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Abstract: Fine particulate matter (PM2.5) is a harmful air pollutant that seriously affects public health
and sustainable urban development. Previous studies analyzed the spatial pattern and driving factors
of PM2.5 concentrations in different regions. However, the spatiotemporal heterogeneity of various
influencing factors on PM2.5 was ignored. This study applies the geographically and temporally
weighted regression (GTWR) model and geographic information system (GIS) analysis methods to
investigate the spatiotemporal heterogeneity of PM2.5 concentrations and the influencing factors in
the middle and lower reaches of the Yellow River from 2000 to 2017. The findings indicate that: (1) the
annual average of PM2.5 concentrations in the middle and lower reaches of the Yellow River show an
overall trend of first rising and then decreasing from 2000 to 2017. In addition, there are significant
differences in inter-province PM2.5 pollution in the study area, the PM2.5 concentrations of Tianjin City,
Shandong Province, and Henan Province were far higher than the overall mean value of the study
area. (2) PM2.5 concentrations in western cities showed a declining trend, while it had a gradually
rising trend in the middle and eastern cities of the study area. Meanwhile, the PM2.5 pollution
showed the characteristics of path dependence and region locking. (3) the PM2.5 concentrations had
significant spatial agglomeration characteristics from 2000 to 2017. The “High-High (H-H)” clusters
were mainly concentrated in the southern Hebei Province and the northern Henan Province, and the
“Low-Low (L-L)” clusters were concentrated in northwest marginal cities in the study area. (4) The
influencing factors of PM2.5 have significant spatiotemporal non-stationary characteristics, and there
are obvious differences in the direction and intensity of socio-economic and natural factors. Overall,
the variable of temperature is one of the most important natural conditions to play a positive impact
on PM2.5, while elevation makes a strong negative impact on PM2.5. Car ownership and population
density are the main socio-economic influencing factors which make a positive effect on PM2.5, while
the variable of foreign direct investment (FDI) plays a strong negative effect on PM2.5. The results
of this study are useful for understanding the spatiotemporal distribution characteristics of PM2.5

concentrations and formulating policies to alleviate haze pollution by policymakers in the Yellow
River Basin.

Keywords: PM2.5 concentrations; influencing factor; spatiotemporal heterogeneity; GTWR model;
the middle and lower reaches of the Yellow River

1. Introduction

With rapid urbanization and industrialization in recent years, high concentrations of
PM2.5 (Fine particles with a diameter ≤2.5 µm) are one of the main causes of air pollution,
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which has become the most urgent and prominent environmental problem in China [1,2].
Some existing research on air pollution showed that PM2.5 exposure generates not only
respiratory and cardiovascular diseases and threatens the physical and mental health of
residents seriously [3,4] but also hinders economic growth and social stability. Recent
studies showed that PM2.5 pollution is relevant to about 1.2 million people premature
deaths per year between 1999 and 2010 [5]. In China, about 40% of premature deaths are
associated with air pollution [6]. Consequently, in order to deal with the problem of poor
air pollution, the Chinese government has introduced a series of strict measures to improve
air quality [7,8]. As an important ecological security barrier in China, the Yellow River
Basin plays a significant role in air pollution management in China. However, this region,
especially the middle and lower reaches, has experienced serious air pollution due to
drastic population activities and economic development in recent years [9,10]. It is urgent
to study the spatial and temporal characteristics to influence factors of PM2.5 pollution and
to provide a scientific basis for PM2.5 pollution governance in the middle and lower reaches
of the Yellow River Basin.

The existing literature on PM2.5 pollution is mainly carried out from the aspects of
spatiotemporal distribution, influencing factors, and research methods [11–13]. In terms
of the spatiotemporal pattern of PM2.5 concentrations, previous researchers examined the
spatiotemporal distribution of PM2.5 concentrations at different spatial scales, such as the
national scales [14], the provincial scales [15,16], or the urban agglomerations scales [17,18].
Based on the analysis results of different spatial scales, numerous research found that the
distribution of PM2.5 concentrations had significant spatial differentiation characteristics.
However, few previous studies paid attention to PM2.5 pollution in the middle and lower
reaches of the Yellow River Basin, which constitutes an important part of China’s economic
development and environmental protection.

On the surface, PM2.5 pollution comes from meteorological factors, while actual
emissions always are human activities, including automobile exhaust and industrial waste
gas, etc. [19–21]. Therefore, its influencing factors are multifaceted and complex. From
the perspective of the impacts of human activities, existing studies mainly focus on social
and economic development [22,23], population distribution [24], traffic emission [25],
industrial structure [26], land-use changes [27], and natural conditions [28,29]. For example,
some scholars pointed out that urbanization had a positive impact on the increase in
PM2.5 concentrations by studying the relationship between PM2.5 concentrations and
urbanization in China [30,31]. Other studies found that cities with high population density
and heavy traffic had higher concentrations of PM2.5 [32]. There are also previous studies
confirming that regional natural conditions such as wind speed, annual precipitation, and
temperature are the main influencing factors of PM2.5 concentrations [33,34]. Briefly, the
factors that impact PM2.5 concentrations involve socio-economic and natural conditions.
However, most previous studies concentrated separately on either natural conditions or
socio-economic factors. The PM2.5 concentrations in any area are the result of the interaction
between nature and human activities [35]. Obviously, using only a single perspective may
lead to inaccurate analysis results, so it is necessary to consider the comprehensive influence
of both natural and socio-economic conditions on PM2.5 into account together.

Various research methods were used to investigate the influencing factors of PM2.5
concentrations, such as the linear regression model [36] and econometric models [37,38].
Some researchers analyzed the factors for the PM2.5 distribution in China by applying the
nonparametric additive regression model [39]. In fact, the spatial distribution of different
influencing factors is heterogeneous, and the influencing factors of different geographical
locations have different effects on PM2.5, so the analysis results of traditional econometric
models were always biased because the spatial effects of factors were neglected [40].
Gradually, spatial statistical models were utilized in the investigation of PM2.5 pollution
driving factors. Based on the spatial Durbin model, spatial lag model (SLM), and spatial
error model (SEM), some studies used these methods to investigate the spatial spillover
effects of PM2.5 and its influencing factors [41–43].



Remote Sens. 2022, 14, 2643 3 of 19

In addition, the geographically weighted regression (GWR) model that considers
spatial non-stationarity features was conducted to analyze the relationship between PM2.5
and driving factors. Wang et al. [44] used the GWR model to detect the spatial heterogeneity
of the influencing factors of PM2.5 concentrations in Chinese cities and found that there
were significant differences in the intensity of spatial heterogeneity. Compared with the
GWR model, which can only treat spatial variations in multivariate data, the Geographically
and temporally weighted regression (GTWR) model, which integrates spatial and temporal
variations in PM2.5 and influencing factors relationship, gained more and more attention in
the current research [45,46]. These documents are helpful in accurately understanding the
causes of PM2.5 and promoting its governance.

Although more and more literature studies the spatiotemporal characteristics of PM2.5
and its influencing factors by applying spatial statistical models, few studies compre-
hensively utilized spatial autocorrelation analysis and the GTWR model to explore the
characteristics of PM2.5 and its driving factors in river regions. In addition, most of the
previous studies only focus on the spatial difference of the influencing factors, then the tem-
poral variation effects of factors are ignored. Therefore, the GTWR model is more accurate
and effective by considering the non-stationarity of spatial and temporal dimensions [47].
This study aims to investigate the spatial-temporal dynamics of PM2.5 concentrations and
explore its influencing factors from two aspects of natural and socio-economic conditions by
using the GTWR model. The main contributions of this study are summarized as follows:
(1) the spatiotemporal characteristic of PM2.5 concentrations was analyzed in the middle
and lower reaches of the Yellow River Basin from 2000 to 2017; (2) the spatial agglomer-
ation features of PM2.5 was investigated based on spatial autocorrelation model; (3) the
spatiotemporal heterogeneity of natural and socio-economic factors influencing PM2.5 were
examined by applying GTWR model. The results of this study can enrich the content of
PM2.5 distribution in the watershed. Meanwhile, they also provide reference evidence for
PM2.5 control policies in the middle and lower reaches of the Yellow River Basin.

The above-mentioned research rarely starts from the perspective of the river basin,
especially the Yellow River basin. Since the ecological protection and high-quality develop-
ment of the Yellow River basin became a national strategy in 2019, the improvement of the
atmospheric environment in the Yellow River basin has become an urgent task, and the
problem of air pollution in the middle and lower reaches of the Yellow River is particularly
acute; therefore, it is more important to explore the spatial distribution difference and
the spatial and temporal heterogeneity of the influencing factors, to carry out regional
governance and regional joint defense linkage. Spatiotemporal geographical weighting
models were originally used to detect spatiotemporal variations in factors affecting house
prices, and then the GTWR model is verified and compared with other models, respectively,
and the kernel function selection method and non-stationary test method are defined to
verify the effectiveness of the method. It was proved that the GTWR model is significantly
higher than the goodness of fit of the ordinary least squares (OLS) model and GWR model
and is more reliable [48–50].

This paper selects the middle and lower reaches of the Yellow River with high pollu-
tion as the research area and uses the geographically and temporally weighted model to
explore the impact intensity of five natural environmental factors and seven socio-economic
indicators on PM2.5 pollution from two scales of time and space and their interaction. In
the environment of environmental protection, the research results of this paper are of
great significance for pollution prevention and control as well as refined and differentiated
governance.

2. Material and Data Sources
2.1. Study Area

In recent years, the improvement of the air quality in China has become an urgent
task, and the problem of PM2.5 pollution in the middle and lower reaches of the Yellow
River is particularly acute. Based on the current situation of PM2.5 concentrations in the
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middle and lower reaches of the Yellow River, the scope of the study area was expanded to
the Loess Plateau and the Huang-Huai-Hai Plain (Figure 1). There are 67 prefecture-level
cities located in five provinces (17 prefecture-level cities located in Shandong Province,
18 prefecture-level cities located in Henan Province, 10 prefecture-level cities located in
Shaanxi Province, 11 prefecture-level cities located in Shanxi Province, and 11 prefecture-
level cities located in Hebei Province), and includes two municipalities (Beijing and Tianjin).
In this paper, the spatiotemporal variation characteristics of PM2.5 concentrations were
discussed at the urban scale, and the main influencing factors were revealed from the
dimensions of socio-economic factors and natural conditions.

Figure 1. Location map of the study area.

2.2. Data Sources and Preprocessing
2.2.1. PM2.5 Concentrations Data

PM2.5 concentrations data are derived from the Atmospheric Composition Analysis
Group at Washington University in St. Louis (https://sites.wustl.edu/acag/datasets/
surface-pm2-5/, accessed on 10 April 2022), which provides a published global dataset of
PM2.5 concentrations. This dataset has a high spatial resolution (the raw data 0.1◦ × 0.1◦),
good accuracy with a cross-validated R2 of 0.81 [51], and has been widely applied in many
previous studies [52,53]. In this study, the regional statistical tool ArcGIS was used to
extract the annual average value of PM2.5 concentrations in the middle and lower reaches
of the Yellow River from 2000 to 2017. According to the Ambient Air Quality Standard
of China (GB3095-2012) and the related literature [8,54,55], PM2.5 concentrations were
divided into seven categories as follows: ultra-low concentrations (<15 µg/m3), lower
concentrations (15–25 µg/m3), low concentrations (25–35 µg/m3), medium concentrations
(35–50 µg/m3), high concentrations (50–70 µg/m3), higher concentrations (70–100 µg/m3),
ultra-high concentrations (>100 µg/m3).

2.2.2. Socio-Economic Data

As shown in the above existing literature, socio-economic factors are an important part
of PM2.5 pollution [22]. Previous studies confirmed that GDP, population density, industrial
structure, and other human activity factors have a certain impact on air pollution [24,26].
Based on the socio-economic situation of the middle and lower reaches of the Yellow River
Basin, the effect of human activities and economic development on PM2.5 concentrations
were investigated using seven socio-economic indicators, including GDP per capita (PGDP),
population density (POP), the proportion of secondary industry (SEC), foreign direct

https://sites.wustl.edu/acag/datasets/surface-pm2-5/
https://sites.wustl.edu/acag/datasets/surface-pm2-5/
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investment (FDI), proportion of built-up area (BPA), car ownership per 10,000 people
(CARP), and energy consumption index (ENE). These socio-economic data were mainly
from China City Statistical Yearbook (2001–2018) and the provincial statistical yearbook
on the China National Knowledge Infrastructure (CNKI: http://www.cnki.net/, accessed
on 20 April 2020) to obtain prefecture-level city data. In order to ensure continuity of
socio-economic data, the interpolation method was adopted for calculating a small number
of missing values in some years (Figure 2).

Figure 2. Spatial distribution of average values every three years of socio-economic factors from 2000
to 2017.

2.2.3. Natural Conditions Data

Given that the natural factors, including climate and environment, were associated
with aspects of diffusion and secondary influences of PM2.5 pollution [33,34], based on the
climate conditions and environmental characteristics of the middle and lower reaches of
the Yellow River Basin, five natural factors were selected to explore the impact on PM2.5
in this study (Figure 3), including temperature (TEMP), precipitation (PREC), wind speed
(WIND), Normalized Difference Vegetation Index (NDVI), and Digital Elevation Model
(DEM). Among them, The NDVI is a commonly applied factor in analyzing the impact of
green vegetation on air pollution and has a certain correlation with PM2.5. Meteorological
data (including temperature, precipitation, and wind speed) are obtained from the National
Tibetan Plateau/Third Pole Environment Data Center (https://data.tpdc.ac.cn, accessed on
30 April 2022). This dataset has high spatial resolution and long time series, and its accuracy

http://www.cnki.net/
https://data.tpdc.ac.cn
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is better than the international reanalysis data [56,57]. The NDVI and DEM data are derived
from the Resources and Environment Science and Data Center of the Chinese Academy of
Science (https://www.resdc.cn/DOI/doi.aspx?DOIid=49, accessed on 30 April 2022).

Figure 3. Spatial distribution of average values every three years of natural conditions from 2000
to 2017.

3. Methodology
3.1. Spatial Autocorrelation Models
3.1.1. Global Spatial Autocorrelation Analysis

Global spatial autocorrelation analysis is mainly used to measure the spatial correlation
degree of PM2.5 and analyze the spatial distribution feature in adjacent locations of PM2.5
overall, to judge whether PM2.5 concentrations have spatial aggregation [58]. The global
spatial autocorrelation is represented by Moran’s I index, and the calculation formula is
as follows:

Moran′s I =

n
∑

i=1

n
∑

j=1
Wij(Xi − X)(Xj − X)

s2
n
∑

i=1

n
∑

j=1
Wij

(1)

where n is the number of research units (prefecture-level cities), Xi and Xj are the average
annual concentrations of PM2.5 in city i and city j, X is the average annual concentrations
of PM2.5 in all cities, and Wij is the space weight matrix. The value range of Moran’s I is
generally [−1, 1]. 0 < I ≤ 1 means there is a positive spatial correlation between regions,
while −1 ≤ I < 0 means there is a negative spatial correlation between regions, I = 0
indicates that the spatial data are randomly distributed or do not have a spatial correlation.
The Z score can be used to test the correlation between the values:

Z(I) =
I − E(I)√

Var(I)
(2)

E(I) and Var(I) are the value of mathematical expectation and the variance. The
significance level is 0.05.

https://www.resdc.cn/DOI/doi.aspx?DOIid=49
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3.1.2. Local Spatial Autocorrelation Analysis

Anselin pointed out that Global spatial autocorrelation analysis can only reflect the
overall distribution characteristics [59] but cannot calculate and analyze the local differences
of spatial objects. Therefore, it is necessary to further explore the spatial aggregation and
dispersion between the local unit and its neighboring units. The local spatial autocorrelation
model can be calculated as follows:

Local Moran′s Ii =
n(Xi − X)∑m

j=1 Wij(Xj − X)

∑n
j=1 (Xj − X)

2 (3)

S2 =
1
n

n

∑
i=1

(Xi − X)
2 (4)

In the Formula (3), n represents the number of prefecture-level cities, Xi and Xj

represent the average annual concentrations of PM2.5 in cities i and j. X is the average
annual concentrations in all cities and Wij is the spatial weight matrix. m represents the
number of cities that are adjacent to city i. The Z score for the standardized statistics are
as follows:

Z(Ii) =
|1− E(Ii)|√

Var(Ii)
(5)

The local spatial autocorrelation can be classified into four types: (1) High–High (H-H)
type represents that the high PM2.5 value area is adjacent to the high PM2.5 value area;
(2) High–Low (H-L) type represents that the high PM2.5 value area is adjacent to the low
PM2.5 value area; (3) Low–High (L-H)type represents that the low PM2.5 value area is
adjacent to the high PM2.5 value area; (4) Low–Low (L-L) type represents that the low PM2.5
value area is adjacent to the low PM2.5 value area.

3.1.3. Geographically and Temporally Weighted Regression Model

Compared with the traditional linear regression model, such as the ordinary least
squares (OLS) model, the geographically weighted regression model (GWR) quantifies spa-
tial heterogeneity of variables by calculating locally weighted regression for location [60].
Since the GWR model only pays attention to spatial heterogeneity and ignores the changes
caused by temporal dimensions, the GTWR model was established by Huang et al. [47]
and further introduced the temporal dimension based on the GWR model. GTWR model
can better reveal the spatial and temporal heterogeneity and detect non-stationary spa-
tiotemporal characteristics of explanatory variables. In this study, the GTWR model can be
calculated as follows:

Yi = β0(µi, υi, ti) +
n

∑
k=1

βk(µi, υi, ti)xik + εi (6)

In the Formula (6), Yi denotes the average annual value of PM2.5 concentrations of the
city i, t denotes the year studied, xik(k = 1,2, . . . , m) denotes the value of the explanatory
variable k of the city i; (µi, υi, ti) is the space-time dimension of the city i; µi and υi denote the
longitude and latitude of the city i, ti denotes the time coordinates of the city i; β0(µi, υi, ti)
denotes the intercept value, βk(µi, υi, ti) (k = 1,2, . . . , m) denotes the regression coefficient
and εi is the error term for city i representing the difference between the observed value
and estimated value

The essential question of the GTWR model is to estimate βk(µi, υi, ti), and the estima-
tion equation can be calculated as follows:

_
β (µi, υi, ti)= [XTW(µi, υi, ti )X]−1XTW(µi, υi, ti)Y (7)
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In Formula (7), W(µi, υi, ti) = diag(αi1, αi2, . . . , αin), n denotes the number of cities.
The diagonal elements αij(1 ≤ j ≤ n) denote space–time distance functions of (µ, υ, t)
corresponding to the weights when calibrating a weighted regression near city i, and X
denotes a vector expressing the parameters.

4. Results and Discussion
4.1. Temporal Variation Characteristics of PM2.5 Concentrations

The proportion of 69 cities with different PM2.5 concentrations grades was used to
reflect the trend of temporal variation from 2000 to 2017 (Figure 4). the annual average
PM2.5 concentrations in the middle and lower reaches of the Yellow River showed an overall
trend of increasing first and then decreasing. The annual average PM2.5 concentrations
increased significantly from 41.28 µg/m3 to 67.12 µg/m3 from 2000 to 2006; then, the value
decreased from 67.12 µg/m3 to 55.69 µg/m3 from 2006 to 2017 (Table 1). In terms of the
proportion of each PM2.5 concentration grade, the ultra-high regions where the annual
average PM2.5 concentration is higher than 100 µg/m3 appeared in 2006, 2007, and 2013,
respectively. Overall, the PM2.5 pollution was still very serious. The annual average of
PM2.5 in 2017 (55.69 µg/m3) was higher than its value in 2000 (41.28 µg/m3); this indicates
that it is a very urgent problem to improve the air quality through effective governance.

Figure 4. The proportion of different PM2.5 concentration grades in 69 cities in the study area from
2000 to 2017.

Table 1. The annual average PM2.5 concentrations of the study area (unit: µg/m3).

Year 2000 2003 2006 2009 2012 2015 2017

Average of the whole study area 41.28 53.00 67.12 59.48 53.06 57.45 55.69
Beijing Municipality 28.37 43.66 58.73 53.25 44.97 50.85 48.98

Hebei Province 42.81 55.66 73.52 65.32 57.11 62.69 60.21
Henan Province 60.60 65.65 78.99 68.35 66.12 70.10 66.26

Shandong Province 40.78 60.88 72.75 65.34 62.45 68.99 62.77
Shanxi Province 30.94 43.57 51.54 43.27 39.84 40.94 42.45

Shannxi Province 42.90 40.77 49.46 42.57 40.66 38.62 40.59
Tianjin Municipality 42.54 60.78 84.83 78.29 60.28 69.97 68.59
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In order to better investigate the regional variations in PM2.5 concentrations in the
study area, the five provinces and two municipalities with an annual average of PM2.5 were
analyzed from 2000 to 2017 (Figure 5). It was found that, although the increase in annual
average PM2.5 concentrations is fluctuant during the study period, there are still obvious
differences between five provinces and two municipalities (Figure 5).

Figure 5. Temporal variation in annual average PM2.5 in different provinces and municipalities.

The annual average PM2.5 concentrations of Tianjin, Shandong Province, and Henan
Province has been far higher than the overall mean value in the middle and lower reaches
of the Yellow River from 2000 to 2017. The annual average PM2.5 concentrations of Tianjin
increased significantly from 42.54 µg/m3 (2000) to 68.59 µg/m3 (2017). The variation
trends of Hebei Province were basically consistent with the overall variation trend of the
study area. Different from other provinces, the annual average of PM2.5 concentrations in
Shaanxi Province decreased in a fluctuation way from 42.90 µg/m3 (2000) to 40.59 µg/m3

(2017). This shows that the pollution degree of PM2.5 concentrations in the study area was
obviously different from 2000 to 2017.

4.2. Spatial Distribution Characteristics of PM2.5 Concentrations

The spatial evolution feature of annual average PM2.5 concentrations in the middle
and lower reaches of the Yellow River was investigated by using GIS spatial analysis
methods from 2000 to 2017 (Figure 6). Overall, the PM2.5 pollution exhibited obvious
spatial differentiation features. The annual average of PM2.5 in western cities showed
a declining trend, while it had a gradually rising trend in middle and eastern cities of
the study area. Specifically, in 2006, the values of eastern cities, such as Cangzhou City,
Hengshui Ctiy, and Dezhou City, were significantly higher than that of the surrounding
areas. Because these cities are important energy bases in China, the industrial structure
dominated by the petrochemical industry increases the possibility of PM2.5 pollution. The
extensive economic development mode dominated by resources made these cities face
serious air quality problems. The PM2.5 concentrations of eastern cities increased from
north to south, and the cities in the north part of the study area had undergone a decrease
during the study period. However, most middle and eastern cities had experienced an
increase at first and then a decrease from 2000 to 2017. It is noteworthy that the PM2.5
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pollution showed the characteristics of path dependence and region locking. Cities with
high PM2.5 values are always located in northern Henan Province, western Shandong
Province, and southern Hebei Province. It shows that these cities are facing serious air
pollution challenges and control pressures.

Figure 6. Spatial distribution features of PM2.5 concentrations in major years (3a).

4.3. Spatial Autocorrelation Analysis of PM2.5 Concentrations
4.3.1. Global Spatial Autocorrelation Features

The global spatial autocorrelation results (Moran’s I index) were calculated based
on the annual average PM2.5 concentrations on the prefecture-level city scale from 2000
to 2017 (Table 2). All the values of global Moran’s I were >0.6, and the p-value was 0.00,
indicating that the 1% significance level test passed (Z = 1.96). This suggests that the spatial
distribution of PM2.5 concentrations has a positive spatial correlation in the study area,
and the spatial agglomeration phenomenon is obvious. It can be proved that urban PM2.5
concentrations in the study area were impacted not only by their own emission but also
by surrounding cities. The variation in Moran’s I first presented a fluctuating rise trend,
increasing from 0.63 to 0.76 from 2001 to 2010, followed by a decrease to 0.72 in 2017. These
results indicated that the spatial correlation of PM2.5 concentrations between cities was still
strong in the study area.

4.3.2. Local Spatial Autocorrelation Features

Based on the results of local spatial autocorrelation analysis, the local agglomeration
maps were drawn in ArcGIS 10.2 software (Redlands, CA, USA) (Figure 7). The High–High
(H-H) clusters were concentrated in the southern Hebei Province and the northern Henan
Province. The number of cities with H-H types changed from 14 to 10 from 2000 to 2017,
indicating a fluctuating downward trend. Regarding these cities with high PM2.5 values
(Table 3), it is necessary to take regional joint control measures to deal with air pollution
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on an urban scale. The Low–Low (L-L) clusters were concentrated in northwest marginal
cities in the study area, such as northern Shanxi Province and northwestern Hebei Province.
The number of cities with L-L types changed from five to four between 2000 and 2017.
Other types, including High–Low (H-L) clusters and Low–High (L-H) clusters, had not
been seen in the study area during the study period, mainly because PM2.5 has strong
spatial dispersion, and it is difficult to have independent areas with high or low value.
These results demonstrated that the PM2.5 concentrations had an obvious local spatial
autocorrelation feature.

Table 2. Results of Global spatial autocorrelation Moran’s I index from 2000 to 2017.

Year Moran’s I Z-Score p-Value Year Moran’s I Z-Score p-Value

2000 0.71 8.61 0.00 2009 0.71 8.55 0.00
2001 0.63 7.62 0.00 2010 0.76 9.12 0.00
2002 0.63 7.63 0.00 2011 0.70 8.38 0.00
2003 0.68 8.17 0.00 2012 0.73 8.77 0.00
2004 0.65 7.90 0.00 2013 0.72 8.64 0.00
2005 0.71 8.55 0.00 2014 0.74 8.85 0.00
2006 0.67 8.14 0.00 2015 0.75 8.99 0.00
2007 0.73 8.80 0.00 2016 0.71 8.57 0.00
2008 0.72 8.69 0.00 2017 0.72 8.61 0.00

Figure 7. Local spatial autocorrelation distribution.
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Table 3. Local spatial autocorrelation statistics of cities in study area.

Types
Number of Cities (Units)

2000 2003 2006 2009 2012 2015 2017

HH 14 13 11 8 12 12 10
LL 5 3 4 4 4 3 4

4.4. Determination of the Best Model

In this study, seven socio-economic factors and five natural conditions were selected
as explanatory variables to construct an index system. The multicollinearity test was
carried out on all indicators, and the results showed that the variance inflation factor of
all indicators was less than 7.5, indicating no multicollinearity. Therefore, the influencing
factors of PM2.5 concentrations in the study area can be analyzed by using quantitative
regression models.

According to the data characteristics, OLS, GWR, temporally weighted regression
(TWR), and GTWR models were analyzed, respectively, and the performance of the
four models was compared through R2-adjusted (Table 4). The results showed that the
R2-adjusted increased from 0.684 (OLS model), 0.798 (TWR model), and 0.875 (GWR
model) to 0.952 (GTWR model). The magnitude of the residuals squared is also OLS
(5.599) > TWR (3.580) > GWR (2.209) > GTWR (0.845). Compared with the other three mod-
els, the explanatory power of the GTWR model is significantly improved, and considering
the spatiotemporal heterogeneity at the same time, it can better reflect the influence degree
of each factor on PM2.5 concentrations.

Table 4. Comparison of regression results of OLS, GWR, TWR, and GTWR model.

Model R2 R2-Adjusted AICc Residual
Squares

OLS 0.692246 0.684388 −753.33726 5.5991
TWR 0.803587 0.798573 −881.816 3.58083
GWR 0.878789 0.875694 −997.256 2.20983

GTWR 0.953621 0.952437 −1149.7 0.845549

4.5. The Temporal and Spatial Variation in the Standard Coefficients of Explanatory Variables in
GTWR Model
4.5.1. Influence of Independent Variables on PM2.5 Concentrations on a Global Perspective

From a global perspective, the regression coefficients of the GTWR model showed
that various variables have significant differences in the impact on PM2.5 concentrations
(Table 5). It was found that population density, industrial structure, car ownership, average
annual temperature, green vegetation index, and urban built-up area have positive effects
on PM2.5 concentrations. However, foreign direct investment, energy consumption, GDP
per capita, average annual precipitation, wind speed, and altitude have negative effects on
PM2.5 concentrations.

From the results of regression coefficients, PM2.5 concentrations are affected by both
socio-economic and natural factors. Car ownership and population density are the main
socio-economic driving factors of PM2.5 pollution, while the temperature is the most
important meteorological condition that impacts PM2.5 concentrations. At the same time,
the negative effect of altitude, rainfall, and wind speed on PM2.5 is also different.

The regression coefficient can be used to indicate the influence degree of the ex-
planatory variable on PM2.5. From the perspective of the temporal dimension (Figure 8),
all explanatory variables except population density had a consistent influence on PM2.5
concentrations, which standard coefficients gradually approached 0 from 2000 to 2017, in-
dicating that the influence degree of these variables on PM2.5 concentrations was gradually
stabilizing, while the influence of population density was gradually increasing. During
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the study period, car ownership, the proportion of the secondary industry, population
density, and average annual temperature had positive effects on PM2.5 concentrations, and
these factors were the main influencing factors. On the contrary, foreign direct investment,
energy consumption, wind speed, and elevation (DEM) had negative effects on PM2.5
concentrations. However, the regression coefficients of urban built-up area proportion,
green vegetation, average annual rainfall, and GDP per capita fluctuated, indicating that
the influence degree of these factors on PM2.5 concentrations was complex. For the NDVI
factor, the regression coefficient decreased from 0.235 to 0.039 between 2000 and 2009, then
the coefficient changed from −0.117 to −0.099 after 2012, indicating the green vegetation
factor had gradually changed from a positive effect to a negative effect on PM2.5 with the
evolution of time.

Table 5. Descriptive statistics of the GTWR standard coefficient of the independent variable.

Mean Min Max Std

Intercept 0.160 −1.441 0.886 0.506
PGDP −0.125 −2.459 2.970 0.772
POP 0.132 −0.933 0.821 0.378
SEC 0.087 −0.266 0.531 0.135
FDI −0.366 −5.180 5.496 1.106
ENE −0.119 −1.220 0.628 0.281
BPA 0.001 −0.972 0.724 0.288

CARP 0.573 −1.032 5.125 0.899
PREC −0.072 −0.397 0.663 0.214
TEMP 0.383 −0.543 2.384 0.462
WIND −0.063 −0.700 0.306 0.151
NDVI 0.103 −0.815 1.467 0.410
DEM −0.204 −1.867 1.398 0.368

Residual 0.005 −0.151 0.203 0.042
R2 0.954

Figure 8. Temporal variation in regression coefficients of PM2.5 concentrations explanatory variables
from 2000 to 2017 based on GTWR model.
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4.5.2. Spatial Heterogeneity Characteristics of Regression Coefficients

One of the most significant features of the GTWR model is to investigate the spatial
heterogeneity of influencing factors by using the regression coefficient, which is mainly
used to prove the local variation in the influence degree of driving factors on PM2.5.
Therefore, from the results of the regression coefficients of influencing factors, we found
the positive and negative correlation effects of influencing factors on PM2.5 concentrations
were confirmed, and these factors had spatial instability characteristics (Figure 9).

Figure 9. Spatial distribution of regression coefficients of influencing factors in the GTWR model.

Overall, the impact of GDP per capita (PGDP) on PM2.5 pollution has significant
spatial differences from 2000 to 2017. The positive role of PGDP was taken in all regions
of Shanxi Province and southern Shaanxi Province, indicating that it promoted the rise
of PM2.5. However, there was a negative effect in all regions of Shandong Province, as
well as in the north of the Henan Province and Shaanxi provinces (Figure 9a). Apparently,
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this phenomenon is related to the economic development stage and mode in different
regions. Resource-based industries are the main driving force of economic growth in Shanxi
provinces and a few areas in Shaanxi provinces, which seriously affect the improvement of
air quality.

The POP (Population density) has a significant positive effect on PM2.5 concentrations
in 65.22% of the study area (Figure 9b), which is mainly located in Shaanxi Province,
Shanxi Province, and Henan Province. There is a negative effect in Shandong Province
and central Hebei Province. Usually, the growth of population density can bring about an
increase in energy consumption demand, which leads to an increase in the emissions of
PM2.5 pollutants.

The proportion of secondary industry (SEC) has a significant positive correlation
effect on PM2.5 in 89.86% of the study area. The strong positive effect is mainly located in
Shandong Province and Hebei Province, and the weak positive effect is mostly distributed
in Henan Province and Shaanxi Province. However, the negative effect on northern Shanxi
Province was pronounced (Figure 9c). This result indicates that the high proportion of
mining and manufacturing industries in the study area has become one of the driving
factors in PM2.5 emissions.

Foreign direct investment (FDI) has a negative correlation effect on PM2.5 pollution
in most areas of Henan, Shandong, and Shanxi provinces (Figure 9d). During the study
period, these regions were using foreign capital to promote economic development. There-
fore, strict PM2.5 pollution emission policies must be established to attract more foreign
investment projects. The energy consumption (ENE) has a negative effect on PM2.5 in most
regions (79.71%), and the positive impact of ENE in Shandong Province is very noticeable
(Figure 9e). This result shows that Shandong Province has a high level of energy consump-
tion and plays an important role in the process of economic development and industrial
structure adjustment.

The impact of urban built-up area proportion (BPA) on PM2.5 presents characteristics
of spatial agglomeration. There is a positive effect in eastern regions, and the western
regions have a negative effect (Figure 9f). This is because the process of urbanization in the
eastern regions is faster than that in the western regions. The more urban population, the
more pollutants are discharged, which affects the air quality in the study area.

The car ownership per 10,000 people (CARP) variable has a strong positive correlation
with PM2.5 concentrations in 97.1% of the study area (Figure 9g). This indicates that vehicle
exhaust emission is one of the important sources of PM2.5 pollution, and vehicle emission is
still a major problem in air quality improvement. The spatial distribution of the regression
coefficient shows that the value of the regression coefficient increases from west to east, and
the high-value area is concentrated in Shandong Province, while the influence of CARP in
western cities is relatively weak.

The influence of precipitation (PREC) on PM2.5 concentrations showed a negative
correlation effect in 82.61% of cities, and other cities (17.39%) had positive correlation effects.
The areas with positive influence were mainly concentrated in Shandong Province, Hebei
Province, and northern Shanxi Province (Figure 9h). These results indicate that the increase
in rainfall in most cities can effectively alleviate the degree of PM2.5 pollution.

Temperature (TEMP) plays a positive effect on PM2.5 concentrations in 78.26% of cities
(Figure 9i). Regarding the results of the regression coefficient, there is a strong positive effect
in the Beijing–Tianjin–Hebei region and Shandong Province. Due to the long winter, human
activities become more frequent after the temperature rises, which induces an increase in
energy consumption and causes regional PM2.5 pollution. However, the high temperature
in most cities of Henan Province has a significant effect on the PM2.5 concentrations.

In the study area, the results of the regression coefficient of wind speed (WIND) on
PM2.5 concentrations increase significantly from north to south, and 63.77% of the areas
show a negative correlation effect (Figure 9j). Combined with the spatial distribution of the
average wind speed (Figure 3c), it can be found that the wind speed in the north is greater
than that in the south, and the negative correlation effect is also stronger. This indicates
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that the increase in wind speed accelerates the flow of air, which is conducive to the spatial
diffusion of haze in the north of the study area.

NDVI has a positive effect on PM2.5 concentrations in 73.94% of cities, which are mainly
concentrated in Henan Province, Shanxi Province, and Beijing–Tianjin–Hebei regions
(Figure 9k). Generally, vegetation coverage can provide ecosystem services for the region.
Because the severe haze weather always occurs in winter, the vegetation in this period is
just in the withering period, and the regulation effect on haze is not obvious in the north of
the study area.

DEM has a negative correlation effect on PM2.5 concentrations in 76.81% of the study
area; this indicates that the higher the elevation of the area, the more conducive to alleviating
PM2.5 pollution (Figure 9m). The positive effects of DEM are mainly distributed in the
southern part of Shaanxi Province and the north of Beijing–Tianjin–Hebei regions. The
altitude of these areas is relatively high, which is not conducive to the spatial diffusion of
haze pollution.

4.6. Policy Implications

According to the above analysis, we put forward the following policies to control
PM2.5 pollution: (1) PM2.5 pollution in the study area has strong spatial autocorrelation and
spatial agglomeration characteristics, so regional joint prevention and control measures
can be implemented to alleviate PM2.5 pollution. Some heavily polluted cities, such as
Beijing–Tianjin–Hebei region, need to jointly set regional haze pollution control targets
and set up integrated management organizations to control PM2.5 pollution. (2) According
to the spatial heterogeneity of influencing factors in different regions, it is suggested to
implement differentiated regional governance. For example, the secondary industry and
automobiles bring more haze pollution to Shandong Province, so it is necessary to adjust
the industrial structure, optimize the spatial distribution of polluting enterprises, and
reduce automobile exhaust emissions. However, reducing urban population density and
increasing green space coverage has become the main ways to control PM2.5 in Henan
Province. (3) The control of haze pollution in the middle and lower reaches of the Yellow
River is facing the problem of economic development mode. Therefore, it is necessary to
reduce the use of coal fossil energy, promote the popularization of clean energy, and realize
green economic development.

5. Conclusions

This study investigated the spatial-temporal heterogeneity of PM2.5 concentrations in
the middle and lower reaches of the Yellow River from 2000 to 2017, and its influencing
factors were analyzed by using the GTWR model. The major findings are as follows:

(1) The annual average PM2.5 concentrations in the middle and lower reaches of the
Yellow River showed a trend of increasing first and then decreasing from 2000 to 2017,
and the annual average PM2.5 concentrations are higher than 100 µg/m3 appeared in
2006, 2007 and 2013, respectively. Overall, the PM2.5 pollution was still very serious.
The pollution degree of PM2.5 concentrations was an obvious difference among five
provinces and two municipalities. The PM2.5 concentrations of Tianjin, Shandong
Province, and Henan Province were far higher than the overall mean value of the
study area, while Shaanxi Province decreased in a fluctuation way from 42.12 µg/m3

(2000) to 36.69 µg/m3 (2017);
(2) From the spatial distribution characteristics of PM2.5 concentrations, the annual av-

erage of PM2.5 in western cities showed a declining trend, while it had a gradually
rising trend in the middle and eastern cities of the study area. Meanwhile, the PM2.5
pollution showed the characteristics of path dependence and region locking. Cities
with high PM2.5 values are always located in northern Henan Province, western
Shandong Province, and southern Hebei Province;

(3) All the global Moran’s I indexes were >0.6, indicating that the PM2.5 concentrations
had significant spatial agglomeration characteristics in the study area. In addition, the
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PM2.5 concentrations had an obvious local spatial autocorrelation feature. The H-H
clusters were mainly concentrated in the southern Hebei Province and the northern
Henan Province, and the L-L clusters were concentrated in northwest marginal cities
in the study area;

(4) The influencing factors of PM2.5 have significant temporal and spatial non-stationary
characteristics, and there are obvious differences in the direction and intensity of socio-
economic and natural factors. Overall, car ownership and population density are the
main socio-economic driving factors that have positive effects on PM2.5, while FDI
plays a strong negative effect on PM2.5. Temperature is one of the most important natu-
ral conditions to play a positive impact on PM2.5, while DEM makes a strong negative
impact on PM2.5. In addition, each influencing factor has positive and negative effects
on different regional PM2.5, and these factors have spatial instability characteristics.
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