An Open Data Approach for Estimating Vegetation Gross Primary Production at Fine Spatial Resolution
Abstract
:1. Introduction
2. Materials and Data
2.1. Revised EC-LUE Model
2.2. Reconstructed Landsat 30-m NDVI Data
- We extracted the cloud-free pixels by using the cloud mask in the Landsat surface reflectance product.
- We used the cloud-free pixels’ reflectance to derive the NDVI. Before we calculated the NDVI, we inter-calibrated the red and near-infrared reflectance in Landsat 5 Thematic Mapper (TM), Landsat 7 ETM+, and Landsat 8 Operational Land Imager (OLI). The TM and ETM+ have similar band settings and research has shown that their NDVIs are consistent [15]. However, the reflective wavelength differences between ETM+ and OLI still affected the NDVI values [16]. Therefore, we used the coefficients in [16] to normalize the red and near-infrared band reflectance in OLI and ETM+. Next, we derived the NDVI from all the inter-calibrated cloud-free surface reflectance. After calculating the NDVI for each image, we generated the NDVI at each 16-day interval and set the highest NDVI at each pixel during this period as the 16-day interval NDVI.
- We performed NDVI gap-filling and wrote the quality control tag (QCtag) in the data quality layer. For pixels with NDVI observation, we wrote QCtag as 0 and kept the NDVI data. When the 16-day NDVI value was missing, we filled it by the linear interpolation method of two NDVI values of nearby dates. If the two nearby NDVI values were observed within 48 days, we defined this gap-filled NDVI as short-term gap-filled NDVI, and the QCtag was set as 1, which indicated that the reconstructed NDVI was based on short-term gap-filled data. If the two nearby NDVI values were more than 48 days apart, we defined this gap-filled NDVI as a long-term gap-filled NDVI, and the QCtag was set to 2 to indicate that the reconstructed NDVI was based on long-term gap-filled data. The data description of the gap-filled and reconstructed NDVI is shown in Table 1.
- We used the Savitzky–Golay filter with a window size = 3, an adaptation strength = 5 to smooth the NDVI data in the time series of each pixel. We were able to derive the time-series-reconstructed 30-meter-spatial-resolution NDVI of any given study area.
2.3. Generating GPP on GEE
2.4. Statistical Analysis
3. Results
3.1. Evaluation of Fine Resolution GPP
3.2. Comparison of GPP Estimates at Three Spatial Resolutions
3.3. The Acquisition of Landsat Data Affects GPP Estimation
4. Discussion
4.1. Benefits of the One-Step Process of GPP
4.2. Fine-Spatial-Resolution Remote Sensing Data Improves GPP Estimations
4.3. Challenges and Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Yuan, W.; Cai, W.; Xia, J.; Chen, J.; Liu, S.; Dong, W.; Merbold, L.; Law, B.; Arain, A.; Beringer, J.; et al. Global comparison of light use efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database. Agric. For. Meteorol. 2014, 192–193, 108–120. [Google Scholar] [CrossRef]
- Lin, S.; Li, J.; Liu, Q.; Gioli, B.; Paul-Limoges, E.; Buchmann, N.; Gharun, M.; Hörtnagl, L.; Foltýnová, L.; Dušek, J.; et al. Improved global estimations of gross primary productivity of natural vegetation types by incorporating plant functional type. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2021, 100, 102328. [Google Scholar] [CrossRef]
- Zheng, Y.; Shen, R.; Wang, Y.; Li, X.; Liu, S.; Liang, S.; Chen, J.M.; Ju, W.; Zhang, L.; Yuan, W. Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst. Sci. Data 2020, 12, 2725–2746. [Google Scholar] [CrossRef]
- Gelybó, G.; Barcza, Z.; Kern, A.; Kljun, N. Effect of spatial heterogeneity on the validation of remote sensing based GPP estimations. Agric. For. Meteorol. 2013, 174–175, 43–53. [Google Scholar] [CrossRef]
- Chen, B.; Ge, Q.; Fu, D.; Yu, G.; Sun, X.; Wang, S.; Wang, H. A data-model fusion approach for upscaling gross ecosystem productivity to the landscape scale based on remote sensing and flux footprint modelling. Biogeosciences 2010, 7, 2943–2958. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zheng, Y.; Zhang, H.; Lin, S.; Liang, S.; Li, X.; Ma, M.; Yuan, W. High spatial resolution vegetation gross primary production product: Algorithm and validation. Sci. Remote Sens. 2022, 5, 100049. [Google Scholar] [CrossRef]
- Xie, X.; Li, A. An Adjusted Two-Leaf Light Use Efficiency Model for Improving GPP Simulations Over Mountainous Areas. J. Geophys. Res. Atmos. 2020, 125, 1–19. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Peng, Y.; Masek, J.G.; Rundquist, D.C.; Verma, S.; Suyker, A.; Baker, J.M.; Hatfield, J.L.; Meyers, T. Remote estimation of crop gross primary production with Landsat data. Remote Sens. Environ. 2012, 121, 404–414. [Google Scholar] [CrossRef] [Green Version]
- Balzarolo, M.; Peñuelas, J.; Veroustraete, F. Influence of Landscape Heterogeneity and Spatial Resolution in Multi-Temporal In Situ and MODIS NDVI Data Proxies for Seasonal GPP Dynamics. Remote Sens. 2019, 11, 1656. [Google Scholar] [CrossRef] [Green Version]
- Robinson, N.P.; Allred, B.W.; Smith, W.K.; Jones, M.O.; Moreno, A.; Erickson, T.A.; Naugle, D.E.; Running, S.W. Terrestrial primary production for the conterminous United States derived from Landsat 30 m and MODIS 250 m. Remote Sens. Ecol. Conserv. 2018, 4, 264–280. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z.; et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, S.; Cheng, J.; Jia, K.; Jiang, B.; Liu, Q.; Xiao, Z.; Yao, Y.; Yuan, W.; Zhang, X.; Zhao, X.; et al. The Global Land Surface Satellite (GLASS) Product Suite. Bull. Am. Meteorol. Soc. 2021, 102, E323–E337. [Google Scholar] [CrossRef]
- Ju, J.; Roy, D.P. The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remote Sens. Environ. 2008, 112, 1196–1211. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E.; Holden, C.; Yang, Z. Generating synthetic Landsat images based on all available Landsat data: Predicting Landsat surface reflectance at any given time. Remote Sens. Environ. 2015, 162, 67–83. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Pastorello, G.; Trotta, C.; Canfora, E.; Chu, H.; Christianson, D.; Cheah, Y.; Poindexter, C.; Chen, J.; Elbashandy, A.; Humphrey, M.; et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 2020, 7, 225. [Google Scholar] [CrossRef]
- Huang, X.; Xiao, J.; Wang, X.; Ma, M. Improving the global MODIS GPP model by optimizing parameters with FLUXNET data. Agric. For. Meteorol. 2021, 300, 108314. [Google Scholar] [CrossRef]
- Abreu, R.C.R.; Hoffmann, W.A.; Vasconcelos, H.L.; Pilon, N.A.; Rossatto, D.R.; Durigan, G. The biodiversity cost of carbon sequestration in tropical savanna. Sci. Adv. 2017, 3, e1701284. [Google Scholar] [CrossRef] [Green Version]
- Grace, J.; Jose, J.S.; Meir, P.; Miranda, H.; Montes, R.A. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 2006, 33, 387–400. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.; Suyker, A.; Xiao, X. Modeling gross primary production of maize and soybean croplands using light quality, temperature, water stress, and phenology. Agric. For. Meteorol. 2015, 213, 160–172. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Lu, H.; Wang, Y.; Ye, T.; Yuan, W. Estimating winter wheat yield based on a light use efficiency model and wheat variety data. ISPRS J. Photogramm. Remote Sens. 2019, 160, 18–32. [Google Scholar] [CrossRef]
- Villarreal, M.L.; Norman, L.M.; Buckley, S.; Wallace, C.S.; Coe, M.A. Multi-index time series monitoring of drought and fire effects on desert grasslands. Remote Sens. Environ. 2016, 183, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Liu, H.; Huang, J.; Gao, Z.; Wang, G.; Li, D.; Yu, H.; Chen, X. Accelerated dryland expansion regulates future variability in dryland gross primary production. Nat. Commun. 2020, 11, 1665. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Roy, D.P. Spatially and temporally complete Landsat reflectance time series modelling: The fill-and-fit approach. Remote Sens. Environ. 2020, 241, 111718. [Google Scholar] [CrossRef]
- Dong, J.; Fu, Y.; Wang, J.; Tian, H.; Fu, S.; Niu, Z.; Han, W.; Zheng, Y.; Huang, J.; Yuan, W. Early-season mapping of winter wheat in China based on Landsat and Sentinel images. Earth Syst. Sci. Data 2020, 12, 3081–3095. [Google Scholar] [CrossRef]
- Fu, Y.; Huang, J.; Shen, Y.; Liu, S.; Huang, Y.; Dong, J.; Han, W.; Ye, T.; Zhao, W.; Yuan, W. A Satellite-Based Method for National Winter Wheat Yield Estimating in China. Remote Sens. 2021, 13, 4680. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Zhou, F.; Zhong, D. Kalman filter method for generating time-series synthetic Landsat images and their uncertainty from Landsat and MODIS observations. Remote Sens. Environ. 2020, 239, 111628. [Google Scholar] [CrossRef]
- Li, X.; Yuan, W.; Dong, W. A Machine Learning Method for Predicting Vegetation Indices in China. Remote Sens. 2021, 13, 1147. [Google Scholar] [CrossRef]
- Steven, M.D.; Malthus, T.J.; Baret, F.; Xu, H.; Chopping, M.J. Intercalibration of vegetation indices from different sensor systems. Remote Sens. Environ. 2003, 88, 412–422. [Google Scholar] [CrossRef]
- Masek, J.G.; Gao, F.; Wolfe, R.; Huang, C. Building a consistent medium resolution satellite data set using moderate resolution imaging spectroradiometer products as reference. J. Appl. Remote Sens. 2010, 4, 043526. [Google Scholar] [CrossRef]
- Yu, W.; Li, J.; Liu, Q.; Zhao, J.; Dong, Y.; Zhu, X.; Lin, S.; Zhang, H.; Zhang, Z. Gap Filling for Historical Landsat NDVI Time Series by Integrating Climate Data. Remote Sens. 2021, 13, 484. [Google Scholar] [CrossRef]
Quality Definition | Data Gap (x in days) between Two Nearest Observed NDVI in 16 Days Intervals | QCtag | NDVI-Filled Method |
---|---|---|---|
Reconstructed NDVI based on observation | 0 | 0 | Not applied |
Reconstructed NDVI based on short-term gap-filling | 0 < x ≤ 48 | 1 | Linearly interpolated from the nearest two available NDVI |
Reconstructed NDVI based on long-term gap-filling | 48 < x | 2 | Linearly interpolated from the nearest two available NDVI |
Data | Specific Name | Transferred Unit | Spatial Resolution | Data Source or Reference |
---|---|---|---|---|
NDVI | Normalized-difference vegetation index | Unitless | 30 m | This study |
Shortwave radiation | Downward short-wave radiation Flux surface 6-h average | MJ m−2 day−1 | 0.5° | NCEP |
Surface pressure | Surface pressure | Pa | 0.5° | NCEP |
2-m air temperature | Mean 2-m air temperature | °C | 0.25° | ERA5 |
2-m dewpoint temperature | Dewpoint 2-m temperature | °C | 0.25° | ERA5 |
CO2 | Global monthly mean CO2 | ppm | / | https://gml.noaa.gov/ccgg/trends/gl_trend.html, accessed on 31 December 2021 |
Vegetation classification map | GLC-FCS30 | 30 m | [17] |
Vegetation Type | εmax (g C m−2 MJ−1) | VPD0 (kPa) | |
---|---|---|---|
DBF | 3.26 | 71.09 | 1.16 |
EBF | 2.50 | 49.42 | 0.94 |
ENF | 2.89 | 45.69 | 0.81 |
MF | 2.93 | 66.87 | 0.86 |
GRA | 3.37 | 70.11 | 1.05 |
SAV | 2.33 | 53.24 | 1.89 |
SHR | 1.23 | 37.21 | 1.30 |
WET | 2.94 | 76.79 | 1.28 |
CRO | 4.50 | 64.00 | 1.50 |
Landsat R2 | MODIS R2 | AVHRR R2 | Landsat RMSE | MODIS RMSE | AVHRR RMSE | Landsat bias | MODIS bias | AVHRR bias | |
---|---|---|---|---|---|---|---|---|---|
CRO | 0.53 | 0.37 | 0.40 | 4.84 | 5.59 | 5.47 | −0.81 | 3.08 | 3.28 |
DBF | 0.73 | 0.72 | 0.61 | 2.38 | 2.39 | 2.85 | −0.31 | −0.03 | 0.74 |
EBF | 0.31 | 0.35 | 0.40 | 2.39 | 2.33 | 2.24 | 0.52 | −0.07 | 0.32 |
ENF | 0.66 | 0.71 | 0.41 | 1.80 | 1.67 | 2.38 | −0.14 | 0.11 | 0.59 |
GRA | 0.62 | 0.63 | 0.52 | 2.31 | 2.28 | 2.61 | −0.08 | 0.41 | 0.80 |
MF | 0.65 | 0.65 | 0.64 | 1.98 | 1.97 | 2.01 | 0.16 | −0.53 | −0.44 |
SAV | 0.72 | 0.66 | 0.50 | 1.33 | 1.46 | 1.78 | −0.02 | 0.69 | 0.78 |
SHR | 0.70 | 0.68 | 0.51 | 0.97 | 1.01 | 1.24 | 0.11 | −1.35 | −1.62 |
WET | 0.60 | 0.44 | 0.50 | 2.18 | 2.59 | 2.46 | −0.01 | −0.06 | −0.17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Huang, X.; Zheng, Y.; Zhang, X.; Yuan, W. An Open Data Approach for Estimating Vegetation Gross Primary Production at Fine Spatial Resolution. Remote Sens. 2022, 14, 2651. https://doi.org/10.3390/rs14112651
Lin S, Huang X, Zheng Y, Zhang X, Yuan W. An Open Data Approach for Estimating Vegetation Gross Primary Production at Fine Spatial Resolution. Remote Sensing. 2022; 14(11):2651. https://doi.org/10.3390/rs14112651
Chicago/Turabian StyleLin, Shangrong, Xiaojuan Huang, Yi Zheng, Xiao Zhang, and Wenping Yuan. 2022. "An Open Data Approach for Estimating Vegetation Gross Primary Production at Fine Spatial Resolution" Remote Sensing 14, no. 11: 2651. https://doi.org/10.3390/rs14112651
APA StyleLin, S., Huang, X., Zheng, Y., Zhang, X., & Yuan, W. (2022). An Open Data Approach for Estimating Vegetation Gross Primary Production at Fine Spatial Resolution. Remote Sensing, 14(11), 2651. https://doi.org/10.3390/rs14112651