of AERI measurement results [34]. However, this method had some limitations, because the absolute radiation value was prominently affected by the atmospheric conditions. They further selected the typical cloud-free data of four seasons as the cloud-free threshold, but still cannot completely solve this problem. Rizzi et al. studied the cloud detection method based on the bright temperature difference (BTD) of different channels obtained by the FTS REFIR-Prototype for Applications and Development (REFIR-PAD) at Dome C, Antarctica [35]. The above two methods only achieve the application of cloud detection at a single site, and the applicability to other sites has not been confirmed. In addition, there may be outliers in the ground-based infrared hyperspectral measurement radiation, which are difficult to be eliminated by the above methods. To alleviate those issues, our primary goal in this paper is to define a novel cloud detection method with high accuracy and high generality in different sites and which is less affected by precipitable water vapor (PWV). The cloud detection algorithm is complementary to the above methods. In this paper, we use the spectral features of AERI in a specific region to distinguish cloudy and clear-free spectra based on the support vector machine (SVM).



This paper is organized as follows. Section 2 proposes the features of outliers of AERI and establishes cloudy and cloud-free dataset. Section 3 describes the cloud detection method by SVM algorithm. Section 4 is the core of this study which evaluates the performance of the proposed method and gives uncertainty estimates. Finally, the conclusion and outlook are presented in Section 5.




2. Data Set


2.1. Instrument


The atmospheric downward infrared hyperspectral data is from AERI. It is a ground-based Fourier Transform Spectrometer (FTS) with 8 min of temporal resolution in normal sampling mode which is designed by the University of Wisconsin Space Science and Engineering Center (UW-SSEC) for the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program [36]. AERI has a spectral measurement range between 520 and 3300 cm−1 with a spectral resolution of 0.5 cm−1 and the field-of-view of this instrument is 1.3° [37]. The design of AERI system has enabled the ARM program to deploy it in all permanent sites, including the SGP site (36°36′N, 97°29′W) and the NSA site (71°19′N, 156°36′W) [38,39]. Additionally, it is also deployed in many mobile sites, for example the ARM West Antarctic Radiation Experiment Field Campaign taken place in 2016 (AWARE site, 77°51′S, 166°40′E) [18,19,40]. The data of this paper are collected at the ARM SGP site and NSA site from 1 January 2014 to 31 December 2017. The data of AWARE site in 2016 has also been applied.



Vaisala CL31 ceilometer is an all-weather automatic device with a 10 kHz pulsed indium gallium arsenide (InGaAs) diode laser. It transmits near-infrared pulses of light at 910 ± 10 nm with a pulse width of 100 ns [41]. Ceilometer receives the signal scattered by cloud, rain, dust, and fog, and it produces a 7700 m vertical backscattering profile with 10 m range gates every 16 s [42]. Over the whole measurement range, the signal is strong and stable to make good quality of the received signal [43].



Total Sky Imager Model (TSI-660) is an automatic daytime imager. It can provide time series of hemispheric sky images during daylight hours at 30 s sampling interval [44]. Particle size and velocity disdrometer (Parsivel2; manufactured by Ott Hydromet GmbH at Kempten, Germany) can directly measure the particle size and obtain the derived parameters such as radar reflectivity and particle number density with an interval of 1 min [45]. Microwave radiometer (MWR) Retrieval (MWRRET) value-added product can provide PWV data every 20 s [46]. Radiative Flux Analysis (RADFLUXANAL) Value-Added Product based on the longwave downward radiation [47] can provide cloud optical depths (COD) every 20 s during daytime.




2.2. Data Quality Control


The instrument may produce some outliers in the process of measurement. When AERI obtains outliers, the measurement cannot be used for cloud detection. According to the spectral features of the obvious outliers, we divide the outliers into four cases (see Figure 1). In Figure 1a, there are many negative radiations in the spectrum which may be a sign of measurement problems. In Figure 1b, the AERI spectrum is similar to smooth curve. The possible cause may be that the hatch of AERI is closed during precipitation events that makes sensors unable accept the downward infrared radiation data from the atmosphere [48]. When the temperature of ambient and hot blackbodies of AERI is unstable, the measurements may generate excessive noise [36,37] which is shown in Figure 1c,d. For the purpose of comparison, we show two typical ideal examples without noise in Figure 1e,f. Excessive noise can be eliminated by setting the threshold of standard deviation in specific spectral channels. Based on the features of outliers, five feature parameters are extracted as the conditions for judging outliers of AERI which are shown in Table 1.




2.3. Cloudy and Cloud-Free Data Set


After data quality control, the training set and testing set are established. The specific steps are as follows



	
After eliminating the outliers, we perform time-matching between the Vaisala CL31 ceilometer and AERI to obtain the sample set Q1. The observation period of AERI is 8 min, and the spectrum obtained by AERI can reflect the average state of the atmosphere or cloud in the previous 8 min. Therefore, we find the data of ceilometer within the time range of 8 min before the corresponding time of AERI.



	
We use the data obtained from ceilometer to define the measurement of AERI if cloudy or cloud-free. If more than 95% of the ceilometer data shows cloudy or cloud-free, the AERI data at the corresponding time is also judged cloudy or cloud-free to establish the sample set Q2.



	
The Q2 sample sets of 2014 at SGP site, 2014 at NSA site, and one-third of cloudy data (about 6000 groups) and cloud-free data (about 6000 groups) randomly selected from AWARE site in 2016 are taken as the training set, which are recorded as Q2_Train_SGP, Q2_Train_NSA, and Q2_Train_AWARE, respectively. To maintain the sample balance of the training set, we randomly selected 6000 groups of cloudy data and 6000 groups of cloud-free data from SGP site and NSA site and put them into the training set. Data from 2015 to 2017 at the SGP and NSA sites, and the rest of the data from the AWARE site, are used as the testing set. The data information is shown in Table 2.








3. Method


3.1. Features of Cloudy and Free-Free Conditions


The measurement data of Q2_Train_SGP, Q2_Train_NSA and Q2_Train_AWARE is selected to summarize the features in distinguishing between cloudy and cloud-free scene. Here, we take the cloud-free spectra at 1743 Coordinated Universal Time (UTC) on 21 January 2016 of AWARE site, 1006 UTC on 3 February 2014 of SGP site, and 2112 UTC on 13 January 2014 of NSA site, and the cloudy spectra at 0929 UTC on 21 January 2016 of AWARE site, 2006 UTC on 3 February 2014 of SGP site, and 1224 UTC on 13 January 2014 of NSA site as examples, as shown in Figure 2. The echo maps of ceilometer in Figure 2b,c are used to show the situations of sky at the corresponding times, which are given in Figure 2a. It can be seen that the cloudy spectrum corresponds to the time when the ceilometer shows strong backscattered signal, while the cloud-free spectrum corresponds to the time when the backscattering of ceilometer is weak. According to the two kinds of spectra, there are 12 features selected to distinguish cloudy or cloud-free scenes which are shown in Table 3 and Figure 2a.



However, the slope and intercept of fitting line in 780–920 cm−1 band radiation are particularly noteworthy. There are many peaks in this range, and the slope and intercept of the fitting line cannot directly reflect the cloud-free spectrum. The range is divided into eight small wavebands, and then we calculate the mean radiation values of these small bands. The final slope and intercept of the fitting line are obtained by fitting the average radiation of each small band. The eight small wavebands are as follows: 780–783 cm−1, 786–790 cm−1, 815–820 cm−1, 830–835 cm−1, 842–846 cm−1, 857–864 cm−1, 895–900 cm−1, and 915–920 cm−1 (Purple background parts in Figure 2a).



The average value ( u ) and standard deviation ( σ ) of the 12 features of the training set and testing set are further calculated. The features of the training set and testing set are normalized from 0 to 1 in Equation (1) as follows [49].


   F  n o r  m i    = (  F i  −  u i  ) /  σ i   



(1)




where  F  is the corresponding feature in Table 3 used for training, and    F  n o r m     denotes the normalized feature.  i  is the serial number from 1 to 12.



In order to know how the single inputs influence accuracy of the classification, we use the random forest algorithm to calculate the “Gini importance” of each input in the training set to obtain the weights of different inputs for cloud detection which is shown in Figure 3 [50]. As can be seen from Figure 3, feature 1 and feature 2 have the largest weight among the 12 features used for classification. Therefore, the slope and intercept of 740–760 cm−1 band radiation play the most important role on the classification between cloudy and cloud-free samples. Furthermore, to improve the accuracy of the algorithm, reduce the risk of overfitting, and reduce the calculation time of the model, we need to determine the best input. In Section 3.3, according to the ranking of feature weights in Figure 3, we select 1 to 12 features as input to build the cloud detection model so as to determine the best input features.




3.2. Validation Methods


In this paper, we use 2 × 2 confusion matrix (Table 4) to analyze and calculate the testing results [51]. The percent correct (PC) describes the amount of agreement between the proposed algorithm and the ceilometer detection method, as follows.


  P C = ( T P + T N ) / ( T P + F P + F N + T N ) × 100 %  



(2)







True positive rate (TPR) can give the proportion of the cloudy data detected by AERI to the cloudy data detected by ceilometer. It can be used to describe the sensitivity of the proposed algorithm for cloudy data detection, as follows.


  T P R = T P / ( T P + F N ) × 100 %  



(3)







Similarly, true negative rate (TNR) can give the proportion of the cloud-free data detected by AERI to the cloud-free data detected by ceilometer. It can be used to describe the sensitivity of the proposed algorithm for cloud-free data detection, as follows.


  T N R = T N / ( F P + T N ) × 100 %  



(4)








3.3. Cloud Detection Algorithm


Using AERI measurement data for cloud detection can be regarded as a classification problem. In this paper, the SVM algorithm is applied. SVM is an effective tool to solve small sample, nonlinear, high dimensional problems. The core idea of SVM is to use the classification hyperplane as the basis of discrimination to achieve the maximum degree of classification [52]. The main process of establishing a cloud detection algorithm is as follows (Figure 4)




	
According to the ranking of feature weights in Figure 3, we select a specific number of features in order from 1 to 12. The reselected features are used as the input of SVM algorithm, while the cloud detection results of ceilometer are used as reference values.



	
For each of Q2_Train_AWARE, Q2_Train_SGP, and Q2_Train_NSA 1000 groups of cloudy data and 1000 groups of cloud-free data are randomly selected to form the training set (P1); the remaining data are used as the validation set (See Appendix A).



	
Substitute P1 into the SVM algorithm to build cloud detection model. The kernel parameter g and penalty factor C are obtained by using grid search method [53]. Furthermore, the radial basis function (RBF) kernel is applied. The range of C and g is 2−8–28, and the search step is 20.8. The cloud detection model is built according to each pair of g and C searched. Then, obtain the classification results of the validation set based on the cloud detection model.



	
Determine the best g and C to obtain the best cloud detection model. We calculate the accuracy of the validation set corresponding to every model. The mode with the maximum accuracy is considered as the best cloud detection model.



	
Judge whether the number of features in step 1 is greater than 12. If not, repeat steps 1, 2, 3, and 4.



	
We compare the detection models corresponding to different input features to further determine the final cloud detection model. The corresponding input features are used as the best training features. Table 5 displays the accuracy of the validation set (PC) and the ability in detecting cloudy data (TPR) and cloud-free data (TNR) of the cloud detection model corresponding to the number of features from 1 to 12, respectively. The PC of the model increases with the increase in the number of features. However, when the number of features is greater than 9, the accuracy of the model decreases slightly, which may be caused by the redundancy between features. At the same time, TPR and TNR are close to the maximum when the number of features is 9. This shows that the model has the best detection performance when the number of inputs is 9. Therefore, we finally selected the best training features of features 1, 2, 3, 4, 6, 7, 8, 9, and 10 in Table 3. The corresponding penalty factor C and kernel function g are 5.278 and 1.741, respectively.



	
Use the final cloud detection model to obtain the cloud detection results from testing set.










4. Results and Discussion


This section uses the cloud detection algorithm which is introduced in Section 3.3 to classify the testing set. Table 6 displays the percent correct, true positive rate, and true negative rate of the classification results between the cloud detection algorithm and the ceilometer detection method. The PC between our method and the ceilometer detection method is about 93%, and the performance of the proposed algorithm is excellent. It also displays high generality with similar high accuracy obtaining at SGP site, NSA site, and AWARE site. The TPR between these methods is more than 92%, which means the proposed method can distinguish more than 92% of cloudy event. Simultaneously, the proposed method can also detect about 92% of cloud-free events (TNR ≈ 92%). Nevertheless, the proposed algorithm misjudges in some cases. We further divide the samples with inconsistent classification between the proposed algorithm and ceilometer detection into two categories. Category (1): AERI detects cloud-free, but ceilometer detects cloudy. Category (2): AERI detects cloudy, but ceilometer detects cloud-free (Table 6). To better understand the performance of cloud detection based on AERI measurement data, we will run analyses in different precipitable water vapors (PWV), different cloud-base height ranges, and different CODs. At the end of this section, we also evaluate the accuracy of the proposed algorithm under the conditions of mist, thick fog, and blowing snow under clear sky.



4.1. Performance Evaluation in Different PWVs


Water vapor molecules have a strong attenuation effect on infrared radiation in the water vapor absorption band, which interferes with AERI measurement data on cloud detection [54]. Finding a cloud detection algorithm which is less affected by water vapor is also the purpose of this paper. Therefore, before selecting features for distinguishing cloudy or cloud-free cases, we list the water vapor absorption bands which are as follows: 538–588 cm−1 and 1250–1350 cm−1 [55]. We therefore avoid these channels in the selected features in Table 3. MWRRET Value-Added Product gives PWV data every 20 s, and we perform time-matching between AERI and this product. According to the distribution of PWV, PWV is divided into three ranges, PWV < 1, 1 ≤ PWV ≤ 2.5, and 2.5 < PWV. The proportion between the data in the selected range and the total data is given in parentheses in Table 7. Compared with the SGP site, PWV in polar regions is significantly lower, especially at the AWARE site in Antarctica in which the PWV is always less than 1 cm. The PC between the proposed algorithm and ceilometer detection method changes slightly under different PWVs, as shown in Table 7. Therefore, the cloud detection algorithm is not significantly affected by different PWVs and has a high recognition rate for clouds in high humidity or low humidity.




4.2. Performance Evaluation in Different Cloud-Base Height Ranges


Figure 5 displays the proportion of total data, the data classified consistently by the AERI and ceilometer (consistent data) and category (1) under different cloud-base height ranges at SGP site, NSA site, and AWARE site. In category (2), the ceilometer detects the data as cloud-free, which results in the distribution of cloud-base height of category (2) not being displayed in Figure 5. The NSA site and AWARE site are located in polar regions. Compared with the SGP site (mid-latitude region), their cloud is lower and the cloud-base height is basically distributed below 4000 m. The cloud-base height of SGP site is relatively evenly distributed at different heights, and only the proportion of clouds below 1000 m is slightly larger. However, the proportional distribution of category (1) is very different from the total data. The data of category (1) are mostly concentrated above 4000 m in the SGP site, while the proportion below 3000 m is less. At the NSA and AWARE sites, the proportion of high cloud in category (1) is also significantly higher than that of the total data. This therefore means that the detected effect of AERI for lower clouds is better than that for higher clouds. This is consistent with the statistical results in Figure 5d. The proposed algorithm has high recognition ability for clouds below 4000 m (PC is greater than 90%), but for clouds above 6000 m, PC decreases significantly. In addition, the recognition accuracy of the proposed algorithm for high clouds at SGP sites is higher than that in polar regions. The reason for the different recognition effect of AERI on clouds with different heights may be that different types of clouds have different dimensions, opacities, and other properties [56]. In Figure 6a, we take the SGP site as an example on 1 January 2015 to compare the spectra corresponding to different cloud-base heights. The spectra with cloud-base heights at 1501 m (0357 UTC), 5685 m (0055 UTC), and 6514 m (0007 UTC), and the spectrum of cloud-free (0237 UTC) are selected. Figure 6b displays the backscattered echo of ceilometer at the time corresponding to the spectra of Figure 6a. The atmospheric downward infrared hyperspectral radiation is significantly strong under low cloud. Contrarily, the downward radiation is small under high cloud, which almost coincides with the cloud-free scene. Therefore, the recognition data of AERI for high clouds is reduced.




4.3. Performance Evaluation in Different CODs


The temporal resolution of CODs from RADFLUXANAL Value-Added Product is about 20 s, and we perform time-matching between AERI measurement data and CODs. As shown in Figure 7, it can be seen that the distribution of total data and consistent data is basically the same, while the distribution of category (1) is basically concentrated during small COD. Compared with the SGP site, the COD in polar regions is smaller. At the AWARE site, in particular, the COD is no more than 10. Figure 7d displays that the proposed algorithm maintains a high accuracy at the AWARE site under any COD (PC is about 95%). At the SGP site, the proposed algorithm is significantly related to COD. When the COD is less than 5, PC will drop below 80%, making it difficult to realize accurate identification of cloud. According to Section 4.2 and Section 4.3, we find that optical thin clouds and high clouds will lead to the proposed algorithm misjudging cloudy as cloud-free at the SGP site. Although the proposed algorithm has good recognition ability for optical thin clouds in polar regions, it is not ideal for high clouds. The recognition performance of AERI for different type of clouds may be related to the proportion of different cloud-base heights and different CODs in the training set at different sites.




4.4. Case Studies


The above sections analyze the situation that the proposed algorithm does not detect the cloud. In fact, the proposed algorithm also recognizes some cloud-free scenes as cloudy. It may be closely related to the occurrence of fog, blowing snow (polar regions), and other phenomenon. The Antarctic Meteorological Research Center (AMRC) at the University of Wisconsin-Madison provides the weather phenomena recorded by human observers at McMurdo Station in three-hour periods [57]. Human observers reported mist, thick fog, and blowing snow in clear sky on 1900 UTC to 2100 UTC on 14 December, 1500 UTC to 1800 UTC on 9 October, and 2200 UTC to 2400 UTC on 8 April, respectively.



4.4.1. Mist: 14 December


On 14 December, there was mist with a thickness of nearly 200 m from 1900 UTC to 2100 UTC. The backscattering of ceilometer was relatively strong at the corresponding time. The TSI image reveals the situation of clouds in the sky, and we can see that it is cloud-free during that time. The proposed algorithm does not recognize mist as cloudy. Therefore, mist has little effect on the cloud detection accuracy of the proposed algorithm (Figure 8).




4.4.2. Thick Fog: 9 October


On 9 October, AWARE site was experiencing thick fog between 1500 UTC and 1800 UTC. The TSI image shows that it was cloud-free during this time period, but the visibility was very poor. The low-level backscattering of ceilometer was extremely strong, indicating that the particle number density of fog is large. Thick fog significantly increases the infrared radiation of the atmosphere received by AERI, which lead to the proposed algorithm judging the thick fog to be cloudy (Figure 9).




4.4.3. Blowing Snow in Clear Sky: 8 April


At about 1900 UTC on 8 April (black dotted line in Figure 10), the cloud detection result of ceilometer was cloud-free, but the proposed algorithm recognized it as cloudy. Human observers recorded blowing snow under clear sky during this time period. The ceilometer has strong backscattering at low level, and parsivel2 reveals that the particle number density is exceeding 26 m−3mm−1. The proposed algorithm misjudges the blowing snow layer near the ground as cloudy.






5. Conclusions


The purpose of this paper is to reveal the potential of the machine learning approach for a fast, universal, and automated cloud detection algorithm. We use AERI measurement data from the SGP site, NSA site, and AWARE site to build a cloud detection algorithm based on the support vector machine (SVM) algorithm, and we select the features except the water vapor sensitive channels to avoid the interference caused by water vapor. By testing the data of the ARM SGP site and NSA site from 2015 to 2017, and the rest of the data of AWARE site in 2016, the testing results are compared with the data measured by ceilometer. The percent correct between cloud detection algorithm and ceilometer detection is about 93% every year at each site. The accuracy of the cloud detection algorithm indicates that the cloudy and cloud-free samples can be detected accurately based on the selected features. Simultaneously, the proposed algorithm has high generality in detecting cloud scenes at different sites. However, the experimental results show that the ability of the proposed algorithm to detect high clouds and optical thin clouds at SGP sites decreases, while it struggles to accurately detect high clouds in polar regions. This may be related to the proportion of different clouds in the training set. The proposed algorithm can accurately distinguish whether it is cloudy or cloud-free in the presence of mist. However, if there is thick fog or blowing snow, the proposed algorithm cannot achieve cloud detection. In future research, we will appropriately increase the samples of high clouds and the optical thin clouds to improve the recognition rate of the proposed algorithm for high clouds and optical thin clouds. We will also compare the proposed algorithm with the cloud detection results of millimeter wave cloud radar to further verify the accuracy.
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Appendix A. Number of Samples Selected for Training


In order to determine the optimal number of samples for training in the training set, each of Q2_Train_AWARE, Q2_Train_SGP, and Q2_Train_NSA are, respectively, used to randomly select 200, 500, 1000, 2000, 3000, 4000, and 5000 groups of cloudy data and cloud-free data for training. According to the training features in Table 3, Table A1 reveals the classification results of testing set based on the proposed algorithm under different numbers of samples for training. It can be seen that when the number of training sets is small, the accuracy of the model will increase with the expansion of the training set. However, when the number of training samples reaches a certain number, the accuracy of the test set changes little. Considering the accuracy of the model and the time cost of training, 1000 groups of cloudy and cloud-free data from Q2_Train_AWARE, Q2_Train_SGP, and Q2_Train_NSA are selected for training (a total of 6000 groups).
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Table A1. The classification results of testing set based on the proposed algorithm under different number of samples for training. The value below PC indicates the number of samples used for training.






Table A1. The classification results of testing set based on the proposed algorithm under different number of samples for training. The value below PC indicates the number of samples used for training.





	
Site

	
Data Set

	
PC (%)

1200

	
PC (%)

3000

	
PC (%)

6000

	
PC (%)

12,000

	
PC (%)

18,000

	
PC (%)

24,000

	
PC (%)

30,000






	
SGP

	
Q2_Test2015_SGP

	
87.16

	
91.30

	
94.50

	
94.83

	
94.99

	
95.13

	
95.15




	
Q2_Test2016_SGP

	
85.99

	
89.75

	
93.23

	
93.36

	
93.50

	
93.61

	
93.62




	
Q2_Test2017_SGP

	
86.81

	
90.66

	
94.04

	
94.25

	
94.38

	
94.46

	
94.49




	
NSA

	
Q2_Test2015_NSA

	
87.11

	
90.36

	
93.70

	
94.33

	
94.45

	
94.47

	
94.49




	
Q2_Test2016_NSA

	
86.27

	
89.42

	
92.81

	
93.38

	
93.74

	
93.77

	
93.77




	
Q2_Test2017_NSA

	
85.86

	
89.08

	
92.49

	
92.97

	
93.17

	
93.21

	
93.25




	
AWARE

	
Q2_Test_AWARE

	
86.30

	
91.27

	
93.95

	
94.35

	
94.62

	
94.72

	
94.74
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Figure 1. Blue lines indicate the obvious outliers of AERI (a–d). Gray background parts represent the corresponding features in Table 1. Error-case1 can be found based on feature 5, error-case2 can be found based on feature 1 and feature 2, error-case3 can be found based on feature 1-4, and error-case4 can be found based on feature 3 and feature 4. Red lines show two typical ideal examples without noise (e,f). 
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Figure 2. (a) Comparison of typical cloud-free and cloudy spectra in the three sites. The background parts in (a) represent the corresponding features in Table 3. (b) Echo map of ceilometer on 21 January 2016 of AWARE site. (c) Echo map of ceilometer on 3 February 2014 of SGP site. (d) Echo map of ceilometer on 13 January 2014 of NSA site. 
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Figure 3. The weight of different features (F) in Table 3 for distinguishing cloudy data and cloud-free data in the training set. 
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Figure 4. Research process of the cloud detection algorithm based on AERI measurement data. 






Figure 4. Research process of the cloud detection algorithm based on AERI measurement data.



[image: Remotesensing 14 02589 g004]







[image: Remotesensing 14 02589 g005 550] 





Figure 5. The proportion of total data, consistent data, and category (1) under different cloud-base heights of total testing set at (a) SGP site, (b) NSA site, and (c) AWARE site. (d) The PC of SGP site, NSA site, and AWARE site under different cloud-base heights. 
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Figure 6. (a) Measurement of AERI under different cloud-base heights. (b) Backscattered echo of ceilometer from 0000 UTC to 0500 UTC on 1 January 2015. Background parts represent the corresponding time of the spectra in (a). 
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Figure 7. The proportion of total data, consistent data, and category (1) under different CODs of total testing set at (a) SGP site, (b) NSA site, and (c) AWARE site. (d) The PC of SGP site, NSA site, and AWARE site under different CODs. 
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Figure 8. (a) Backscattered echo of ceilometer from on 14 December 2016. Blue dotted line corresponds to 1900 UTC, red dotted line corresponds to 2000 UTC, and black dotted line corresponds to 2100 UTC. (b) TSI images at 1900 UTC, 2000 UTC, and 2100 UTC on 14 December 2016. 
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Figure 9. (a) Backscattered echo of ceilometer from on 9 October 2016. Blue dotted line corresponds to 1630 UTC, red dotted line corresponds to 1700 UTC, and black dotted line corresponds to 1800 UTC. (b) TSI images at 1630 UTC, 1700 UTC, and 1800 UTC on 9 October 2016. 
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Figure 10. (a) Backscattered echo map of ceilometer and (b) the average particle number density of parsivel2 on 8 April 2016. Black dotted line corresponds to 1900 UTC. 
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Table 1. Spectral features of obvious outliers corresponding to gray background parts in Figure 1. RU is the radiation unit (mWsr−1m−2 (cm−1)−1).
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	Number
	Features





	1
	The slope of 1000–1040 cm−1 band radiation is less than −0.2



	2
	The intercept of 1000–1040 cm−1 band radiation is greater than 300 RU



	3
	The standard deviation of 857–862 cm−1 band radiation is greater than 10 RU



	4
	The standard deviation of 894–902 cm−1 band radiation is greater than 5 RU



	5
	The number of the points with radiation less than 0 RU in 520–1800 cm−1 is more than 5










[image: Table] 





Table 2. Cloud detection database. The data in parentheses indicates 6000 groups of cloud-free samples and 6000 groups of cloudy samples of Q2_Train_SGP and Q2_Train_NSA for training after reselection.
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Site

	
Data Set

	
Total Samples

	
Cloud-Free Samples

	
Cloudy Samples






	
SGP

	
Q2_Train_SGP

	
51,074 (12,000)

	
35,497 (6000)

	
15,577 (6000)




	
Q2_Test2015_SGP

	
50,921

	
35,346

	
15,575




	
Q2_Test2016_SGP

	
53,478

	
38,288

	
15,190




	
Q2_Test2017_SGP

	
51,291

	
35,925

	
15,366




	
NSA

	
Q2_Train_NSA

	
34,829 (12,000)

	
14,304 (6000)

	
20,525 (6000)




	
Q2_Test2015_NSA

	
37,117

	
14,232

	
22,885




	
Q2_Test2016_NSA

	
31,840

	
12,160

	
19,680




	
Q2_Test2017_NSA

	
32,172

	
11,568

	
20,604




	
AWARE

	
Q2_Train_AWARE

	
12,000

	
6000

	
6000




	
Q2_Test_AWARE

	
32,573

	
17,732

	
14,841











[image: Table] 





Table 3. Twelve selected features for distinguishing cloudy or cloud-free data. Features 1, 2, and 5–12 correspond to the black background parts of Figure 2a, while features 3 and feature 4 correspond to the purple background parts.
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	Number
	Features





	1
	The slope of 740–760 cm−1 band radiation



	2
	The intercept of 740–760 cm−1 band radiation



	3
	The slope of 780–920 cm−1 band radiation



	4
	The intercept of 780–920 cm−1 band radiation



	5
	The slope of 1000–1040 cm−1 band radiation



	6
	The intercept of 1000–1040 cm−1 band radiation



	7
	The slope of 1050–1070 cm−1 band radiation



	8
	The ratio between 784.5 cm−1 band radiation and the average radiation in 781.5–782.5 cm−1 band



	9
	The ratio between 791.5 cm−1 band radiation and the average radiation in 789.2–790.2 cm−1 band



	10
	The ratio between 1174 cm−1 and 1170 cm−1 band radiation



	11
	The ratio between 1187 cm−1 and 1185 cm−1 band radiation



	12
	The ratio between 1198 cm−1 and 1195 cm−1 band radiation










[image: Table] 





Table 4. 2 × 2 confusion matrix of the comparison between our method and the ceilometer detection method. In this table, TP is the number of the events that the ceilometer reports cloudy and AERI reports cloudy. FP is the number of the events that ceilometer reports cloud-free but AERI reports cloudy. FN is the number of the events that ceilometer reports cloudy but AERI reports cloud-free. TN is the number of the events that ceilometer reports cloud-free and AERI reports cloud-free.
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Our Method

(AERI)

	
Ceilometer Detection




	
Cloudy

	
Cloud-Free






	
Cloudy

	
TP (True Positive)

	
FP (False Positive)




	
Cloud-free

	
FN (False Negative)

	
TN (True Negative)
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Table 5. The detection results of the validation set of the cloud detection model corresponding to the number of features from 1 to 12.
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	Number of Features
	PC (%)
	TPR (%)
	TNR (%)





	1
	84.78
	83.15
	86.41



	2
	87.02
	87.64
	86.40



	3
	88.39
	89.15
	87.63



	4
	89.41
	89.97
	88.85



	5
	90.54
	91.99
	89.08



	6
	91.36
	92.69
	90.02



	7
	91.62
	93.05
	90.18



	8
	92.26
	93.51
	91.01



	9
	92.79
	93.51
	92.07



	10
	92.74
	93.55
	91.92



	11
	92.72
	93.46
	91.99



	12
	92.72
	93.37
	92.06
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Table 6. The classification results of testing set based on the proposed algorithm.
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Site

	
Data Set

	
Total Samples

	
PC (%)

	
TPR (%)

	
TNR (%)

	
Category (1)

	
Category (2)






	
SGP

	
Q2_Test2015_SGP

	
50,921

	
94.50

	
92.73

	
95.28

	
1133

	
1667




	
Q2_Test2016_SGP

	
53,478

	
93.23

	
91.91

	
93.75

	
1228

	
2392




	
Q2_Test2017_SGP

	
51,291

	
94.04

	
92.61

	
94.65

	
1136

	
1922




	
NSA

	
Q2_Test2015_NSA

	
37,117

	
93.70

	
94.22

	
92.86

	
1322

	
1016




	
Q2_Test2016_NSA

	
31,840

	
92.81

	
93.38

	
91.88

	
1301

	
987




	
Q2_Test2017_NSA

	
32,172

	
92.49

	
92.95

	
91.67

	
1452

	
964




	
AWARE

	
Q2_Test_AWARE

	
32,573

	
93.95

	
94.76

	
93.27

	
778

	
1193
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Table 7. Consistency between the cloud detection results derived by AERI and ceilometer at different sites under different PWV ranges. The percentage in parentheses indicates the proportion between the data in the selected PWV range and the total data in the corresponding years of different sites.






Table 7. Consistency between the cloud detection results derived by AERI and ceilometer at different sites under different PWV ranges. The percentage in parentheses indicates the proportion between the data in the selected PWV range and the total data in the corresponding years of different sites.





	
Site

	
Different PWV (cm)

	
2015 PC (Proportion %)

	
2016 PC (Proportion %)

	
2017 PC (Proportion %)






	
SGP

	
<1

	
96.22 (20.63%)

	
93.22 (24.58%)

	
95.78 (20.74 %)




	
1–2.5

	
93.51 (37.37%)

	
94.07 (37.97%)

	
94.48 (43.23%)




	
>2.5

	
94.43 (42.00%)

	
92.11 (37.45%)

	
92.80 (36.03%)




	
NSA

	
<1

	
93.73 (66.83%)

	
95.27 (70.22%)

	
94.06 (62.46%)




	
1–2.5

	
97.76 (32.43%)

	
95.01 (27.86%)

	
97.99 (33.85%)




	
>2.5

	
97.66 (0.74%)

	
95.09 (1.92%)

	
97.91 (3.68%)




	
AWARE

	
<1

	

	
95.09 (100%)

	




	
1–2.5

	
NaN




	
>2.5

	
NaN
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