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Abstract: Displacement monitoring is a critical step to understand, manage, and mitigate potential
landside hazard and risk. Remote sensing technology is increasingly used in landslide monitoring.
While significant advances in data collection and processing have occurred, much of the analysis of
remotely-sensed data applied to landslides is still relatively simplistic, particularly for landslides that
are slow moving and have not yet “failed”. To this end, this work presents a novel approach, SlideSim,
which trains an optical flow predictor for the purpose of mapping 3D landslide displacement using
sequential DEM rasters. SlideSim is capable of automated, self-supervised learning by building
a synthetic dataset of displacement landslide DEM rasters and accompanying label data in the
form of u/v pixel offset flow grids. The effectiveness, applicability, and reliability of SlideSim for
landslide displacement monitoring is demonstrated with real-world data collected at a landslide
on the Southern Oregon Coast, U.S.A. Results are compared with a detailed ground truth dataset
with an End Point Error RMSE = 0.026 m. The sensitivity of SlideSim to the input DEM cell size,
representation (hillshade, slope map, etc.), and data sources (e.g., TLS vs. UAS SfM) are rigorously
evaluated. SlideSim is also compared to diverse methodologies from the literature to highlight the
gap that SlideSim fills amongst current state-of-the-art approaches.
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1. Introduction

Reliable and accurate monitoring of landslides is critical to manage and mitigate
potential hazards and risk to communities and their infrastructure. Continued advances
in surveying and remote sensing technologies [1–3] have enabled frequent collection of
high resolution, high accuracy data with the potential to measure landslide movement
with superior spatial resolution compared to conventional methods such as inclinometers,
extensometers and GNSS monitoring [4–6]. Nevertheless, in practice, remote sensing data
analysis approaches tend to be either overly simplistic in nature or require intensive man-
ual processing such as expert development of site-specific data processing and parameter
derivation. Simultaneously, recent advances in the field of computer vision have demon-
strated the suitability of deep learning approaches to RGB image- and video-based optical
flow problems, which now achieve amongst the best performance on many widely used
testing datasets [7–10]. Building on these advances, this paper develops and rigorously
validates a deep learning approach for the task of landslide displacement mapping using
geospatial DEMs (Digital Elevation Models) derived from remote sensing methods.

In situ landslide monitoring can include drilling boreholes to house inclinometers,
piezometers and other instrumentation to characterize the driving mechanisms, modes,
and extent of failure. These instruments produce displacement readings with depth,
which can be used to further understand the landslide kinematics, assist with rendering
informed decisions regarding landslide activity, provide estimates of damage, and identify
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potential mitigation strategies. Notwithstanding, subsurface exploration is time-consuming,
potentially hazardous, and often cost-prohibitive, especially for stakeholders burdened with
numerous landslides or large landslides. Due to these challenges, subsurface exploration
and instrumentation often can only be conducted at several discrete locations within
the landslide body and thus relies heavily on interpolation methods to infer landslide
properties across its entire spatial extent. The installed instrumentation is also subject
to shearing/damage under modest movements and thus does not serve as a permanent
monitoring solution.

Remote sensing and surveying monitoring approaches are increasingly used in land-
slide monitoring and many other earth science applications. TLS (terrestrial laser scan-
ning), for example, can produce high-resolution point clouds useful for monitoring slope
deformation [11–13]. More recently, UAS lidar systems have become capable of mapping
the surface of large landslides while maintaining satisfactory accuracy and coverage [14].
Photogrammetric data collected via UAS platforms can generate both high-resolution,
orthorectified images, and point clouds using SfM (structure from motion) and MVS (mul-
tiview stereopsis) techniques [15]. Photogrammetric technology typically have a lower cost
of entry compared to lidar and can provide a similar level of accuracy to UAS lidar meth-
ods for sparsely vegetated terrain if appropriate data collection and processing methods
are followed [16].

Once data are collected using the approaches highlighted above, additional processing
must be performed to be effective in application to landslide analysis and monitoring.
Data must first be georeferenced using methods appropriate for the field methods and
equipment used [17–19]. The next step is to identify the ground surface within the point
cloud using a ground filter [20,21]. At this point a terrain model representing the landslide
terrain can be constructed, typically in the form of a DEM (Digital Elevation Model). The
detail of the DEM depends on the quality of the source input data and the desired model
resolution. When needed, a variety of hole filling (i.e., interpolation) techniques help reduce
data gaps within the model (e.g., [22]).

While important advances in both the data collection and processing of remotely
sensed DEMs continue to occur, much of the analysis using these data in application to
landslides can still be considered simplistic relative to the amount of information actually
contained within the data. For example, creating an elevation change grid by differencing
sequentially collected DEMs on a per pixel basis is one of the most widely used analysis
techniques given that this grid can be used to estimate volumetric changes throughout
a landslide [23]. However, while this type of analysis is useful in rockfall or seacliff moni-
toring, it may not be representative when applied to landslides undergoing compression,
extension, or that are not fully evacuated.

Moving beyond the 1D elevation change analysis, three-dimensional (3D) displace-
ment vectors can be generated from sequential datasets by tracking distinct points and/or
features representing an object between two datasets. Feature tracking can be accom-
plished by using manual extraction methods, semi-automated feature extraction methods
for distinct objects such as tree trunks [24], geomorphological features [25], or windowed
registration/correspondence methods such as Iterative Closest Point (ICP) [26]. Neverthe-
less, these methods may be subjective and still require expert knowledge to select suitable
tracking features. They also tend to be computationally expensive since they directly use
the point cloud.

In contrast, image correlation approaches using sequential orthorectified imagery can
generate 2D horizontal displacement vectors. Such approaches include PIV (particle image
velocimetry) [27,28], Optical flow [29], COSI-Corr (Co-registration of Optically Sensed
Images and Correlation) [30], Optical image correlation [31,32], and other image correlation
methods [33]. Such methods are sensitive to variance in pixel illumination (lighting), and
land cover change (such as vegetation growth or seasonal changes), which can result in
erroneous displacement vectors when substantial time has elapsed between surveys [33].
Correlation approaches can also be applied to DEMs in addition to images. Unlike optical
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images, when proper data collection/preparation is used, DEMs can produce consistent
maps that are more robust to seasonal changes and do not suffer from variance in pixel
illumination. However, visual representations of DEMs, in their basic form of encoded
elevation values, can often lack texture (e.g., smooth road and flat areas of grassland) and
can contain areas of repeating patterns/edges (guard rails, pavement markings, fencing
etc.). Hence, using the DEM for analysis proves difficult for the majority of correlation
approaches that rely on gradient-based matching.

With recent advances in computer vision, these well-established image correlation tech-
niques have been surpassed by learning-based approaches [9]. Deep learning approaches
use synthetically generated video datasets, such as the MPI-Sintel dataset [34] or the
FlyingChairs dataset [35] where a known optical flow grid (grid of u and v pixel displace-
ment) is available for each neighboring frame pair such that it is suitable as training data.
The first popularized model, Flownet [35], proposed two CNN-based architectures (Con-
volutional Neural Network). The first consists solely of convolutional layers where the
two input images are stacked before being input into the model (FlownetSimple). The
second model (FlowNetCorr) consists of a series of feature extraction convolutional layers
where each image is processed individually, followed by a correlational layer which per-
forms a comparison of the two feature maps, and then followed by additional convolutional
layers. These models perform better than traditional methods on data similar to the training
dataset; however, they do not perform as well on more generalized datasets [35]. Subse-
quently, Flownet2 built upon the original framework by modifying the order of training
data and implementing a stacked architecture composed of specialized sub-networks [7].
Flownet2 performs similarly, and in some cases better than traditional methods; how-
ever, because Flownet2 is a very large network composed of many different sub-networks,
the training process is more difficult. More recently, RAFT (Recurrent All-Pairs Field
Transforms) [10] achieved state-of-the-art performance utilizing the same training data as
Flownet, with a model composed of a feature extraction stage built from a series of residual
layers followed by the creation of 4D correlation volumes which is then fed into a sequence
of GRU cells (Gated Recurrent Unit) that iteratively updates the flow field. The resulting
model has fewer parameters than Flownet2 while exceeding the performance of traditional
methods on many of the benchmark datasets.

To overcome these limitations, this work presents a novel approach, SlideSim, which
effectively trains an optical flow predictor to specifically map 3D landslide displacement
using sequential DEM raster images. SlideSim can automate the generation of realistic
synthetic data of displaced landslide DEM rasters along with their accompanying label data
in the form of u/v (x/y-axis image coordinate velocities) pixel offset flow grids. SlideSim
enables networks to be trained using a self-supervised framework, removing the barrier
presented by the lack of available labelled field data for training. SlideSim offers many
advantages over variational image correlation approaches: (1) it does not require manual
tuning of feature extraction parameters, (2) additional synthetic data/training can be
conducted before inference on a new site to learn any site-specific features, and (3) SlideSim
can also output 3D displacement vectors compared with the 2D displacements available
from image correlation. The applicability and reliability of SlideSim for use in landslide
displacement mapping is demonstrated with real-world data collected at a landslide on
the Southern Oregon Coast in the USA through comparison with a manually-generated
ground truth dataset to evaluate the sensitivity of the network to the input DEM raster (cell
size, raster representation) and assess how the input data source (TLS, UAS SfM) impacts
the displacement mapping results.

2. Materials and Methods

SlideSim is a novel approach to enable self-supervised learning of 3D landslide displace-
ment monitoring using sequential DEM rasters as input. SlideSim consists of three primary steps:
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1. Generation and simulation of synthetic training data through deterministic modeling
of the landslide surface using a conservation of mass (COM) approach for many
different input scenarios;

2. End-to-end training of an optical flow predictor network using RAFT architecture and
transfer learning followed by training on the simulated dataset;

3. Inference and calculation of the 3D landslide displacement vector map by first feeding
sequential DEM rasters through the trained model to generate 2D horizontal dis-
placement vectors followed by deterministic computation of the vertical component
of displacement.

2.1. Simulation and Generation of Synthetic Training Data

A synthetic dataset of labeled displaced landslide DEM rasters is generated to train the
optical flow predictor using a self-supervised learning process, where the supervisory signal
used in training is generated in an automated process. Synthetic data enable a sufficient
amount of training data, which are impractical to collect and hand label from sets of pre-
and post-movement DEMs of actual landslide movements. To generate the synthetic data,
a physics-based, conservation of mass (COM) approach similar to that described in [36] is
used. The principle of conservation of mass states that the mass of a closed system must
remain constant over time. Using this principle and assuming incompressible behavior and
rigid basal motion, the change in elevation across the landslide can be computed such that
the mass of the landslide remains constant for a given set of boundary conditions (landslide
boundary and slip surface) and a given velocity field. By using the finite difference method
via the central difference method, if raster cells containing the landslide depth (m), and
surface velocities (m/epoch) are known, or in this case assumed, the elevation of each cell
in a DEM of a landslide can be updated for each epoch of movement:

− ∂z
∂t

= ht
∂vel
∂L

+ velt
∂h
∂L

(1)

where z is the ground surface elevation, t is the epoch, h is the landslide depth, vel is the
landslide horizontal velocity, and L is the horizontal change. Equation (1) can be expanded
for each horizontal velocity component:

− ∂z
∂t

= ht
∂u
∂x

+ ut
∂h
∂x

+ ht
∂v
∂y

+ vt
∂h
∂y

(2)

where u and v are the x/y components of velocity, respectively, and x and y are the positional
components along the x/y-axis, respectively, such that ∂x and ∂y correspond with the cell
size of the finite grid in the approach used. From Equation (2), the ground elevation, and the
landslide depth can be iteratively updated through for N movement epochs (representing
time) as shown in Equations (3) and (4):

Zt = Zt−1 −
∂z
∂t

(3)

ht = Zt − S (4)

where S is the elevation of the landslide slip surface at each pixel. This approach allows
a synthetic DEM raster representing the displaced landslide to be generated over N move-
ment epochs using finite grids representing unique landslide boundary grids, landslide slip
surface elevations (SSEM), and horizontal velocity rates. If realistic examples of the above
finite grids are generated, then the number of unique synthetic DEM rasters representing
example displaced landslides is the product of the number of each finite grid:

NsyntheticDEMs = NinitialDEMs × Nbounds × NSSEMs × Nvels (5)
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To ensure an adequate amount of training examples, realistic approximations of the
finite grids outlined above were generated (Figure 1) and augmented as described in the
subsections below.
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Figure 1. Examples of SlideSim augmentation, showing the augmentation of the original DEM for
several velocity grid, landslide boundary, and slip surface combinations. The numbers of coarse
grid points used to generate each of the velocity grids are 9, 16, 25, and 36 for rows 1, 2, 3, and N,
respectively. Velocity vector magnitude/direction is indicated by quiver arrows (scaled 20×) as well
as background color (blue = substantial movement, green/yellow = intermediate, purple = small).
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2.1.1. Augmenting the Landslide Boundary

A set of 10 initial landslide boundary rasters were manually delineated based on
a terrain hillshade map. The landslide boundary raster serves as a Boolean mask where
cells contain values of 0 and 1 outside and within the landslide boundaries, respectively.
These were drawn to represent possible landslide boundaries and did not necessarily
represent the precise, real-world landslide boundary. The landslide boundary rasters were
augmented using a simple scaling function to uniformly scale the boundary by a scalar
value while preserving its centroid and geometry. This process was completed for a set
number of evenly spaced scalar values ranging from a determined minimum to maximum
boundary size (Table 1). Having multiple, different landslide boundaries prevents the
model from developing spatial knowledge of the landslide boundary during the training
process, which could potentially lead to overfitting.

Table 1. Parameters used to generate training data for each of the input finite grids.

Grid Parameter Value(s) Description

Landslide Surface elevation (DEM) # of DEMs 2 Number of unique DEMs used in training

Landslide
Boundary

# of boundaries 10 Number of unique boundaries used
in training

Scale Factor 0.95 to 1.05 Range of scale factors used to randomly
resize landslide boundary

Landslide Slip Surface (SSEM)
# of Slope rasters 10 Number of unique SSEMs used in training

Scale Factor (DS) 0.8 to 1.2 Range of scale factors used to randomly
scale landslide depth

2D Horizontal Velocity

# of velocities 1000 Number of unique velocity grid files
generated for training

u 0 to −0.25 px/epoch Range of u component velocities
v −0.1 to 0.1 px/epoch Range of v component velocities

# coarse pts 9 to 64 Range of coarse grid pts used to initialize
velocity grid

2.1.2. Augmenting the Landslide Slip Surface

An approximate initial slip surface elevation model (SSEM) is generated for each
landslide boundary by fitting a 3D hybrid-spline surface to the landslide boundary using
the method outlined in [37], which provides a first order estimate of the 3D landslide slip
surface based on surface expressions of landslide features. Although the method requires
no subsurface information, the hybrid-spline approach can be adapted to use additional
known slip surface points extracted from inclinometer data (if available) as spline control
points to further improve the estimate. Augmentation of the slip surface is achieved by
scaling the depth of the landslide by a scalar value between a determined minimum and
maximum scaling value (Table 1):

SSEMaug = DEM − (DS × (DEM − SSEM)) (6)

where DS is the depth scaling factor. It is important to note that computing the exact slip
surface of the real-world landslide is not the goal; rather, the goal is simply to generate
many reasonably realistic potential slip surfaces for each of the landslide boundary rasters
generated above to provide diverse examples during training.

2.1.3. Generating Landslide Velocity Vectors

Two-dimensional (2D) horizontal velocity grids are generated using a randomly ini-
tialized spline procedure. A coarse grid of velocity vectors (u and v) of a predetermined
size is initialized with values in pixels per simulation epoch (px/epoch). Each element
in the coarse grid is then randomly set between a minimum and maximum u/v value
(Table 1) using a uniformly distributed pseudo random number generator. In general,



Remote Sens. 2022, 14, 2644 7 of 22

the maximum movement per simulation epoch should not exceed 0.25 pixels to maintain
accurate discretization and numeric stability. The specific values that should be selected as
minimum/maximum should be selected based on the approximate direction of movement
of the landslide and consider the aspect to prevent uphill movement. The points within
the coarse grid are then evenly distributed across a grid with the same dimensions as the
input DEM. A 3D spline is then used to interpolate a new dense velocity grid where the
coarse grid values are used as the spline control points. Through experimentation, this
method has been found to be capable of producing a wide range of complex velocity grids
that represent a wide range of possible landslide displacement scenarios. The velocity
grid can then be multiplied by the binary landslide boundary rasters to set the velocity of
non-landslide pixels to 0. Simulated landslide DEMs can then be generated by running the
simulation for a random number of epochs where the maximum number of epochs should
be set such that the maximum overall displacement exceeds the maximum approximate
displacement of the landslide.

2.2. Training of an End-to-End Optical Flow Predictor Network

The RAFT (Recurrent All-Pairs Field Transforms) network architecture [10] was used
as the optical flow predictor network. This architecture was selected because it has achieved
satisfactory performance in optical flow applications, is a relatively small network with only
2.7 million parameters, and is relatively easy to train compared with other architectures,
requiring 10× fewer training iterations [10]. Rather than training the model from nil on the
SlideSim generated landslide data, transfer learning is used, where the model parameters
are initialized from a pre-trained model trained on the FlyingChairs [35] and FlyingThings
dataset [38] for 100k iterations each as outlined in [10]. Transfer learning was used to
decrease the number of training iterations required with the generated landslide data as
the fundamental task is similar, where the feature extraction and similarity learned on the
pre-training dataset should transfer to the landslide displacement mapping. By using the
pre-trained model, there is also a decreased chance of the model overfitting the generated
landslide data.

Further training on the model using the SlideSim generated landslide dataset was
then performed to specialize the model for the task of displacement mapping. Training
was performed using several visual representations of the labeled pre and post movement
DEMs. A total of 50,000 training iterations were conducted for each model, where each
iteration used a unique combination of the input finite grids discussed above. The SlideSim
landslide data were generated live during training, saving both time and computational
expense. Both simulation and generation of the visual representation of the DEM were
implemented within the data loader using the slidePy [39] and faster-raster [40] python
packages that implement each of the components in highly efficient, parallelized code.

In addition, 2% of the training examples during training consisted of the FlyingThings3D
dataset [38] to help prevent overtraining to the SlideSim generated data. A 1cycle learning
rate scheduler [41] was used with the upper boundary of the learning rate set to 1 × 10−4.
The remaining training parameters were the same as those outlined in [10].

Two rasters no larger than 512 × 512 pixels (pre- and post-movement DEMs) were
used to train the model in addition to the 2D velocity vector (optical flow) raster. Rasters
larger than 512 × 512 were cropped to 512 × 512 using a random subsection covering
the same geographical extents. Further augmentation was performed during training in
addition to the landslide finite grid augmentation described above. Jitter was applied
using the pytorch colorjitter function [42] to randomly change the brightness, contrast, and
saturation of pixels in both the pre and post landslide DEMs. DEM rasters were also
randomly augmented to contain occlusions where the pixels within a random patch of
a given size were all set to the mean pixel value of the patch. Lastly, the training data
were augmented spatially by randomly flipping the images around their axis, as well as
randomly rescaling the images.
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2.3. Inference and Calculation of the 3D Landslide Displacement Vector Map

Displacements between two DEMs can be computed by performing inference on the
trained model. Visual representations of the DEMs should be computed and fed into the
model along with the optimized weight parameters computed during the training process,
which will output a “flow” raster where each cell contains the predicted horizontal (u)
and vertical (v) velocities between the two DEMs in image coordinates. These velocities
can then be converted into real-word displacements by multiplying the image velocity
components by the raster cell size as shown in Equations (7) and (8) below:

Vx = u × ∆X (7)

Vy = v × ∆Y (8)

where ∆X and ∆Y are the x and y components of the cell size respectively. The vertical
component of displacement is computed by using this 2D velocity grid to remap each cell
of the post-landslide DEM to its original pre-displacement 2D position. Remapping of the
post-landslide DEM is conducted for each cell by:

DEMR(x, y) = DEM(x − u(x, y), y − v(x, y)) (9)

where DEMR is the remapped DEM, x and y are the raster coordinates and u and v are the
x/y velocity grids in pixel coordinates. Interpolation can be used to compute the elevation
value of pixels at non-integer raster coordinates. The actual vertical component of dis-
placement can then be calculated by computing the per cell difference of the pre-landslide
DEM from DEMR. By combining this vertical displacement with the previously computed
horizontal displacement, the actual 3D displacement that has occurred is computed across
the landslide.

2.4. Test Dataset

The Arizona Inn Landslide (Figure 2) is situated approximately 23 km north of the city
of Gold Beach between Highway 101 Mileposts 315 and 316 on the Southern Oregon Coast,
USA. The landslide faces west with an average slope of approximately 20◦. The primary
area of interest is approximately 500 m wide (from north to south) and approximately 550 in
length (from east to west). Like many coastal landslides, Arizona Inn is fronted by a steep
coastal bluff approximately 50 m in height. At the top of the bluff is a relatively gentle
bench traversed by Hwy 101. East of Hwy 101, the landslide extends upslope covering
a steep, sparsely-vegetated slope approximately 120 m in height. In recent years, landslide
movements have varied approximately 0.2 m to 0.3 m per year in the most active section
just west of the highway [43].

A sequential set of surveys collected in the summers of 2020 and 2021 at the Arizona
Inn Landslide were used to test the proposed approach. Data for each survey consisted
of TLS scans collected with a Riegl VZ-400, and UAS SfM MVS photogrammetric dataset
collected with a DJI Phantom 4 Pro RTK. Three Leica GS14 receivers were used during
the survey: one to measure the location of each TLS scan position, another to measure
GCP (ground control points) used for registration of the UAS data, and a third was setup
as a local base station to enable post-processing. The TLS and UAS SfM datasets were
processed and analyzed separately in order to demonstrate the performance and versatility
of SlideSim. Each data source was individually georeferenced. TLS data were georeferenced
using the approach outlined in [17,44] using the GNSS data to constrain the origin of each
scan position. UAS SfM/MVS data were georeferenced using AgiSoft Metashape [45] using
PPK processing conducted with rtklib [46] to constrain the UAS camera origins along with
the GNSS measured GCP points as additional constraints. An approximate estimate of
georeferencing accuracy for each data source was derived by computing the RMSE between
corresponding points across the survey epochs on stable areas outside of the landslide
extents. This yielded a 3D georeferencing RMSE of 0.008 m and 0.027 m between the
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two survey epochs for the TLS and UAS datasets, respectively. Ground filtering of the point
cloud, generation of DEM rasters based on the median elevation value of the ground points
for each cell in the XY plane, and hole-filling using a thin plate spline for interpolation in
areas of the dataset with lower point density was performed as outlined in [47] to produce
a continuous DEM for each data source/survey epoch.
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the section used for the quantitative analysis (TLS boundary), and the UAS data boundary.

For the quantitative assessment of SlideSim, a 10,486 m2 subsection representing
a 102.4 m by 102.4 m square of the landslide in the south-west portion of the landslide was
used (Figure 3). This subsection was chosen because it contained:

1. The highest point density of the TLS scans, enabling DEMs of several cell sizes
to be created in order to properly assess the impact of cell size in the quality of the
output displacement vectors as well as enabling the generation of high-quality ground
truth points.

2. A wide range of displacement magnitudes as it extends over a lateral scarp of one of
the nested failures within the active portion of the landslide complex, and

3. A wide variety of land cover types, ranging from west to east through: grass, sparse
vegetation, paved road, and a patch of dense vegetation in the southeast (Figure 2).
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Figure 3. Ground truth points used within the quantitative analysis subsection of the landslide. Black
vectors (54 total) were measured from the TLS point cloud using an adapted ICP approach. Red
vectors (73 total) were measured from a set of georeferenced orthomosaic RGB images collected at
the same time as the TLS surveys. Vectors are scaled 20×. Histogram shows the frequency of each
magnitude of displacement bins.

For the quantitative assessment, the TLS derived datasets (Table 2) were used for each
of the experiments, while the UAS derived dataset (Table 2) was used in the data source
flexibility experiment.

Table 2. Summary table describing each of the DEM rasters included in the test dataset.

Collection
Date Data Source Cell Sizes (∆cell, m) Extent Area

(m2)
# of pts

(million)

Mean pt
Density

(pts/0.01 m2)

Std Dev. pt
Density

(pts/0.01 m2)

06/14/2020
TLS 0.025, 0.05, 0.1, 0.2 10,485.76 30 29.3 176
UAS 0.1 167,772.16 278 20.5 12.9

06/14/2021
TLS 0.025, 0.05, 0.1, 0.2 10,485.76 26 21 49.2
UAS 0.1 167,772.16 176 15.8 10.3

2.5. Assessment of Accuracy

Performance of a rigorous accuracy assessment is important to measure the efficacy
of a given approach. However, robustly assessing accuracy using data from a real-world
landslide is more challenging than synthetically generated data where the correct results
can be absolutely known. Challenges arise from multiple factors including: georeferencing
uncertainty within the input datasets, artifacts present in the data, and the uncertainties
involved in any method used to measure 3D landslide displacement.

For this study, a ground truth dataset of real-world 3D landslide displacement vectors
was created using a combination of the georeferenced TLS point clouds and georeferenced
orthomosaic images, which were collected at approximately the same time. The ground
truth points from each of these data sources were combined and used for the assessment of
all experiments shown below.
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3D displacement vectors were created from the TLS point cloud data by extracting
points within a given 2 m window around a unique object. At this particular site, guard rail
posts and a drainage cistern were used as they were the only readily identifiable, consistent,
and unique objects present across both survey epochs. Points located within these windows
were then matched between the two survey epochs using an adapted ICP approach, similar
to that used by [48], where the rotation angles were held constant to allow adjustment in
translation only. Displacement vectors were then mapped to the coordinates of the center of
the window. To ensure consistency, these displacement vectors were then verified manually
by picking points between the two survey epochs.

Additional 3D displacement vectors were created from the UAS RGB orthomosaic im-
ages by manually matching pixels between common image features across the two datasets,
enabling more geographically distributed points to be created. The vertical change com-
ponent was computed using the DEMs where the vertical displacement was the eleva-
tion at the pixel in post landslide DEM minus the elevation at the matching pixel in the
pre-landslide DEM.

In order to compare this ground truth to the output of SlideSim, a suitable method
of assessing the accuracy of continuous finite grids should be used. In predictive optical
flow, the most common method is the Endpoint Error (EPE) [49], which is calculated as the
element-wise Euclidean distance between the vectors of the predicted and ground truth
datasets as shown for the 2D and 3D cases in Equations (10) and (11), respectively:

EPE2D =

√(
xgt − xpred

)2
+
(

ygt − ypred

)2
(10)

EPE3D =

√(
xgt − xpred

)2
+
(

ygt − ypred

)2
+
(

zgt − zpred

)2
(11)

where xgt, ygt, and zgt are the ground truth 3D displacement vectors and xpred, ypred, and zpred
are the predicted 3D displacement vectors. The EPE is a measure of the total error across
the predicted 3D displacement vector grid. High values indicate erroneous prediction,
while low values indicate correct prediction.

2.6. Experiments

In order to test the efficacy of SlideSim for landslide displacement mapping, five different
experiments were performed to evaluate and highlight various aspects of SlideSim. The
experiments performed and their reasoning are highlighted in the sections below:

2.6.1. Experiment #1: Representation of DEM

DEMs contain raw elevation information over a given area. Since DEMs in their
raw form are difficult to visualize in 2D, users are reliant on visual representations of the
DEMs when performing any delineation or matching tasks using DEMs. These visual
representations enhance contrast, delineate topographic features, and allow for overall
easier visual perception and interpretation of the terrain. Rather than solely training the
optical flow predictor model with the raw DEM, additional models are trained using visual
representations since it is reasoned that these would make greater use of the pre-training
on RGB images as well as provide a more flexible final model that is more likely to produce
accurate results across a variety of terrain types.

In order to test the impact of DEM representation on model performance, four different
optical flow predictor models were trained: the raw DEM, a hillshade representation of
the DEM, a 3 × 3 slope map representation of the DEM, and a hybrid image containing
each of the above in a separate band. Each were normalized to a range of 0 to 1. Both the
hillshade and slope rasters were computed using a gradient approximation method [50]
with a sliding 3 × 3 window. Each model was trained for 50 k iterations, and then
inference was performed on the trained model and compared to the ground truth dataset
created above.
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2.6.2. Experiment #2: Cell Size of Input Model

Cell size (∆cell) is an important consideration when conducting any raster-based
analysis [51,52]. A smaller ∆cell enables the analysis to be conducted at a higher resolution
so that smaller scale features can be considered within the analysis. However, this added
information and detail comes at the expense of increased computational time as well as
potential increased noise within the data. In change analysis, the optimal ∆cell of input
data requires careful consideration of both the quality of the input datasets as well as the
scale of the change that has taken place.

To evaluate the sensitivity of model performance to the ∆cell, four different models
were trained using 0.025, 0.05, 0.1, and 0.2 m ∆cell using the TLS DEM. Each model was
trained for 50 k iterations using the hillshade representation of the DEM. Inference was then
performed on the trained model and compared to the ground truth dataset created above.

2.6.3. Experiment #3: Comparison to Other Methods

To show the effectiveness of the SlideSim methodology, three alternative methods were
used to compute the horizontal displacement using a hillshade representation of the DEM.
The accuracy of SlideSim was compared to these alternate published methods using the
ground truth dataset in order to compare a wide range of approaches:

1. The OpenCV implementation of Farnebäck optical flow algorithm [53], which is
widely used to compute dense optical flow.

2. The PIVlab [54] implementation of PIV (Particle Image Velocimetry), which has
recently been used to compute horizontal displacement of geomorphological features
using DEM derived products [27,55].

3. The RAFT deep learning optical flow approach [10] in its typical implementation
without additional training using SlideSim, providing a comparison to one of the
most widely used deep learning based optical flow approaches trained solely on RGB
images without additional landslide context.

2.6.4. Experiment #4: Vertical Component

One of the benefits of SlideSim is that it allows for the actual vertical component of
change for a specific feature to be computed, resulting in full 3D mapping of displacements
across the landslide. A typical change grid, in contrast, computes the vertical difference
of subsequent DEMs without any consideration of the horizontal displacement. The
proposed method evaluates the horizontal and vertical change simultaneously given that
it is extracting vectors rather than simply differencing pixels. The accuracy of computed
vertical change from the proposed, remapping method and a typical difference grid were
compared using the ground-truth dataset.

2.6.5. Experiment #5: Data Source Flexibility

To test the versatility of this approach, SlideSim was also tested on a set of DEMs
derived from UAS SfM MVS photogrammetric data collected at the same landslide site,
in parallel with the TLS data. UAS is often advantageous for large landslide sites because
it is more feasible to cover large areas compared with terrestrial based systems. DEMs
(∆cell = 0.1 m) were created over a larger extent of the landslide in order to evaluate how
this method could practically be applied to map the overall displacements across a large
landslide. A separate optical flow predictor model was trained using the UAS derived
DEM with SlideSim over the full extents using the same approach and parameter set as used
for the TLS derived data above. The same ground truth dataset was also used in addition
to test the accuracy of the 2D displacement predicted by inference of the trained model to
the TLS derived data.
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3. Results
3.1. Experiment #1: Representation of DEM

Table 3 presents the 2D accuracy statistics of each of the DEM representation methods
used, while Figure 4 shows a visualization of the results. The hillshade map produced
the most accurate displacement vectors (EPE RMSE = 0.026 m) after model training. The
hillshade/slope hybrid map and the normalized DEM map produced reasonable results
overall (EPE RMSE = 0.038 m and EPE RMSE = 0.042 m, respectively). The slope map
produced the least accurate displacement vectors overall (EPE RMSE = 0.095 m).

Table 3. 2D Accuracy of the proposed method using several representations of the DEM to compute
landslide displacement reported as EPE (end-point error) in meters compared to ground truth points.

EPE Statistic DEM Slope Hillshade Hillshade + Slope

Min (m) 0.003 0.016 0.001 0.002
Max (m) 0.088 0.250 0.099 0.195

Mean (m) 0.035 0.086 0.021 0.029
Std. Dev. (m) 0.023 0.036 0.015 0.025

RMSE (m) 0.042 0.095 0.026 0.038
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Figure 4. Visualization of the output 2D landslide displacement using 4 different DEM representa-
tions: (A) Normalized DEM, (B) Slope, (C) Hillshade, and (D) Combined Hillshade and slope. Black
vectors show the output 2D displacement vectors plotted every 100 cells, while the red vectors show
the ground truth vectors measured from the ground truth dataset. All vectors are scaled 20×.
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3.2. Experiment #2: Cell Size of Input Model

Table 4 presents the final 2D accuracy statistics of the model trained/tested us-
ing the proposed method for each of the tested cell sizes. Overall, higher resolution
(smaller cell size) models tend to perform much better than the lower resolution models
(e.g., EPE RMSE = 0.026 m for ∆cell = 0.05 m vs. 0.081 m for ∆cell = 0.20 m). Figure 5
shows the EPE against the observed displacement in the ground truth dataset. Both the
0.1 m and 0.2 m models produced relatively high EPE for small displacements (<0.1 m),
with EPE reducing as the magnitude of observed displacement increases. These results
indicate slight trends with R2 values of 0.47 and 0.26 for the 0.1 m and 0.2 m ∆cell models
respectively. EPE in the smaller ∆cell models (0.025 m and 0.05 m) showed no trend, each
with R2 values of 0.05.

Table 4. 2D Accuracy of SlideSim using various cell sizes (∆cell) of the input model to compute
landslide displacement reported as EPE (end-point error) in meters compared to ground truth points.

EPE Statistic ∆cell = 0.025 m ∆cell = 0.05 m ∆cell = 0.1 m ∆cell = 0.2 m

Min (m) 0.005 0.001 0.004 0.039
Max (m) 0.128 0.099 0.110 0.139

Mean (m) 0.036 0.021 0.046 0.079
Std. Dev. (m) 0.019 0.015 0.023 0.019

RMSE (m) 0.041 0.026 0.052 0.081
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3.3. Experiment #3: Comparison to Other Methods

Table 5 presents the final 2D accuracy statistics of each of the assessed methods. In addition
to producing the most accurate results compared to the ground truth (EPE RMSE = 0.026 m),
SlideSim also predicts the horizontal displacement geographically consistent with the
ground truth across the whole test site (EPE standard deviation = 0.015 m) (Figure 6D). In
comparison, some of the other methods worked well in areas of the test site but did not
produce consistent results across the whole site (EPE RMSE = 0.080 m, 0.142 m, and 5.463 m
for the Farnebäck, PIVlab, and RAFT without SlideSim, respectively).

Table 5. 2D Accuracy of select approaches to compute landslide displacement reported as EPE (end
point error) in meters compared to ground truth points.

EPE Statistic Farnebäck Optical Flow PIVLAB RAFT (Without SlideSim) RAFT (With SlideSim)

Min (m) 0.009 0.005 0.003 0.001
Max (m) 0.182 0.509 12.422 0.099

Mean (m) 0.070 0.112 3.071 0.021
Std. Dev. (m) 0.040 0.088 4.536 0.015

RMSE (m) 0.080 0.142 5.463 0.026
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Figure 6. Visualization of 2D landslide displacement mapping using 4 different methods:
(A) Farnebäck optical flow, (B) PIVLAB, (C) RAFT without SlideSim, and (D) RAFT with SlideSim.
Black vectors show the predicted 2D displacement vectors plotted every 100 cells, while the red vectors
show the ground truth vectors measured from the ground truth dataset. All vectors are scaled 20×.
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3.4. Experiment #4: Vertical Component

By remapping the DEMs using the horizontal displacement the RMSE improves
significantly from 0.068 m to 0.007 m (Table 6). Beyond the statistics, the difference between
the two methods can more easily be observed by visualizing the computed vertical change
across the landslide extents (Figure 7). In relatively flat areas (low slope) the estimated
vertical change is very similar between the two methods. This can be observed by looking
at the vertical change along the road for each method (Figure 7). However, in areas of the
landslide with steep slopes, the estimated vertical change is very different between the two
methods. This improvement is most readily observed in the test dataset by looking at the
cistern west of the road and the slope immediately east of the road (Figure 7). This example
shows that in areas where the slope aspect matches the direction of horizontal displacement
(most common in a landslide), differencing the DEMs without accounting for horizontal
change results in a positive (upward) bias in vertical displacement, whilst slope aspect
facing the opposite direction results in a negative (downward) bias in vertical displacement.

Table 6. Vertical accuracy of computing the vertical difference grid with and without using the
proposed remapping approach, reported as the difference in meters compared to the ground truth.

EPE Statistic Original Difference Grid Remapped Difference Grid

Min (m) −0.124 −0.031
Max (m) 0.692 0.038

Mean (m) −0.001 0.001
Std. Dev. (m) 0.068 0.007

RMSE (m) 0.068 0.007
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3.5. Experiment #5: Data Source Flexibility

The UAS derived data performed better (Table 7) than the 0.1 m TLS derived data
over the same extent (EPE RMSE = 0.030 m for UAS vs. 0.052 m for TLS). In addition, the
predicted 2D displacements computed using the UAS derived DEMs aligns with many
of the extents that can be observed in the broader landslide. Figure 8A shows that the
predicted displacements align with repaving markings along the highway, where repaving
has been performed due to lateral extension occurring at the scarp of the landslide. The
displacement grid also captures a nested failure that occurs within the main landslide body
(Figure 8B) in the bluff section of the landslide. In this section, accelerated displacements
line up with the scarp extents that can be observed in the hillshade of the DEM.

Table 7. Horizontal accuracy of the proposed method evaluated using 0.1 m DEMs derived from
UAS SfM MVS data collected in tandem with the TLS data across the same extents. Reported as EPE
(end-point error) in meters compared to the ground truth.

EPE Statistic UAS

Min (m) 0.002
Max (m) 0.084

Mean (m) 0.027
Std. Dev. (m) 0.015

RMSE (m) 0.030Remote Sens. 2022, 14, 2644 18 of 24 
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over the larger extents. Vectors are scaled 20×.
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4. Discussion
4.1. Experiment #1: Representation of DEM

The hillshade map combines both slope (magnitude) and aspect (direction) of the
local topography to produce a high contrast visual map that is relatively constant across
survey epochs. The detailed encoding of topographic information visually within a single
image produced the most accurate displacement vectors with relatively high consistency
across the site (Figure 4C). The hillshade/slope hybrid model, while producing good results
overall, still produced some erroneous north–south displacement predictions (Figure 4D)
and did not perform as well as the model trained with the hillshade alone.

The poor performance of the slope map is likely because the slope map only considers
magnitude and not direction, therefore, not considering the actual curvature of the slope
within the plan view, limiting the ability of the network to identify similar features. For
example, along the road and gentle grass slope immediately west of the road in Figure 4B,
the network erroneously predicts a southerly component to the landslide displacement
because of the relatively constant slope values in the north–south direction, similar to the
hillshade/slope hybrid model. The slope map also experiences similar problems in the
relatively flat section in the center-west section of the landslide (Figure 4B), where contrast
in slope values is low, leading to the network overpredicting the westward displacement.

The normalized DEM map, on the other hand, exhibits a significant performance
improvement over the slope However, the DEM trained model is not as robust as the
hillshade models and struggles to produce accurate predictions near the edge of the
DEM (Figure 4A), particularly in the northwest portion where some noisy displacement
vectors occur.

4.2. Experiment #2: Cell Size of Input Model

The improved performance by the high-resolution models is likely in part due to their
ability to detect small displacements more accurately compared with the low-resolution
models. The low-resolution models (0.1 m and 0.2 m) produced higher EPE for small
displacements (<0.1 m) due to over-predicting the displacement. This observed relationship
is likely due to these small displacements being smaller than ∆cell increasing the difficulty
for the model to make correct predictions. The lack of trend between EPE and the magnitude
of displacement in the high resolution (0.025 m and 0.05 m) models suggests that noise is
the dominant factor contributing to the EPE for these models.

The fact that the 0.025 m model does not outperform the 0.05 m model
(e.g., EPE RMSE = 0.041 m for ∆cell = 0.025 m vs. 0.026 m for ∆cell = 0.05 m) indicates that
the resolution cannot be increased from the limit of the original input data source (in this
case, the TLS derived point cloud). Further increases in resolution only introduce noise and
artifacts from the interpolation and reduce smoothing of the original data by averaging
points within a cell to remove outlier points.

The training process should also be considered when selecting ∆cell. For example, if
using a 512 × 512 random crop of the DEM in training, this would be the equivalent of
using 163.84 m2, 655.36 m2, 2,621.44 m2, and 10,485.76 m2 sections to train the model for
∆cell = 0.025, 0.05, 0.1, and 0.2 m, respectively. Therefore, for small values of ∆cell, the model
will have to learn to map displacement using smaller geographic features compared to
when using larger values. Certainly, the size of the crop area can be increased to use larger
sections of the DEM; however, this will result in exponential increases in the processing
time to train the model and the GPU RAM consumed during training, which can often be
a limiting factor.

4.3. Experiment #3: Comparison to Other Methods

The RAFT model (without SlideSim) produced more reasonable results in the lower
grassy section (west of the road) where texture is higher (EPE RMSE = 0.072 m); how-
ever, this model produced poor results along the road (where texture is low) as well
as poor results east of the road in the vegetated section where noise is higher (Overall
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EPE RMSE = 5.463 m) (Figure 6C). The Farnebäck method (Figure 6A) also produced rea-
sonable results immediately west of the road; however, it produced poor results along the
road as well as overall erroneous displacements along the y-axis (north–south) due to the
low contrast along the y-axis at this particular hillshade (Overall EPE RMSE = 0.08 m). The
PIV method (Figure 6B) produced overall erroneous displacement vectors across the whole
of the landslide (Overall EPE RMSE = 0.142 m) PIV is designed to detect high contrast
particles within a scene with consistent pixel intensities; hence, it is not ideal for landslide
DEMs where contrast is often relatively low in comparison.

4.4. Experiment #4: Vertical Component

Given that landslides can often occur in areas of relatively steep slopes, accounting
for the horizontal displacement is an extremely important part of determining the actual
vertical displacement that has occurred across a given landslide. In addition, while other
ground movement phenomena, such as subsidence and rockslope erosion, occur approxi-
mately perpendicular to the ground/reference surface plane, landslide displacement occurs
approximately parallel to the local shear surface and therefore can have a strong horizontal
component of movement. If landslide displacements are analyzed with 2D grids, then cor-
recting for movement parallel to the reference grid is essential for accurate monitoring. The
proposed remapping method robustly computes these displacements at a high resolution.

4.5. Experiment #5: Data Source Flexibility

The improved performance of the UAS derived data compared to the TLS derived
data is likely due to the greater spatial context provided by supplying data beyond the
test extent boundaries. Unlike the TLS data, UAS SfM MVS data cannot be as effectively
ground filtered due to the nature of passive sensing [56]. As a result, this versatility test
also demonstrates the ability of the proposed method to perform well with the additional
noise and vegetation present in the DEM. In addition to providing accurate estimates
of 3D landslide displacement, the proposed method with SlideSim can also delineate the
landslide boundaries as well as any nested failures, or other changes affecting the rate of
landslide displacement.

4.6. Limitations and Future Work

It is worth noting that several important limitations of mapping landslide displace-
ments with SlideSim exist. First, just as any analysis that relies on remote sensed data,
the performance of SlideSim depends on the quality and accuracy of the input DEMs.
Poorly georeferenced DEMs, or DEMs with insufficient resolution will result in inaccu-
rate displacement maps and potentially misleading measurements. Second, SlideSim has
been designed assuming rigid/semi-rigid displacement on landslides that have not been
fully evacuated, and therefore does not include debris flows, or rockfall type landslide
failures. While the Conservation of Mass approach used by SlideSim is capable of modelling
a diverse set of kinematic landslide motions, future work may want to consider adapting
our approach to include more complex landslide displacement phenomena, such as nested
failures. Additionally, future work studying the impact of changes in the input DEM cell
size should be considered. This would involve examining the relationship between optimal
cell sizes and accuracy of input data, scale of movement, and the size of geospatial features
across multiple landslide sides to develop key insights into the relation between each of
the above factors.

5. Conclusions

This paper presents a novel method enabling end-to-end self-supervised learning of
landslide displacement monitoring called SlideSim. SlideSim is an automated simulation
approach that generates labeled pairs of displaced landslide DEMs using real-world data for
training of deep learning models to evaluate displacement resulting from landslide surface
movements. The proposed method was evaluated both quantitatively and qualitatively on
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a real-world landslide dataset using multiple input data sources, resulting in the following
conclusions:

1. Real world landslide displacements can be accurately measured across a set of DEMs
using a deep learning model trained on synthetically generated data, demonstrating
that the proposed method is capable of training a model to identify displacements
that have occurred without signs of overtraining.

2. SlideSim can be completed with relatively few intuitive parameters and requires no
direct supervision or tuning of hyperparameters when performing inference with
the model.

3. A variety of representations of the DEM can be used during both training and inference
of the model; however, the hillshade representation produced the highest quality and
most consistent results.

4. Production of an accurate and dense 2D horizontal displacement grid enables remap-
ping of the elevation values within the DEM to compute the actual vertical displace-
ment that has occurred, producing significantly more accurate results than conven-
tional DEM differencing that do not account for horizontal displacement.

5. The method is robust to the input data source used to generate the DEMs and the
presence of vegetation artifacts within the DEM did not appear to negatively affect
the performance of the method at measuring displacements.
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