
Citation: Jing, H.; Wang, Y.; Du, Z.;

Zhang, F. Hyperspectral Image

Classification with a Multiscale

Fusion-Evolution Graph

Convolutional Network Based on a

Feature-Spatial Attention Mechanism.

Remote Sens. 2022, 14, 2653. https://

doi.org/10.3390/rs14112653

Academic Editors: Lei Ma,

Claudio Persello, Arnaud Le Bris

and Tais Grippa

Received: 13 April 2022

Accepted: 30 May 2022

Published: 1 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing

Article

Hyperspectral Image Classification with a Multiscale
Fusion-Evolution Graph Convolutional Network Based on
a Feature-Spatial Attention Mechanism
Haoyu Jing 1,2 , Yuanyuan Wang 1,3,*, Zhenhong Du 1,2 and Feng Zhang 1,2

1 Zhejiang Provincial Key Laboratory of Geographic Information Science, Hangzhou 310028, China;
jinghaoyu@zju.edu.cn (H.J.); duzhenhong@zju.edu.cn (Z.D.); zfcarnation@zju.edu.cn (F.Z.)

2 School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
3 Ocean Academy, Zhejiang University, 1 Zheda Road, Zhoushan 316021, China
* Correspondence: wangyuanyuanxy@zju.edu.cn

Abstract: Convolutional neural network (CNN) has achieved excellent performance in the classifica-
tion of hyperspectral images (HSI) due to its ability to extract spectral and spatial feature information.
However, the conventional CNN model does not perform well in regions with irregular geometric
appearances. The recently proposed graph convolutional network (GCN) has been successfully
applied to the analysis of non-Euclidean data and is suitable for irregular image regions. However,
conventional GCN has problems such as very high computational cost on HSI data and cannot make
full use of information in the image spatial domain. To this end, this paper proposes a multi-scale
fusion-evolution graph convolutional network based on the feature-spatial attention mechanism
(MFEGCN-FSAM). Our model enables the graph to be automatically evolved during the graph
convolution process to produce more accurate embedding features. We have established multiple
local and global input graphs to utilize the multiscale spectral and spatial information of the im-
age. In addition, this paper designs a feature-spatial attention module to extract important features
and structural information from the graph. The experimental results on four typical datasets show
that the MFEGCN-FSAM proposed in this paper has better performance than most existing HSI
classification methods.

Keywords: hyperspectral image classification; convolutional graph network; fusion evolution;
multiscale; feature-spatial attention mechanism

1. Introduction

With the rapid development of hyperspectral imaging technology, people can easily
obtain hyperspectral images (HSI) containing hundreds of bands of useful information [1].
Nowadays, hyperspectral imaging technology plays an important role in the military,
economics, agriculture, environmental monitoring and other fields. The essence of the
application of HSI is to classify them. How to quickly and accurately classify each pixel in
HSI is the core issue.

People have done a lot of exploration and adopted many methods on the land cover
classification based on HSI. The early-staged methods are mainly based on conventional
pattern recognition methods, such as nearest neighbor classifier and linear classifier, in-
cluding the classic k-nearest-neighbor algorithm [2] and support vector machine (SVM) [3].
Besides, there are many methods that have been further used to improve the performance
of HSI classification, such as extreme learning machines [4], and sparse representation-
based classifiers [5].

However, it is difficult to accurately distinguish features using only spectral infor-
mation [6]. Many researchers used the spatial texture features of the image to design
classifiers for spectral and spatial information and achieved better classification results [7,8].

Remote Sens. 2022, 14, 2653. https://doi.org/10.3390/rs14112653 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14112653
https://doi.org/10.3390/rs14112653
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-2693-8318
https://orcid.org/0000-0003-1475-8480
https://doi.org/10.3390/rs14112653
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14112653?type=check_update&version=2

Remote Sens. 2022, 14, 2653 2 of 30

Spectrum-spatial classification methods can generally be divided into two categories. The
first method extracts spatial feature information and then combines it with spectral fea-
tures [9,10]. The second method directly combines spatial information with spectral features
and uses joint features to classify [11]. In addition, some scholars divided HSI into superpix-
els based on the spectral and spatial data of HSI and input the feature data of superpixels
into SVM to obtain the classification results of HSI [12–14]. Recently, some scholars have
proposed a superpixel-based HSI classification method using sparse representation [15,16]
and achieved good classification results.

Many conventional feature extraction methods are based on hand-made features and
heavily depend on professional knowledge and experience. In recent years, deep learning
methods have received widespread attention due to their powerful representation ability
and have been widely used in HSI classification tasks [17–21]. The deep learning method
does not rely on artificially designed shallow features. It can automatically acquire the high-
level features of the features by gradually aggregating the low-level features in the data.
These features have achieved great success in machine vision tasks. Chen et al. [17] first
used deep learning methods for HSI classification. They used stacked autoencoders (SAE)
and deep belief networks (DBN) for feature extraction and classification in spectral space.
Subsequently, a convolutional neural network (CNN) was widely used in HSI classification
due to its powerful image processing capabilities [22–24]. Hu et al. [25] proposed 1-D
CNN to directly classify HSI in the spectral domain. Chen et al. [26] proposed 3-D CNN to
extract the spectral and spatial features of HSI at the same time and achieved good results.
Haque et al. [27] proposed a lightweight 3D–2D convolutional neural network framework,
which reduces the computational burden through data dimensionality reduction, and uses
3D and 2D convolution operations to extract spatial and spectral features, obtaining good
results and achieving high classification accuracy.

However, CNN models only convolve on regular square regions, so they cannot
adaptively capture the geometric changes of different object regions in HSI. In addition,
when convolving all image blocks, the weight of each convolution kernel is the same. This
leads to the CNN possibly losing information regarding the class boundary in the process
of feature abstraction, and misclassification may occur due to the fixed convolution kernel.
In other words, the convolution kernel with a fixed shape, size, and weight are not suitable
for all regions in the HSI. In addition, due to the existence of a large number of parameters,
CNN-based methods usually require a long training time.

In addition to CNN, some other categories of networks are also used to classify HSI.
As a widely used model in the field of image segmentation, a fully convolutional network
(FCN) [28] has been successfully applied to the HSI classification task. The model uses
convolutional layers and pooling layers, which can effectively learn the deep features of
HSI and improve the classification performance. Furthermore, as a feedforward neural
network, recurrent neural networks (RNN) [20] have been studied for HSI classification
tasks. RNN can build a sequential model to effectively simulate the relationship between
adjacent spectral bands. In the meantime, generative adversarial network (GAN)-based [29]
has also been introduced for HSI classification. In recent years, Sun et al. [30] introduced
the Transformer framework to the HSI classification task, and they used a spectral-spatial
feature tokenization transformer (SSFTT) method to capture both spectral-spatial features
and high-level semantic features and achieved good results.

Compared with the method mentioned above, graph convolutional networks (GCN) [31]
can be directly applied to non-Euclidean data. In [32,33], GCN was applied to HSI classifi-
cation. However, some problems will occur when the conventional GCN is directly applied
to HSI classification. First, due to noise pollution in HSI, the edge weights of paired pixels
may not represent their inherent similarity, which may lead to inaccuracy in the initial
construction of the input image. In addition, GCN can only use the spectral features of the
image but ignore the spatial features and the computational cost of directly using pixels as
nodes to construct a graph is unbearable. In response to these problems, Wan et al. [34]
proposed a multiscale dynamic graph convolutional network (MDGCN) and achieved

Remote Sens. 2022, 14, 2653 3 of 30

good results. However, there are some problems with MDGCN. For example, a multiscale
fusion of spectral and spatial embedded information is directly spliced and added, and
there are no multiple weights to correspond to different scales of information. The model
treats all neighboring nodes equally when constructing the graph and cannot assign dif-
ferent weights to nodes based on their importance. Only the neighborhood information is
considered, and the global spatial information of remote sensing images is ignored.

Based on the aforementioned background, we present a method called ‘multiscale
fusion-evolution graph convolutional network based on feature-spatial attention mecha-
nism’ (MFEGCN-FSAM). We refer to the method of [34], using a superpixel segmentation
algorithm to segment the image into a certain number of superpixels and regard each super-
pixel as a node in the graph. Through this method, the computational cost on the graph will
be greatly reduced, and the impact of over-fitting can be reduced at the same time. In order
to make full use of the multiscale spatial and spectral context information of HSI, this paper
establishes input graphs locally and globally at different scales to flexibly capture spatial
and spectral features at different scales. This paper proposes a fusion evolution method
by which the graph can be automatically evolved to make the feature embeddings more
accurate during the convolution process. The model introduces the attention mechanism,
which assigns corresponding weights to the nodes in the graph and has achieved good
results in experiments.

To sum up, the main contributions of the proposed MFEGCN-FSAM are as follows:
First, we propose a fusion evolution method that enables the graph to be contin-

uously updated during the convolution process to generate feature embeddings more
accurately. Instead of using the initial fixed graph for convolution, we designed a fusion
and evolution method. In the process of graph convolution, the structural information
and node embeddings of the current graph are fused, and the graph structure evolves and
updates accordingly. Therefore, this method can make the graph continuously updated
during the convolution process to generate more accurate feature embeddings. The opera-
tions of graph fusion and evolution are constantly alternated during the training process,
which works collaboratively to produce more reasonable graph structures and promising
classification results.

Second, we establish input graphs locally and globally at different scales. In order to
take the multiscale information into consideration, we construct input graphs locally and
globally at different scales to fully utilize the spatial and spectral information of HSI. Unlike
the common GCN models that only use one fixed graph, the multiscale design enables
MFEGCN-FSAM to extract spectral-spatial features with different receptive fields so that
comprehensive contextual information from different levels can be integrated.

Third, we design a feature-spatial attention module, which effectively highlights the
important information in the graph by paying attention to the important local structures
and features of the graph to enhance the representation ability of the model.

Finally, experimental results on four typical hyperspectral image datasets show that
MFEGCN-FSAM achieves good performance compared to existing methods.

The remainder of this paper is organized as follows. Section 2 first provides an
introduction to the relevant background. Section 3 introduces the MFEGCN-FSAM method
we proposed in detail. Section 4 is the experimental results and analysis. Finally, we
summarize the work and conclude this paper in Section 5.

2. Related Works
2.1. Graph Convolutional Network

Many scientific fields study data with an underlying structure that is non-Euclidean,
such as social networks in computational social sciences, sensor networks in communica-
tions, functional networks in brain imaging and regulatory networks in genetics. In many
applications, such geometric data are large and complex (in the case of social networks, on
the scale of billions) and are natural targets for machine-learning techniques [35]. The graph
is an important type of non-European data. Many conventional deep learning methods are

Remote Sens. 2022, 14, 2653 4 of 30

often applied to Euclidean data but cannot be applied to feature extraction and application
of graph data. Therefore, some scholars have carried out exploration and research on
this demand.

Gori et al. [36] first proposed the concept of the neural network method applied
to graph data. Compared with RNN and CNN, the advantage of this method is that it
can operate on non-Euclidean data with graph structure. Specifically, the graph neural
network (GNN) can gather the features of the nodes on the graph and correctly embed the
entire graph into the new distinguishing space. Subsequently, Scarselli et al. [37] used a
supervised learning algorithm to make it easier for GNN to train on actual data.

However, their algorithm is computationally expensive and time-consuming on large-
scale graph data. Therefore, Bruna et al. [38] developed a graph convolution operation
based on spectral characteristics, which convolves on the neighborhood of each graph node
and produces node-level output results. After that, many expansion methods of graph
convolution were derived and achieved good results. For example, Hamilton et al. [39]
proposed a ‘GraphSAGE’ based on an inductive framework that can use node features to
generate node embeddings for previously invisible data. In addition, Defferrard et al. [40]
put forward the expression of CNN in the context of spectrogram theory. Based on previous
work, Kipf et al. [31] proposed a GCN model that can simultaneously encode graph
structure and node features to quickly approximate local convolution, simplifying GCN
through the first-order approximation of graph convolution, which makes the filtering
operation is more effective. With the rapid development of graph convolution theory,
GCN is widely used in different fields, such as recommendation systems [41] and semantic
segmentation [42].

In summary, GCN runs on a graph, which can aggregate and transform the feature
information of the neighbors of each graph node. Therefore, the convolution operation
of GCN is adaptively controlled by the domain structure of the graph, so GCN can be
based on a predefined graph Applied to non-Euclidean irregular data. In addition, node
features and local graph structures can be coded through learned hidden layers, so GCN
can exhaustively utilize image features and flexibly retain class boundaries. At present,
some scholars have applied GCN to HSI classification [32].

2.2. Hyperspectral Image Classification

There are many methods used in the field of HSI classification, such as random
forest [43] and SVM [44]. SVM shows good classification performance for a data set with a
limited number of labeled samples [45], but it cannot utilize the spatial information of the
image. In order to solve this problem, Camps-Valls et al. [46] designed a composite score
that can use spatial information. In addition, the Markov random field (MRF) method [47]
utilizes the spatial context information of HSI, assuming that adjacent pixels may be of the
same category.

However, the above methods are to manually extract the spectral and spatial features
of HSI, which are empirical. The methods based on deep learning [48] can automatically
learn features from HSI data, which are more and more widely used in HSI classification
tasks. Chen et al. [17] first introduced a SAE for HSI classification to learn hierarchical
features in an unsupervised manner. Subsequently, Chen et al. [1] utilized DBN to obtain
the robust features from HSI. Meanwhile, Shi and Pun [49] introduced RNN into the HSI
classification task and utilized RNN to obtain multiscale spectral, spatial features, which
can learn the spatial dependence of non-adjacent image patches in the two-dimensional
space domain. Furthermore, Zhu et al. [29] applied GAN to HSI classification with three
PCA components and random noise as input. Sun et al. [30] used 2D and 3D convolution
modules to extract shallow spectral and spatial features and used a Gaussian weighted
feature tokenizer for feature transformation, and finally inputted the transformed features
into the Transformer encoder module for feature representation and learning. Among these
deep learning methods, CNN, due to its weight-sharing characteristics, requires fewer

Remote Sens. 2022, 14, 2653 5 of 30

parameters than a fully connected network with the same number of hidden layers, so it
has attracted much attention in the application of large-scale HSI data.

According to the input information of the model, CNN-based HSI classification meth-
ods can be divided into three categories: spectral CNN, spatial CNN, and spectral-spatial
CNN. Spectral CNN-based HSI classification methods take each pixel vector as the input
of the model and utilize the CNN model to classify HSI directly in the spectral domain.
Hu et al. [25] proposed a 1D-CNN model to extract the spectral features of pixels to classify
HSI. Mining spatial information is very important in HSI classification; spatial CNN-based
methods usually use 2D CNN to extract spatial features of HSI. Makantasis et al. [23] pro-
posed 2D-CNN to extract the spatial features of HSI. Spectral-spatial CNN-based methods
aim to exploit joint spectral-spatial HSI features in a unified framework. Yang et al. [50]
proposed a 1D + 2D CNN framework for HSI classification, which can separately extract
spectral and spatial features of HSI and connect them to obtain the joint spectral and spatial
features. Chen et al. [26] proposed 3D-CNN to extract the joint spectral, spatial features of
HSI, which combined with regularization technology to make the model more generalized.
Although the CNN-based method shows superior performance in HSI classification, due
to its fixed convolution kernel design, it cannot handle the geometric changes of image
regions well, and its performance in class boundary classification is limited.

Since GCN can be calculated on non-European data with a graph structure, it can
flexibly retain class boundary information; GCN has been applied to HSI classification [32].
The main idea of the GCN-based HSI classification method is to treat each pixel of the
HSI as a node to construct a graph and to predict the category of each node in the graph,
which is more flexible than the square fixed convolution kernel used by CNN. For example,
Mou et al. [33] took the entire image, including labeled and unlabeled pixels, as input and
utilized a set of graph convolutional layers to extract features. However, GCN uses each
pixel of HSI as a node to construct the graph, which makes the calculation and storage cost
of the adjacency matrix very huge, which limits the application of GCN in HSI classification.
Wan et al. [34] performed superpixel segmentation on HSI, using superpixels as nodes of
the graph. In addition, Hong et al. [51] reduced the calculation of the adjacency matrix
by randomly extracting nodes in the HSI to construct a subgraph and used mini-batch
training to speed up gradient descent. However, the way of randomly extracting nodes to
construct subgraphs in HSI obviously breaks the original spatial adjacency relationship of
ground objects in HSI, which makes the model performance obviously limited. In addition,
these works cannot make full use of the information of different scales, from global to local.
Each node in the graph does not have different weights, and the current embedding and
graph structure cannot be well integrated to update the graph. In this article, we propose
MFEGCN-FSAM to provide a solution to the above problems.

3. Method

This section details the MFEGCN-FSAM model we proposed (see Figure 1). There
are four different spatial scales in our model, and each scale has two convolutional graphs
layers. When the HSI data is given, a series of preprocessing, such as denoising and nor-
malization, are first performed. Then, the image will be segmented into several superpixels
by the simple linear iterative clustering method (SLIC) [42]. The superpixels are used as
nodes in different spatial scales to participate in the construction of multiscale graphs.
Input the constructed graph into the feature-spatial attention module (FSAM), and the
input graph is processed by the FSAM to obtain the output graph features corrected by
the feature and spatial attention. The graph convolution operation is performed on these
graphs to aggregate the spectral-spatial feature information, our proposed fusion evolution
method can make the model fuse the structural information and data embeddings of the
current graph during the convolution process, and the graph structure evolves and updates
accordingly. Finally, the global and local classification results will be generated by the
classifier, and the final result is obtained by adding the trainable weight parameters.

Remote Sens. 2022, 14, 2653 6 of 30

Figure 1. The framework of MFEGCN-FSAM. In process (a), the initially input HSI is divided into
superpixels by the SLIC method after a series of preprocessing. For a demonstration, suppose there
are 14 superpixels x1, x2, . . . , x14 now. In (b), these superpixels construct the graphs on different
scales, respectively. The rectangles and lines represent nodes and edges, different colors represent
different land-cover types. (c) Represents the graph convolution part of the model. Each scale has
two graph convolution layers, and each graph convolution layer contains an FSAM. The graph was
automatically updated after being processed by FSAM, and softplus [52] was used as the activation
function. (d) Represents the output results of the convolutional layers at different scales. The final
classification result (e) was obtained by weighted summation of the output of the multiscale layers.

3.1. Graph Convolutional Network Framework

GCN [36] is a neural network that runs directly on the graph and gradually fuses
features in the neighborhood to generate node embeddings. An undirected graph can be
defined as G = (V, E), where V is the set of nodes and E are edges. Here A is defined as
the adjacency matrix of G. By referring to the radial basis function (RBF), the calculation
formula of A is defined as follows:

Aij =

 e
−
‖xi − xj

2‖
σ2 , i f xj ∈ N(xi) or xi ∈ N

(
xj
)

0, otherwise

(1)

where σ is the width parameter of the function, which controls the radial range of the
function, xi represents a node and N(xi) is the set of neighbors of xi.

The Laplacian matrix of G is defined as L = D− A, and D is the degree matrix of A.
The core of GCN is based on the spectral decomposition of the Laplacian matrix L. The
spectral decomposition of L is:

L = U

 λ1
. . .

λn

U−1 (2)

Remote Sens. 2022, 14, 2653 7 of 30

where U =
(→

u1,
→
u2, · · · ,

→
un

)
, is a matrix with column vector as unit eigenvector,

→
ui is the

column vector,

 λ1
. . .

λn

 is a diagonal matrix composed of n eigenvalues. Since U

is an orthogonal matrix, so the above formula can be written as

L = U

 λ1
. . .

λn

UT (3)

According to the Convolution Theorem, the Fourier transform of the convolution
integral of two functions f (t) and h(t) is equal to the product of the transforms of the
functions. The convolution formula of f and h is as follows:

f ∗ h = F−1
[

f̂ (ω)ĥ(ω)
]
=

1
2Π

∫
f̂ (ω)ĥ(ω)eiωtdω (4)

According to Inverse Fourier transform, f = U f̂ , h = Uĥ, thus f ∗ h = U
((

UT f
)
�
(
UTh

))
.

The convolution kernel h can be written in the form of a diagonal matrix diag
(

ĥ(λl)
)

according
to the following formula:

f ∗ h = h ∗ f =

h1
...

hn

�
 f1

...
fn

 =

h1 · · · 0
...

. . .
...

0 · · · hn

 f1

...
fn

 (5)

Therefore, the formula of graph convolution is:

f ∗ h = U

 ĥ(λ1)
. . .

ĥ(λn)

UT f (6)

Bruna [38] et al. optimized the convolution kernel, diag
(

ĥ(λl)
)

is changed to diag(θl),
that is gθ = diag(θl). Then the output of the convolution is:

youtput = gθ ? x = UgθUTx (7)

However, this method has drawbacks. Firstly, UgθUT will be calculated for each
forward propagation, which is too expensive. Secondly, the convolution kernel does not
have local properties, the matrix calculated by the convolution kernel has non-zero elements
in all positions, which means that this is a global, fully connected convolution kernel.

Defferrard et al. [40] proposed a method without decomposing the Laplacian matrix,
which is the Chebyshev polynomial approximation method:

gθ′(Λ) ≈
K−1

∑
k=0

θ
′
kTk

(
Λ̃
)

(8)

where the parameter θ is a vector of Chebyshev coefficients, Λ is a diagonal matrix contain-
ing the eigenvalues of Laplacian Matrix L, Tk

(
Λ̃
)

is the Chebyshev polynomial of order k

evaluated at Λ̃ = 2
λmax

Λ− IN , λmax is the largest eigenvalues of L.

Remote Sens. 2022, 14, 2653 8 of 30

Substituting Formula (8) into Formula (7), youtput = U ∑K−1
k=0 θkTk

(
Λ̃
)

UTx. According
to the properties of Chebyshev polynomials, youtput can be written as,

youtput = ∑K−1
k=0 θkTk

(
UΛ̃UT

)
x that is:

youtput = ∑K−1
k=0 θkTk

(
L̃
)

x (9)

where L̃ = 2
λmax

L− IN , and it is easy to notice that
(
UΛU>

)k
= UΛkU>. Now the value of

convolution depends on the Kth-order neighborhood of the central node. Kipf et al. [31]
assumed that λmax ≈ 2 and limited K = 1, thus the Formula (10) is transformed into the
following form:

youtput = gθ′ ? x ≈ θ
′
0x + θ

′
1(L− IN)x = θ

′
0x + θ

′
1D−

1
2 AD−

1
2 x (10)

Then assume that the parameters θ
′
0 and θ

′
1 are shared in the entire figure, the

Formula (10) becomes as follows:

youtput = gθ ? x ≈ θ
(

IN + D−
1
2 AD−

1
2

)
x (11)

At this point, the formula has become very concise, but there is still a problem. The
value range of the eigenvalue of IN + D−

1
2 AD−

1
2 is [0, 2]. Repeated calculation of this

formula in the network will cause numerical instability and gradient explosion or dis-
appearance. To solve this problem, Kipf et al. [31] used the renormalization to change
IN + D−

1
2 AD−

1
2 to D̃−

1
2 ÃD̃−

1
2 , where Ã = A + IN , D̃ii = ∑j Ãij, the Formula (11) is as

follows:
Z = D̃−

1
2 ÃD̃−

1
2 XΘ (12)

where Z is the result of convolution output, X is the input node feature matrix, Θ is the
convolution parameter matrix. To apply the Formula to GCN, we can define that:

H(l+1) = σ
(

ÂH(l)W(l)
)

(13)

where Â = D̃−
1
2 ÃD̃−

1
2 , H(l) is the first layer, H(0) = X, W is the weight matrix to be

trained, and σ is the activation function. Now, the definition of GCN has been completed.

3.2. Superpixel Segmentation

A HSI often contains tens of thousands or more pixels. If the conventional GCN
method is used to construct a graph with each pixel as a node, then the computational
consumption is unbearable, and the requirements for computing equipment will be greatly
increased. Therefore, in order to solve this problem, this article refers to [34] aggregating
the pixels with similar spatial and spectral characteristics in HSI into several superpixels.
The average value of the spectra of all pixels in the superpixel in each band is taken as its
feature vector. Specifically, the superpixel segmentation algorithm used in this paper is
SLIC [42], which is relatively good in terms of the result of generating superpixels and the
running speed. However, the SLIC algorithm is designed for RGB images and cannot be
used on images with multiple bands. This paper extends the SLIC algorithm so that it can
run on HSI. The algorithm details are as follows:

(a) Initialize the seed point

Suppose we perform superpixel segmentation on an HSI with N pixels, and the
preset number of superpixels is k. Let the seed points be evenly distributed in the HSI,
the number of pixels contained in each superpixel is N/k, and the distance between
each seed point is about S =

√
N/k. Define the feature vector of each seed point as

Remote Sens. 2022, 14, 2653 9 of 30

Ci = [B1i, B2i, . . . , Bni, Xi, Yi]
T , where B1i, B2i, . . . , Bni is the spectral vector corresponding to

the seed point, Xi, Yi is the coordinate value of the seed point, i ∈ [1, k].

(b) Move the seed point

The seed point is moved to the position with the lowest gradient in its surrounding
3 × 3 neighborhood. This is done to avoid seed points lying on edges and to reduce the
chance that the seed points will pick up noisy pixels.

(c) Assign pixels to the seed point

We define the spectral distance between the pixel point and the seed point as

dc =
√

∑N
n (bjn − Bin)

2, the spatial distance as ds =
√
(xj − Xi)

2 + (yj −Yi)
2, where j

is the number of the pixel. The comprehensive distance between the pixel and the seed

point as D =

√
d2

c + (ds
S)

2 ×m2 where m is the shape parameter, the larger m is, the more
regular of superpixels is. Calculate the distance D between the pixels within the 2S ∗ 2S
range of each seed point and the seed point and assign each pixel to the seed point with the
smallest distance D from it.

(d) Update the seed point

Calculate the mean of the feature vector a of all pixels within each superpixel and set
it as the new seed point feature vector.

(e) Iterative calculation and post-processing

Repeat steps c and d until the preset number of iterations is reached, which is set
to 10 in this paper. After the segmentation is completed, the connectivity of the superpixels
is detected, and the superpixels with a connected component greater than 1 will be sep-
arated. If a superpixel contains less than five pixels, assign it to the superpixel that has
the most contact with it. We refer to the design of Ren et al. [53] and use CUDA tools to
accelerate superpixel segmentation by a factor of nearly 80 with GPU acceleration.

3.3. Graph Fusion Evolution

Although GCN can effectively calculate and aggregate information on graph data,
one of its main disadvantages is that the graph constructed by GCN is fixed throughout
the process. If the initial input graph is not accurate enough, it will affect the accuracy
of the final result of the model. In order to solve this problem, this paper proposes a
fusion evolution mechanism on the graph, by fusing the result information of the current
convolution output with the previous layer’s graph, and then allowing the graph to be
automatically updated during the convolution process.

We define the adjacency matrix of the l layer as Âl ∈ Rn×n and the data embedding
Hl ∈ Rn× f output by the first layer, where n is the number of nodes in the graph, and f is
the feature dimension of each node. Our goal is to obtain the Âl+1 of next layer. Canonical
correlation analysis (CCA) is a method in the field of mathematical statistics to measure the
linear relationship between two sets of multidimensional variables [54]. Drawing on the
idea of CCA, we propose a feature-level fusion method for graph structure information and
embedding information. This fusion method not only helps the model to perform effective
feature fusion, but also eliminates redundant information in the data, which is conducive
to accurate and efficient update of the graph. We define Ĥ = Hl(Hl)

T
, Ĥ ∈ Rn×n to make

the embedding self-aggregate. Ĥ is a real symmetric matrix, and the shape is the same as
Âl , which is conducive to subsequent calculations.

According to the idea of CCA and taking into account the calculation performance,
we define a pair of projection vectors VA, VT , project Âl and Ĥ to obtain A∗ = VT

A Âl and
H∗ = VT

H Ĥ.
Suppose that SÂÂ ∈ Rn×n and SĤĤ ∈ Rn×n denote the covariance matrices of Âl and

Ĥ, respectively, while SÂĤ ∈ Rn×n denotes covariance matrices of Â and Ĥ. Then the

Remote Sens. 2022, 14, 2653 10 of 30

overall covariance matrix S, which contains all the information on associations between
pairs of features, can be denoted as:

S =

 cov
(

Â
)

cov
(

Â, Ĥ
)

cov
(

Ĥ, Â
)

cov
(

Ĥ
)
 =

SÂÂ SÂĤ

SĤÂ SĤĤ

 (14)

Now we hope to find a pair of linear combinations A∗ = WT
A Âl and H∗ = WT

H Ĥ that
maximize the correlation coefficient between A∗ and H∗. We can define the correlation
function as follows:

corr(A∗, H∗) =
cov(A∗, H∗)√

var(A∗) ·
√

var(H∗)
(15)

According to the definition, the expressions of variance and covariance of A∗ and H∗

can be obtained as follows:

cov(A∗, H∗) = VT
A SÂĤVH

var(A∗) = VT
A SÂÂVA

var(H∗) = VT
HSĤĤVH

(16)

Thus, Formula (16) can be written as:

corr(A∗, H∗) =
VT

A SÂĤVH√
VT

A SÂÂVAVT
HSĤĤVH

(17)

According to the characteristics of Function (19), we can define the constraints of A∗

and H∗:
var(A∗) = var(H∗) = 1 (18)

Now the optimization problem is:

optimize

maximize corr(A∗, H∗)

var(A∗) = var(H∗) = 1
(19)

Using the Lagrange multiplier method to solve the problem:

L(A∗, H∗) = cov(A∗, H∗)− λ1

2
(var(A∗)− 1)− λ2

2
(var(H∗)− 1) (20)

where λ1 and λ2 are Lagrange multipliers.
By transforming the partial derivative of L, we get:

λ1 = λ2 = cov(A∗, H∗)

S−1
ÂÂ

SÂĤS−1
ĤĤ

SĤÂ ·VA = λ2VA

S−1
ĤĤ

SĤÂS−1
ÂÂ

SÂĤ ·VH = λ2VH

de f ine λ = λ1 = λ2

(21)

The problem is transformed into solving the largest eigenvalue λ and the correspond-
ing eigenvectors VA. Finally, bring the λ and VA into (22) to solve VH :

Remote Sens. 2022, 14, 2653 11 of 30

After solving VA and VH, we can obtain their corresponding projection matrix WA = VAVT
A

and WH = VHVT
H . We can obtain fusion of the current layer between A∗ and H∗ by using

the summation method, namely:

Fl = WA Âl + WH Ĥ (22)

Referring to the design of [55], for the node xl in Hl , it is assumed that xl obeys
Gaussian distribution with the covariance of Âl and the unknown mean µl , namely
p
(

xl
)
= N(xl |µl , Âl). The preliminary fusion result can be defined as:

ul = W
1
2
A xl + W

1
2
H Hl (23)

It can be seen that such a fusion method utilizes the structural information and the
data embedding of the current graph to improve the graph, making the graph and the data
embedding of the next layer more accurate. However, if it is directly input to the next layer,
the fusion may cause performance degradation due to the inaccuracy of Hl and the lack of
structural information in the initial graph.

We must emphasize the structural information of the initially constructed graph. The
process of constraining the fusion result Fl of the current layer can be considered as a cross-
diffusion process between the initial graphs Âinit and Fl . Based on the above definition, we
define the expression of the node at the next layer as:

xl+1 = AÂinitul + ηε (24)

where s is white noise, i.e., p(ε) = N(ε|0, 1) and η is the weight parameter of ε. Under this
linear operation, we have:

p(xl+1|ul) = N(xl+1|Âinitul , η2 I) (25)

According to the total probability formula, we can obtain the distribution of xl+1:

p
(

xl+1
)
=
∫

N(ul |µl , Fl)N(xl+1| AÂinitul , η2 I)dul

= N(xl+1| AÂinitµ
l , ÂinitFl AÂT

init + η2 I)
(26)

Recalling the previous assumptions, xl+1 should also obey the Gaussian distribution
with the covariance Âl+1, so that we can obtain Al+1 as:

Âl+1 = Âinit

(
WA Âl + WH Ĥ

)
ÂT

init + η2 I (27)

In summary, the design of an automatic update graph has three advantages: firstly,
the graph is continuously updated during the convolution process, which can make the
graph and embedded information more accurate; secondly, the graph is robust to noise and
data scale during the update process; thirdly, the graph retains the intrinsic structure of the
similar manifold of the entire dataset during the update process.

3.4. Multiscale Contextual Information Integration

Due to the limitation of the convolution kernel, as the number of network layers and
iterations of GCN increase, the characteristics of each node will tend to be smooth. In
order to solve this problem, Chiang et al. [56] modified the regularization method of the
convolution kernel to solve the problem of high power operation of the convolution kernel.
Sami [57] et al. abandoned the deep-level convolution features and retained and spliced
the results of the multiscale low-level into features. In the classification of HSI, multiscale
information has proved to be extremely useful [58] because, in HSI, ground features usually

Remote Sens. 2022, 14, 2653 12 of 30

contain different geometrical characteristics. The semantic information obtained from
different scales can help people obtain rich local information about the image area.

3.4.1. Local Contextual Information

At scale s, each superpixel node xi will be connected to its s-order neighbors. Taking
the two-order scale as an example, the 1-order neighbors and second-order neighbors of
the central superpixel node xi will be connected to it, as shown in Figure 2.

Figure 2. Schematic diagram of two-order neighborhood connection. The red node denotes the
central node. The blue nodes denote the one-order neighbors of the central node. The orange nodes
denote two-order neighbors of the central node.

The neighbors of xi can be expressed as the Formula (28):

Rs(xi) = Rs−1(xi) ∪ R1(Rs−1(xi)) (28)

where R0(xi) = xi and R1(xi) is the 1-order neighbors set of xi. The neighbors closer to
the central node are aggregated more times, which means that the neighbors closer to the
central node have a greater impact on the central node.

For the sake of practical significance and efficiency, this paper constructs local graphs
as scale 1, 2, and 3. Therefore, the graph convolution layer of scale s can be defined as
Formula (29):

H(l+1)
s = σ

(
ÂsH(l)

s W(l)
s

)
(29)

The output of the local-level layers will be added as in Formula (30):

outputlocal = ∑
s

λsHs (30)

where λs is trainable weights corresponding to each layer.

3.4.2. Global Contextual Information

If there are only local graph convolutional layers, the information of the global context
in the HSI may not be used, so this paper designs a graph convolutional layer based on

Remote Sens. 2022, 14, 2653 13 of 30

the global context. Specifically, we consider that all superpixel nodes in the HSI have an
adjacency relationship in pairs and constructed an adjacency matrix as Formula (31).

Aglobal = e
−
‖xi − xj

2‖
σ2 i f xi 6= xj (31)

where xi represents a node and xj another node in the graph, as shown in Figure 3.

Figure 3. Schematic diagram of global graph construction.

However, the dense connection of all superpixel nodes in pairs will cause many
problems, such as increased computational cost, and some dissimilar nodes are incorrectly
connected together. To solve this problem, this paper sets a threshold β for the global
adjacency matrix. The larger the threshold β, the more similar the two nodes are. Only node
connections greater than β can be retained. Thus, the above formula becomes Formula (32).

Aglobal =

 e
−
‖xi − xj

2‖
σ2 , i f e

−
‖xi − xj

2‖
σ2 > β

0, otherwise
(32)

where threshold β is set to 0.8 throughout the experiments.
The global graph convolution layer can be defined as:

H(l+1)
global = σ

(
Âglobal H

(l)
globalW

(l)
global

)
(33)

The output of the global graph convolution layer is:

outputgloabl = λglobal Hglobal (34)

The final output of the method is:

outputtotal = outputgloabl + outputlocal (35)

3.5. Feature-Spatial Attention Module

Petar et al. [59] mentioned that one of the serious shortcomings of GCN is that GCN
treats all neighboring nodes equally and cannot assign different weights to nodes based
on their importance. This article refers to the design of CBAM [60] and proposes the
FSAM (as shown in Figure 4) suitable for GCN, which contains two submodules: a feature
attention module and a spatial attention module. In order to emphasize the meaningful
information of the two dimensions of the feature axis and the spatial axis, the graph will
pass through the feature attention module and spatial attention module sequentially. In

Remote Sens. 2022, 14, 2653 14 of 30

this way, the model can learn the “what” and “where” in the feature axis and the spatial
axis are important, and the information can flow accurately in the network. In summary,
FSAM improves the representational ability of the model by focusing on the important
information on the graph and suppressing the other.

Figure 4. The overview of FSAM. The module has two submodules: a spectral attention module and
a spatial attention module. The graph features are refined by FSAM.

3.5.1. Feature Attention Module

The feature attention module (see Figure 5) tries to find which features of a graph node
are important and which should be ignored. In order to aggregate the spatial information
of the graph, the module averages and maximizes the graph on the spatial axis. The
realization of the module is as follows.

Figure 5. The overview of feature attention module.

For the input graph G, we first aggregate the spatial information by averaging and
maximizing the spatial dimensions of the input graph to generate Favg and Fmax, which
represent the averaged feature and the maximized feature, respectively. Favg and Fmax will
be input into a fully connected network composed of a multi-layer perceptron (MLP), and
then the output feature vectors F

′
avg and F

′
max will be obtained. The elements of F

′
avg and

F
′
max are summed and combined to obtain the feature attention map M f eature. The formula

for calculating spectral attention is as follows:

M f eature= σ(MLP(Avg(G)) + MLP(Max(G)))

= σ
(

MLP
(

Favg
)
+ MLP(Fmax)

)
= σ(F

′
avg + F

′
max)

(36)

where σ is the activation function.

Remote Sens. 2022, 14, 2653 15 of 30

3.5.2. Spatial Attention Module

We generate the spatial attention map by using the spatial relationship between nodes.
Unlike the feature attention module, the spatial attention module (see Figure 6) tries to find
where is important in the graph. In order to aggregate the feature information of the nodes,
the module averages and maximizes the graph on the feature axis and concatenates the
results to generate an effective spatial information representation. The realization of the
module is as follows.

For the input graph G, we first aggregate the feature information by averaging and
maximizing the feature dimensions of the input graph and splicing the results to obtain
Sconcat. Sconcat will be input into a fully connected network consisting of a MLP, and then
the spatial attention map Mspatial . The spatial attention is calculated as follows:

Mspatial = σ(MLP(Concat(Avg(G), Max(G))))
= σ(MLP(S))

(37)

where σ is the activation function.

Figure 6. The overview of the spatial attention module.

4. Experiment

In this section, a description is provided of the exhaustive experiments conducted to
validate the effectiveness of the proposed MFEGCN-FSAM method, and also provide the
corresponding algorithm analyses. To be specific, we first compared MFEGCN-FSAM with
other state-of-the-art approaches on four publicly available HSI datasets, where four metrics
were adopted, including per-class accuracy, overall accuracy (OA), average accuracy (AA),
and kappa coefficient. Then, we conducted an ablation study to prove the effectiveness of
the multiscale design, fusion evolution module, and FSAM.

4.1. Datasets
4.1.1. Indian Pines

The Indian Pines dataset was collected in 1992 by airborne visible infrared imaging
spectrometer sensor in northwestern Indiana, USA. It is one of the earliest datasets used for
the classification of HSI. The dataset contains 145×145 pixels with a spatial resolution of
20 m × 20 m, and contains 220 spectral channels, covering the continuous wavelength from
0.4µm to 2.5µm. Before the experiment, 20 water absorption and noisy bands (104–108,
150–163, 220) needed to be removed. There are 16 land-cover classes in the ground-truth
map. Figure 7 shows the false-color image and the ground-truth map of Indian Pines.
Table 1 shows the pixels used for training and testing for each category.

Remote Sens. 2022, 14, 2653 16 of 30

Figure 7. Indian Pines. (a) False-color image. (b) Ground-truth map.

Table 1. Number of training and test sets for the Indian Pians dataset.

Class ID Class Name Train Test

1 Alfalfa 15 31
2 Corn-notill 30 1398
3 Corn-mintill 30 800
4 Corn 30 207
5 Grass-pasture 30 453
6 Grass-trees 30 700
7 Grass-pasture-mowed 15 13
8 Hay-windrowed 30 448
9 Oats 15 5
10 Soybean-notill 30 942
11 Soybean-mintill 30 2425
12 Soybean-clean 30 563
13 Wheat 30 175
14 Woods 30 1235
15 Buildings-grass-trees-drives 30 356
16 Stone-steel-towers 30 63

4.1.2. University of Pavia

The University of Pavia dataset captured the Pavia University in Italy with the RO-
SIS sensor in 2001. The dataset contains 610 × 340 pixels with a spatial resolution of
1.3 m × 1.3 m and contains 103 spectral channels covering a wavelength range from 0.43µm
to 0.86µm. This dataset includes nine land-cover classes. Figure 8 shows the pseudo-color
image of the University of Pavia and the real labeled map. Table 2 shows the pixels used
for training and testing for each class.

Figure 8. University of Pavia. (a) False-color image. (b) Ground-truth map.

Remote Sens. 2022, 14, 2653 17 of 30

Table 2. Number of training and test sets for the University of Pavia dataset.

Class ID Class Name Train Test

l Asphalt 30 6601
2 Meadows 30 18,619
3 Gravel 30 2069
4 Trees 30 3034
5 Painted metal sheets 30 1315
6 Bare soil 30 4999
7 Bitumen 30 1300
8 Self-blocking bricks 30 3652
9 Shadows 30 917

4.1.3. Kennedy Space Center

The Kennedy Space Center dataset was imaged by an AVIRIS sensor in Florida, USA.
The dataset contains 614 × 512 pixels with a spatial resolution of 18 m × 18 m. After
denoising, it contains 176 spectral channels, covering the wavelength range from 0.43 µm
to 0.86 µm. This dataset includes 13 land-cover classes. Figure 9 shows the pseudo-color
image of the Kennedy Space Center and the real labeled map. Table 3 shows the pixels
used for training and testing for each class.

Figure 9. Kennedy Space Center. (a) False-color image. (b) Ground-truth map.

Table 3. Number of training and test sets for the Kennedy Space Center dataset.

Class ID Class Name Train Test

1 Srub 30 728
2 Willow swamp 30 220
3 CP hammock 30 232
4 Slash pine 30 228
5 Oak/Broadleaf 30 146
6 Hardwood 30 207
7 Swamp 30 96
8 Graminoid 30 393
9 Spartina marsh 30 469
10 Cattail marsh 30 365
11 Salt marsh 30 378
12 Mudflats 30 454
13 Water 30 836

Remote Sens. 2022, 14, 2653 18 of 30

4.1.4. Salinas

The Salinas dataset is another classic HSI also collected by the AVIRIS sensor, but over
a different location in Salinas Valley, California. There are 204 bands are available after
discarding the 20 water absorption bands. The data set contains 16 types of features, and
54,129 samples can be referred. Table 4 lists 16 main land-cover categories involved in this
scene, as well as the number of training and testing samples used for our experiments. The
false-color map and ground-truth map are shown in Figure 10.

Table 4. Number of training and test sets for the Salinas dataset.

Class ID Class Name Train Test

1 Brocoli_green_weeds_1 30 1979
2 Brocoli_green_weeds_2 30 3696
3 Fallow 30 1946
4 Fallow_rough_plow 30 1364
5 Fallow_smooth 30 2648
6 Stubble 30 3929
7 Celery 30 3549
8 Grapes_untrained 30 11,241
9 Soil_vinyard_develop 30 6153
10 Corn_senesced_green_weeds 30 3228
11 Lettuce_romaine_4wk 30 1038
12 Lettuce_romaine_5wk 30 1897
13 Lettuce_romaine_6wk 30 886
14 Lettuce_romaine_7wk 30 1040
15 Vinyard_untrained 30 7238
16 Vinyard_vertical_trellis 30 1777

Figure 10. Salinas. (a) False-color image. (b) Ground-truth map.

4.2. Experimental Settings

In the experiment, we used Tensorflow 1.14 framework to implement the proposed
model. All experiments were run on RTX 3060Ti GPU with Python 3.7.3, CUDA 11.2. For
the adopted three datasets, usually 30 labeled pixels were randomly selected in each class
for training, or only 15 labeled examples are chosen if the corresponding class has less than
50 examples; the rest samples were used as the test sets. For training, Adam optimizer was
utilized to optimize all models. The cross-entropy loss function was chosen to measure

Remote Sens. 2022, 14, 2653 19 of 30

classification error. The learning rate and training epochs were set to 0.005 and 6000. For
four scales, namely three local scales and one global scale, their network architecture were
the same. For each scale, we used two convolutional graph layers with 24 hidden units.

We chose seven state-of-the-art baseline methods applied to the field of HSI classifi-
cation task as comparative approaches to verify the classification capability of MFEGCN-
FSAM from multiple perspectives. Specifically, we compared two conventional methods
(KNN [61] and SVM [62]), two CNN-based methods (2D-CNN [23] and 3D-CNN [26]), and
three GCN-based methods (GCN [31], miniGCN [51] and MDGCN [34]).

4.3. Classification Results
4.3.1. Results on the Indian Pines Dataset

The quantitative results obtained by different methods on the Indian Pines dataset
are summarized in Table 5, where the highest value in each row is highlighted in bold.
We observe that CNN-based models have higher classification accuracy than traditional
machine learning methods (KNN, SVM), but due to their fixed convolution kernel design,
they cannot obtain irregular local spatial information. The poor performance of GCN is due
to the fact that the performance of the semi-supervised learning model will be limited when
the labeled samples are sparse. We observe that the proposed MFEGCN-FSAM achieves
the top performance of all methods in terms of OA, AA and Kappa coefficients, and the
standard deviation is also very small, which shows that the proposed MFEGCN-FSAM is
more stable and effective than the compared method.

Figure 11 exhibits a visual comparison of the classification results generated by differ-
ent methods on the Indian Pines dataset. We can observe that many pixels are misclassified
by each other among the classes of Soybean-mintill, Corn-notill, and Corn-mintill. This
is because these three land-cover types have similar spectral features. Since each pixel is
regarded as a node, the low classification accuracy of GCN and MiniGCN can be expressed
by the pepper-noise-like errors. Because each node is treated equally in the calculation of
MDGCN, pixels are misclassified at the junction of land-cover categories. In contrast, the
MFEGCN-FSAM proposed in this paper shows the least errors in the resulting figure.

Table 5. Classification performance of different methods on Indian Pines dataset (%).

ID KNN SVM 2D-CNN 3D-CNN GCN MiniGCN MDGCN MFEGCN-FSAM

1 93.75 93.75 93.75 100.00 81.25 68.75 100.00 100.00
2 32.05 46.21 62.09 67.24 55.29 65.81 83.12 92.06
3 43.50 86.00 69.50 86.00 63.75 53.75 86.25 95.38
4 78.74 86.96 85.02 95.65 78.26 59.42 100.00 100.00
5 69.32 88.96 95.81 93.82 83.66 77.26 92.94 95.14
6 67.29 81.57 91.29 89.00 85.57 95.14 86.00 98.29
7 92.31 100.00 100.00 100.00 100.00 100.00 100.00 100.00
8 82.59 97.99 99.33 99.55 92.41 95.98 100.00 98.88
9 100.00 60.00 100.00 100.00 80.00 100.00 100.00 100.00

10 60.93 81.10 74.42 88.32 81.00 64.54 78.24 90.34
11 53.61 67.79 59.59 72.25 59.96 69.69 90.27 90.02
12 40.67 75.67 68.21 83.48 67.85 60.75 95.91 96.63
13 92.00 98.86 99.43 97.71 99.43 98.29 100.00 100.00
14 67.21 87.85 93.52 95.79 90.77 92.55 99.76 99.84
15 27.53 88.48 82.87 97.47 68.82 49.44 94.66 98.31
16 92.06 90.48 100.00 100.00 96.83 95.24 85.71 93.65

OA 55.07 75.74 75.19 83.40 72.12 72.85 90.09 94.38
AA 68.35 83.23 85.93 91.64 80.30 77.91 93.30 96.78

Kappa 49.56 72.64 71.87 81.17 68.53 68.84 88.69 93.58

Remote Sens. 2022, 14, 2653 20 of 30

Figure 11. Classification maps obtained by different methods on Indian Pines Dataset. (a) False-color
image; (b) ground-truth map; (c) KNN; (d) SVM; (e) 2D-CNN;(f) 3D-CNN; (g) GCN; (h) MiniGCN;
(i) MDGCN; (j) MFEGCN-FSAM.

4.3.2. Results on the University of Pavia Dataset

The quantitative results obtained by different methods on the University of Pavia
Dataset dataset are summarized in Table 6, where the highest value in each row is high-
lighted in bold. Please note that GCN is not used for comparison because the operation
of GCN on this large dataset will exceed the memory capacity. The results in Table 5
show that the proposed MFEGCN-FSAM has the best performance. When many objects
belonging to the same category are distributed in widely dispersed areas, we observe that
MiniGCN performs poorly because its form of randomly constructing subgraphs destroys
the spatial topological connection of the original data. From the visual classification results
in Figure 12, the results of MFEGCN-FSAM presented in this paper show the strongest
spatial correlation to other methods.

Table 6. Classification performance of different methods on the University of Pavia dataset (%).

ID KNN SVM 2D-CNN 3D-CNN MiniGCN MDGCN MFEGCN-FSAM

1 59.19 94.03 82.71 68.61 81.55 95.50 92.47
2 61.25 74.13 92.58 88.57 83.22 90.85 98.34
3 69.12 91.74 92.70 83.91 81.05 94.15 96.38
4 95.29 96.77 96.14 87.54 83.66 88.40 90.41
5 99.39 100.00 100.00 100.00 85.68 99.24 97.72
6 57.11 83.38 80.62 90.28 80.55 96.90 92.16
7 95.08 97.77 99.00 99.77 82.53 94.31 97.15
8 60.65 92.55 82.53 80.42 81.08 94.50 97.45
9 99.89 98.47 99.89 98.80 83.00 92.04 98.04

OA 66.25 84.41 89.62 85.59 82.44 92.98 95.90
AA 77.44 92.09 91.80 88.65 82.48 93.99 95.57

Kappa 58.02 80.16 86.37 81.27 76.59 90.81 94.57

4.3.3. Results on the Kennedy Space Center

The quantitative results obtained by different methods on the Kennedy Space Center
dataset are summarized in Table 7, where the highest value in each row is highlighted in
bold. Compared with the results on the previous two datasets, the results of each method

Remote Sens. 2022, 14, 2653 21 of 30

on the Kennedy Space Center data set are significantly higher because the dataset has higher
spatial resolution and less noise. Combining the data in Table 7 and the visualization results
in Figure 13, compared with other methods, it can be seen that the MFEGCN-FSAM pro-
posed in this paper has higher classification accuracy and better classification performance.

Figure 12. Classification maps obtained by different methods on University of Pavia Dataset.
(a) False-color image; (b) ground-truth map; (c) KNN; (d) SVM; (e) 2D-CNN; (f) 3D-CNN;
(g) MiniGCN; (h) MDGCN; (i) MFEGCN-FSAM.

Table 7. Classification performance of different methods on Kennedy Space Center (%).

ID KNN SVM 2D-CNN 3D-CNN GCN MiniGCN MDGCN MFEGCN-FSAM

1 81.81 79.89 80.32 92.66 83.58 87.00 100.00 100.00
2 83.57 80.28 66.87 85.28 88.26 84.04 83.57 94.37
3 74.34 96.46 69.32 81.82 85.40 92.92 93.36 97.35
4 52.70 59.01 60.47 48.26 37.84 16.22 86.49 99.55
5 54.96 87.79 86.42 92.59 79.39 79.39 100.00 95.42
6 41.71 91.96 58.39 95.30 77.89 70.35 94.97 96.48
7 90.67 97.33 100.00 92.00 84.00 93.33 97.33 100.00
8 55.11 34.91 78.63 95.44 87.53 87.53 92.27 97.51
9 86.94 96.33 62.73 82.27 95.31 87.76 79.59 100.00
10 77.54 82.09 64.81 83.64 86.10 88.50 95.45 98.40
11 87.15 91.26 94.69 94.69 98.20 99.23 94.86 100.00
12 71.04 81.18 91.49 69.50 91.12 83.72 100.00 99.79
13 97.77 100.00 98.35 96.34 97.88 97.88 100.00 100.00

OA 78.26 83.59 80.72 87.17 87.72 86.02 94.61 98.98
AA 73.48 82.96 77.88 85.37 84.04 82.14 93.68 98.37

Kappa 75.74 81.72 78.31 85.54 86.32 84.41 93.96 98.86

Remote Sens. 2022, 14, 2653 22 of 30

Figure 13. Classification maps obtained by different methods on Kennedy Space Center Dataset.
(a) False-color image; (b) ground-truth map; (c) KNN; (d) SVM; (e) 2D-CNN; (f) 3D-CNN; (g) GCN;
(h) MiniGCN; (i) MDGCN; (j) MFEGCN-FSAM.

4.3.4. Results on the Salinas

The quantitative results obtained on the Salinas dataset by different methods are
summarized in Table 8, where the highest value in each row is highlighted in bold. Note
that GCN is not used for comparison, as GCN operations on this large dataset would
exceed memory capacity. The results in Table 8 show that the proposed MFEGCN-FSAM
has the best performance. All models predicted poorly on the class Vinyard_untrained.
An interesting phenomenon is that MiniGCN achieves 100% classification accuracy on
14 classes except for Grapes_untrained and Vinyard_untrained, but the classification effect
is particularly poor on Grapes_untrained and Vinyard_untrained, which have the largest
number of samples. From the visual classification results in Figure 14, compared with
other methods, the results of MFEGCN-FSAM proposed in this paper perform well in each
category, especially on Grapes_untrained and Vinyard_untrained, which have the largest
number of samples.

Table 8. Classification performance of different methods on Salinas dataset (%).

ID KNN SVM 2D-CNN 3D-CNN MiniGCN MDGCN MFEGCN-FSAM

1 97.42 99.80 100.00 100.00 100.00 100.00 98.99
2 92.40 95.73 99.81 99.54 100.00 99.57 99.97
3 93.06 90.18 96.04 98.61 100.00 100.00 99.95
4 99.05 99.05 99.93 98.02 100.00 92.96 99.85
5 95.96 97.13 56.68 96.34 100.00 89.24 98.19
6 98.07 93.99 100.00 100.00 100.00 99.97 99.36
7 99.13 98.99 100.00 99.30 100.00 95.83 99.55
8 45.78 47.86 80.21 92.53 55.52 84.61 98.45
9 94.59 97.54 99.95 99.79 100.00 99.98 96.82

10 81.50 91.35 23.03 94.61 100.00 95.17 95.14
11 91.04 95.57 94.03 99.04 100.00 99.81 98.65
12 99.00 93.25 100.00 77.33 100.00 95.26 99.95
13 97.74 96.84 99.89 80.70 100.00 86.79 94.02
14 91.63 91.54 99.52 98.08 100.00 98.37 99.13
15 70.09 77.63 67.81 32.08 32.38 84.13 98.62
16 88.86 95.67 98.99 100.00 100.00 100.00 99.55

OA 80.79 83.24 84.39 87.38 81.56 92.90 98.46
AA 89.71 91.38 88.49 91.62 92.99 95.10 98.51

Kappa 78.76 85.96 87.03 89.61 84.11 92.11 98.29

Remote Sens. 2022, 14, 2653 23 of 30

Figure 14. Classification maps obtained by different methods on the Salinas Dataset. (a) False-
color image; (b) ground-truth map; (c) KNN; (d) SVM; (e) 2D-CNN; (f) 3D-CNN; (g) MiniGCN;
(h) MDGCN; (i) MFEGCN-FSAM.

4.3.5. Training Convergence Plots

We show the training convergence plots of MFEGCN-FSAM on four datasets in
Figure 15. It can be seen that the training accuracy and test accuracy of MFEGCN-FSAM
on Indian Pines increase rapidly in the first 1000 epochs, and slowly improve and converge
in the last 5000 epochs. At the University of Pavia, the training accuracy and test accuracy
of MFEGCN-FSAM increased rapidly in the first 700 epochs, and slowly improved and
converged in the last 5300 epochs. At the Kennedy Space Center, the training accuracy and
test accuracy of MFEGCN-FSAM were in the first 170 epochs epoch increased dramatically.
The test accuracy decreased between 170 and 370 epochs, and then slowly improved and
converged in the last 5630 epochs. Although the training convergence curve of MFEGCN-
FSAM at Kennedy Space Center fluctuated greatly, the model fitted the best. We show the
training convergence plots of MFEGCN-FSAM on four datasets in Figure 15. At the Salinas,
the training accuracy and test accuracy of MFEGCN-FSAM increase rapidly in the first
150 epochs, and slowly improve and converge in the last 5750 epochs.

Remote Sens. 2022, 14, 2653 24 of 30

Figure 15. Training Convergence Plots of MFEGCN-FSAM; (a) Indian Pines; (b) University of Pavia;
(c) Kennedy Space Center; (d) Salinas.

4.4. Impact of the Number of Labeled Samples

In this section, we analyze the classification accuracy of the proposed MFEGCN-FSAM
and other methods under different numbers of labeled examples. We set the number of
labeled examples per class to range from 5 to 30 and listed the OA obtained by all methods
on the Indian Pines dataset. As can be seen from Figure 16, the performance of all methods
can be improved by increasing the number of labeled examples. It can be seen that the
classification accuracy of MFEGCN-FSAM gradually increases with the increase of labeled
examples, which indicates the effectiveness and stability of MFEGCN-FSAM.

4.5. Impact of the Number of Superpixels

In this section, we set different numbers of superpixels and conduct experiments on the
Indian Pines dataset. We show the time cost for superpixel segmentation, MFEGCN-FSAM
calculation time for deferent superpixel number, and MFEGCN-FSAM classification OA for
deferent superpixel number; the result is shown in Figure 17. Since we use GPU to speed up
the computation, the time cost of superpixel segmentation is not much, and the difference
in the segmentation time cost of different numbers of superpixels is not very large. But the
model training time increases with the number of superpixels because the size of the graph
depends on the number of superpixels. When the number of superpixels is 700, the model
classification OA is the largest. When the number of superpixels is less than 700, the OA
decreases as the number of superpixels decreases. This is because the smaller the number

Remote Sens. 2022, 14, 2653 25 of 30

of superpixels, the more pixels the superpixel contains, which means that different types
of pixels are more likely to cluster together. When the number of superpixels is greater
than 700, the OA decreases with the increase of the number of superpixels. We believe that
the reason may be that the number of superpixels is set too large, which will lead to the
increase in model parameters and the increase in the degree of overfitting.

Figure 16. Overall accuracies of different methods on the Indian Pines dataset under different
numbers of labeled examples per class.

Figure 17. Impact of the Number of Superpixels. (a) The time cost of superpixel segmentation for
deferent superpixel number; (b) MFEGCN-FSAM calculation time for deferent superpixel number;
(c) MFEGCN-FSAM classification OA for deferent superpixel number.

Remote Sens. 2022, 14, 2653 26 of 30

4.6. Ablation Study

As mentioned in the previous sections, our proposed MFEGCN-FSAM contains
three important parts for improving classification performance, namely, multiscale de-
sign, feature-spatial attention mechanism, and fusion evolution. This section proves the
effectiveness of these three modules through experiments, and the experimental settings
are the same as the experiments in Section 4.3. The results in Table 9 show that in the
classification tasks of Indian Pines, University of Pavia, Kennedy Space Center and Salinas
datasets, compared with the case without multiscale design (i.e., s = 1, represented by
FEGCN-FSAM), the OA of MFEGCN-FSAM improved 5.84%, 6.15%, and 2.27%, respec-
tively, which indicates that multiscale information is helpful for the model to capture
embedded features and spatial context information at different scales to assist in classifica-
tion. We also explore the case of s = 2, s = 4 and without a global scale, and the experimental
results further demonstrate the importance of multiscale design. In addition, compared
with the case without FSAM (i.e., MFEGCN), the OA of MFEGCN-FSAM improved by
3.95%, 1.62%, and 0.53%, respectively, which indicates that assigning different weights
to nodes through learning is beneficial to generate more accurate embedded information.
Finally, compared with the situation without fusion evolution (i.e., MGCN-FSAM), the OA
of MFEGCN-FSAM improved by 4.89%, 2.95%, and 1.86%, which indicates that the fusion
evolution mechanism is conducive to the continuous refinement of the graph.

Table 9. OA results of ablation study on the four datasets (%).

DataSet FEGCN-FSAM s = 2 s = 4 without
Global Scale MFEGCN MGCN-FSAM MFEGCN-FSAM

IP 90.94 91.73 90.51 95.31 92.83 91.89 96.78
paviaU 89.42 92.65 91.07 94.73 93.95 92.59 95.57

KSC 96.10 96.32 95.64 98.03 97.84 96.51 98.37
Salinas 90.48 95.87 96.55 97.02 96.97 96.24 98.46

4.7. Running Time and Overfitting Analysis

The training time of each method on the Indian Pines, Pavia University, Kennedy
Space Center, and Salinas datasets are shown in Table 10. On the four datasets, the GCN-
based method takes more time than the CNN-based method because the computation of
the adjacency matrix is still a time-consuming step. In this paper, we mainly improve the
GCN model. Compared with GCN and MiniGCN, the use of superpixel segmentation
significantly speeds up the training speed. Compared with the traditional GCN-based
model, our computational cost is lower. However, in order to improve the training accuracy
of the model, our proposed model is more complex in structure than MDGCN and CNN-
based methods, so the training time is longer. Overall, the training time cost of MFEGCN-
FSAM is still acceptable.

Table 10. Running time comparison of different methods(s).

DataSet KNN SVM 2D-CNN 3D-CNN GCN MiniGCN MDGCN MFEGCN-FSAM

IP 96.06 27.64 250.13 308.99 2062.33 576.88 271.34 307.83
KSC 52.41 75.93 141.95 201.56 986.54 283.68 156.44 236.55

paviaU 307.83 64.85 770.78 921.22 - 3016.57 934.51 1186.46
Salinas 283.36 72.61 895.59 1049.55 - 3495.65 1098.44 1387.38

In order to compare the fitting performance of the models, we show the training and
testing accuracies of MFEGCN-FSAM and other deep learning models (2D-CNN, 3D-CNN,
GCN, MiniGCN, MDGCN) in Table 11. It can be seen that the training set accuracy of
all models is very high, but the gap between the test accuracy and training accuracy of

Remote Sens. 2022, 14, 2653 27 of 30

other models is much larger than that of MFEGCN-FSAM, which means that the degree of
overfitting is greater, which reflects the MFEGCN- FSAM has better fitting performance.

Table 11. Training Accuracy and Testing Accuracy of different methods.

DataSet 2D-CNN 3D-CNN GCN MiniGCN MDGCN MFEGCN-FSAM

IP
train acc 100 100 99.65 96.53 100 100

test acc 75.19 83.40 72.12 72.85 90.09 94.38

KSC
train acc 97.84 100 96.43 98.65 100 100

test acc 80.72 87.17 87.72 86.02 94.61 98.98

PaviaU
train acc 100 100 - 97.32 100 100

test acc 89.62 85.59 - 82.44 92.98 95.90

Salinas
train acc 100 100 - 100 100 100

test acc 84.39 87.38 - 81.56 92.90 98.46

5. Conclusions

In this paper, we propose a novel HSI classification method termed MFEGCN-FSAM.
Different from the previous work that used a fixed input graph for convolution, MFEGCN-
FSAM continuously fuses the embedded information and the feature of the current graph
structure during the convolution process to promote the graph to continually evolve during
the convolution process. In addition, we constructed multiscale input graphs locally and
globally, using multiscale contextual information to help the model better distinguish
between the different land-cover classes. At the same time, we constructed and used the
feature-spatial attention module so that the model can assign different weights to the nodes
in the graph. The experimental results on four classical datasets show that our proposed
method has better classification performance than the state-of-the-art methods.

Author Contributions: Conceptualization, H.J., Y.W., Z.D. and F.Z.; Methodology, H.J.; software, H.J.;
validation, H.J. and Z.D.; formal analysis, H.J.; investigation, H.J.; resources, H.J.; data curation, H.J.;
writing—original draft preparation, H.J.; writing—review and editing, H.J. and Z.D.; visualization,
H.J.; supervision, Z.D. All authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Natural Science Foundation of China [No. 41922043,
No. 42050103, No. 41871287, No. 42001323]; Application demonstration system of high resolution
remote sensing and transportation [No. 07-Y30B03-9001-19/21]; Provincial Key Research and Devel-
opment Program of Zhejiang [No. 2021C01031].

Data Availability Statement: All data used during the study are available at http://www.ehu.eus/
ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes (accessed on 1 June 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

MFEGCN-FSAM
multiscale fusion-evolution graph convolutional network based
on feature-spatial attention mechanism

CNN convolutional neural network
HSI hyperspectral image
GCN graph convolutional network
SVM support vector machine
SAE stacked autoencoder
DBN deep belief network
RNN recurrent neural network
GCN graph convolutional network
MDGCN multiscale dynamic graph convolutional network

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes

Remote Sens. 2022, 14, 2653 28 of 30

GNN graph neural network
MRF Markov random field
SLIC simple linear iterative clustering
FSAM feature-spatial attention module
RBF radial basis function
CCA canonical correlation analysis
CBAM convolutional block attention module
MLP multi-layer perceptron
KNN k-nearest-neighbor
FCN fully convolutional network
GAN generative adversarial network

References
1. Chen, Y.; Zhao, X.; Jia, X. Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network. IEEE J. Sel. Top.

Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [CrossRef]
2. Ma, L.; Crawford, M.M.; Tian, J. Local Manifold Learning-Based k-Nearest-Neighbor for Hyperspectral Image Classification.

IEEE Trans. Geosci. Remote Sens. 2010, 48, 4099–4109. [CrossRef]
3. Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci.

Remote Sens. 2004, 42, 1778–1790. [CrossRef]
4. Li, W.; Chen, C.; Su, H.; Du, Q. Local Binary Patterns and Extreme Learning Machine for Hyperspectral Imagery Classification.

IEEE Trans. Geosci. Remote Sens. 2015, 53, 3681–3693. [CrossRef]
5. Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral Image Classification Using Dictionary-Based Sparse Representation. IEEE

Trans. Geosci. Remote Sens. 2011, 49, 3973–3985. [CrossRef]
6. Li, Y.; Zhang, H.; Shen, Q. Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network.

Remote Sens. 2017, 9, 67. [CrossRef]
7. Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in spectral-spatial classification of hyperspectral

images. Proc. IEEE 2013, 101, 652–675. [CrossRef]
8. Zhong, Z.; Fan, B.; Duan, J.; Wang, L.; Ding, K.; Xiang, S.; Pan, C. Discriminant Tensor Spectral–Spatial Feature Extraction for

Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1028–1032. [CrossRef]
9. Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended

morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [CrossRef]
10. Dalla Mura, M.; Villa, A.; Benediktsson, J.A.; Chanussot, J.; Bruzzone, L. Classification of Hyperspectral Images by Using

Extended Morphological Attribute Profiles and Independent Component Analysis. IEEE Geosci. Remote Sens. Lett. 2011, 8,
542–546. [CrossRef]

11. Tang, Y.Y.; Lu, Y.; Yuan, H. Hyperspectral Image Classification Based on Three-Dimensional Scattering Wavelet Transform. IEEE
Trans. Geosci. Remote Sens. 2015, 53, 2467–2480. [CrossRef]

12. Fang, L.; Li, S.; Kang, X.; Benediktsson, J.A. Spectral–Spatial Classification of Hyperspectral Images with a Superpixel-Based
Discriminative Sparse Model. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4186–4201. [CrossRef]

13. Cui, B.; Xie, X.; Ma, X.; Ren, G.; Ma, Y. Superpixel-Based Extended Random Walker for Hyperspectral Image Classification. IEEE
Trans. Geosci. Remote Sens. 2018, 56, 3233–3243. [CrossRef]

14. Liu, T.; Gu, Y.; Chanussot, J.; Mura, M.D. Multimorphological Superpixel Model for Hyperspectral Image Classification. IEEE
Trans. Geosci. Remote Sens. 2017, 55, 6950–6963. [CrossRef]

15. Zhang, A.; Pan, Z.; Fu, H.; Sun, G.; Rong, J.; Ren, J.; Jia, X.; Yao, Y. Superpixel Nonlocal Weighting Joint Sparse Representation for
Hyperspectral Image Classification. Remote Sens. 2022, 14, 2125. [CrossRef]

16. Su, H.; Gao, Y.; Du, Q. Superpixel-Based Relaxed Collaborative Representation With Band Weighting for Hyperspectral Image
Classification. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5525416. [CrossRef]

17. Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep Learning-Based Classification of Hyperspectral Data. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2014, 7, 2094–2107. [CrossRef]

18. Zhang, F.; Du, B.; Zhang, L. Saliency-Guided Unsupervised Feature Learning for Scene Classification. IEEE Trans. Geosci. Remote
Sens. 2015, 53, 2175–2184. [CrossRef]

19. Zhong, P.; Gong, Z.; Li, S.; Schönlieb, C.-B. Learning to Diversify Deep Belief Networks for Hyperspectral Image Classification.
IEEE Trans. Geosci. Remote Sens. 2017, 55, 3516–3530. [CrossRef]

20. Mou, L.; Ghamisi, P.; Zhu, X.X. Deep Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci.
Remote Sens. 2017, 55, 3639–3655. [CrossRef]

21. Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci.
Remote Sens. Mag. 2016, 4, 22–40. [CrossRef]

22. Hao, S.; Wang, W.; Ye, Y.; Nie, T.; Bruzzone, L. Two-Stream Deep Architecture for Hyperspectral Image Classification. IEEE Trans.
Geosci. Remote Sens. 2018, 56, 2349–2361. [CrossRef]

http://doi.org/10.1109/JSTARS.2015.2388577
http://doi.org/10.1109/TGRS.2010.2055876
http://doi.org/10.1109/TGRS.2004.831865
http://doi.org/10.1109/TGRS.2014.2381602
http://doi.org/10.1109/TGRS.2011.2129595
http://doi.org/10.3390/rs9010067
http://doi.org/10.1109/JPROC.2012.2197589
http://doi.org/10.1109/LGRS.2014.2375188
http://doi.org/10.1109/TGRS.2004.842478
http://doi.org/10.1109/LGRS.2010.2091253
http://doi.org/10.1109/TGRS.2014.2360672
http://doi.org/10.1109/TGRS.2015.2392755
http://doi.org/10.1109/TGRS.2018.2796069
http://doi.org/10.1109/TGRS.2017.2737037
http://doi.org/10.3390/rs14092125
http://doi.org/10.1109/TGRS.2022.3161139
http://doi.org/10.1109/JSTARS.2014.2329330
http://doi.org/10.1109/TGRS.2014.2357078
http://doi.org/10.1109/TGRS.2017.2675902
http://doi.org/10.1109/TGRS.2016.2636241
http://doi.org/10.1109/MGRS.2016.2540798
http://doi.org/10.1109/TGRS.2017.2778343

Remote Sens. 2022, 14, 2653 29 of 30

23. Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep Supervised Learning for Hyperspectral Data Classification
through Convolutional Neural Networks. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4959–4962.

24. Liang, H.; Li, Q. Hyperspectral Imagery Classification Using Sparse Representations of Convolutional Neural Network Features.
Remote Sens. 2016, 8, 99. [CrossRef]

25. Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H.-C. Deep Convolutional Neural Networks for Hyperspectral Image Classification. J.
Sens. 2015, 2015, 258619. [CrossRef]

26. Chen, Y.; Jiang, H.; Li, C.; Jia, X.; Ghamisi, P. Deep Feature Extraction and Classification of Hyperspectral Images Based on
Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [CrossRef]

27. Haque, R.; Mishu, S.Z.; Uddin, P.; Mamun, A. A lightweight 3D-2D convolutional neural network for spectral-spatial classification
of hyperspectral images. J. Intell. Fuzzy Syst. 2022, preprint, 1–18. [CrossRef]

28. Li, J.; Zhao, X.; Li, Y.; Du, Q.; Xi, B.; Hu, J. Classification of Hyperspectral Imagery Using a New Fully Convolutional Neural
Network. IEEE Geosci. Remote Sens. Lett. 2018, 15, 292–296. [CrossRef]

29. Zhu, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Generative Adversarial Networks for Hyperspectral Image Classification. IEEE
Trans. Geosci. Remote Sens. 2018, 56, 5046–5063. [CrossRef]

30. Sun, L.; Zhao, G.; Zheng, Y.; Wu, Z. Spectral–Spatial Feature Tokenization Transformer for Hyperspectral Image Classification.
IEEE Trans. Geosci. Remote Sens. 2022, 60, 5522214. [CrossRef]

31. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2017, arXiv:1609.02907.
32. Qin, A.; Shang, Z.; Tian, J.; Wang, Y.; Zhang, T.; Tang, Y.Y. Spectral–Spatial Graph Convolutional Networks for Semisupervised

Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2019, 16, 241–245. [CrossRef]
33. Mou, L.; Lu, X.; Li, X.; Zhu, X.X. Nonlocal Graph Convolutional Networks for Hyperspectral Image Classification. IEEE Trans.

Geosci. Remote Sens. 2020, 58, 8246–8257. [CrossRef]
34. Wan, S.; Gong, C.; Zhong, P.; Du, B.; Zhang, L.; Yang, J. Multiscale Dynamic Graph Convolutional Network for Hyperspectral

Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 3162–3177. [CrossRef]
35. Bronstein, M.M.; Bruna, J.; LeCun, Y.; Szlam, A.; VanderGheynst, P. Geometric Deep Learning: Going beyond Euclidean data.

IEEE Signal. Process. Mag. 2017, 34, 18–42. [CrossRef]
36. Gori, M.; Monfardini, G.; Scarselli, F. A New Model for Learning in Graph Domains. In Proceedings of the 2005 IEEE International

Joint Conference on Neural Networks, Montreal, QC, Canada, 31 July–4 August 2005; Volume 2, pp. 729–734.
37. Scarselli, F.; Gori, M.; Tsoi, A.C.; Hagenbuchner, M.; Monfardini, G. Computational Capabilities of Graph Neural Networks. IEEE

Trans. Neural Netw. 2009, 20, 81–102. [CrossRef] [PubMed]
38. Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral Networks and Locally Connected Networks on Graphs. arXiv 2014,

arXiv:1312.6203.
39. Hamilton, W.L.; Ying, R.; Leskovec, J. Inductive Representation Learning on Large Graphs. arXiv 2018, arXiv:1706.02216.
40. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering.

arXiv 2017, arXiv:1606.09375.
41. Ying, R.; He, R.; Chen, K.; Eksombatchai, P.; Hamilton, W.L.; Leskovec, J. Graph Convolutional Neural Networks for Web-Scale

Recommender Systems. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, London, UK, 19 July 2018; pp. 974–983.

42. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC Superpixels Compared to State-of-the-Art Superpixel
Methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef]

43. Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844.
[CrossRef]

44. Maji, S.; Berg, A.C.; Malik, J. Classification Using Intersection Kernel Support Vector Machines Is Efficient. In Proceedings of the
2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 24–26 June 2008; pp. 1–8.

45. Mercier, G.; Lennon, M. Support vector machines for hyperspectral image classification with spectral-based kernels. In Proceed-
ings of the IGARSS 2003 IEEE International Geoscience and Remote Sensing Symposium Proceedings (IEEE Cat. No.03CH37477),
Toulouse, France, 21–25 July 2003; Volume 1, pp. 288–290. [CrossRef]

46. Campsvalls, G.; Gómez-Chova, L.; Muñoz-Marí, J.; Vilafrances, J.; Calpemaravilla, J. Composite Kernels for Hyperspectral Image
Classification. IEEE Geosci. Remote Sens. Lett. 2006, 3, 93–97. [CrossRef]

47. Li, J.; Bioucas-Dias, J.M.; Plaza, A. Spectral–Spatial Hyperspectral Image Segmentation Using Subspace Multinomial Logistic
Regression and Markov Random Fields. IEEE Trans. Geosci. Remote Sens. 2012, 50, 809–823. [CrossRef]

48. Audebert, N.; Le Saux, B.; Lefèvre, S. Deep Learning for Classification of Hyperspectral Data: A Comparative Review. IEEE
Geosci. Remote Sens. Mag. 2019, 7, 159–173. [CrossRef]

49. Shi, C.; Pun, C.-M. Multi-scale hierarchical recurrent neural networks for hyperspectral image classification. Neurocomputing 2018,
294, 82–93. [CrossRef]

50. Yang, J.; Zhao, Y.-Q.; Chan, J.C.-W. Learning and Transferring Deep Joint Spectral–Spatial Features for Hyperspectral Classification.
IEEE Trans. Geosci. Remote Sens. 2017, 55, 4729–4742. [CrossRef]

51. Hong, D.; Gao, L.; Yao, J.; Zhang, B.; Plaza, A.; Chanussot, J. Graph Convolutional Networks for Hyperspectral Image Classifica-
tion. IEEE Trans. Geosci. Remote Sens. 2021, 59, 5966–5978. [CrossRef]

http://doi.org/10.3390/rs8020099
http://doi.org/10.1155/2015/258619
http://doi.org/10.1109/TGRS.2016.2584107
http://doi.org/10.3233/JIFS-212829
http://doi.org/10.1109/LGRS.2017.2786272
http://doi.org/10.1109/TGRS.2018.2805286
http://doi.org/10.1109/TGRS.2022.3144158
http://doi.org/10.1109/LGRS.2018.2869563
http://doi.org/10.1109/TGRS.2020.2973363
http://doi.org/10.1109/TGRS.2019.2949180
http://doi.org/10.1109/MSP.2017.2693418
http://doi.org/10.1109/TNN.2008.2005141
http://www.ncbi.nlm.nih.gov/pubmed/19129034
http://doi.org/10.1109/TPAMI.2012.120
http://doi.org/10.1109/34.709601
http://doi.org/10.1109/igarss.2003.1293752
http://doi.org/10.1109/LGRS.2005.857031
http://doi.org/10.1109/TGRS.2011.2162649
http://doi.org/10.1109/MGRS.2019.2912563
http://doi.org/10.1016/j.neucom.2018.03.012
http://doi.org/10.1109/TGRS.2017.2698503
http://doi.org/10.1109/TGRS.2020.3015157

Remote Sens. 2022, 14, 2653 30 of 30

52. Zheng, H.; Yang, Z.; Liu, W.; Liang, J.; Li, Y. Improving Deep Neural Networks Using Softplus Units. In Proceedings of the 2015
International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland, 12–17 July 2015; pp. 1–4.

53. Ren, C.Y.; Prisacariu, V.A.; Reid, I.D. gSLICr: SLIC superpixels at over 250Hz. arXiv 2015, arXiv:1509.04232.
54. Sun, Q.-S.; Zeng, S.-G.; Liu, Y.; Heng, P.-A.; Xia, D.-S. A new method of feature fusion and its application in image recognition.

Pattern Recognit. 2005, 38, 2437–2448. [CrossRef]
55. Wang, B.; Jiang, J.; Wang, W.; Zhou, Z.-H.; Tu, Z. Unsupervised Metric Fusion by Cross Diffusion. In Proceedings of the 2012 IEEE

Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2997–3004.
56. Chiang, W.-L.; Liu, X.; Si, S.; Li, Y.; Bengio, S.; Hsieh, C.-J. Cluster-GCN: An Efficient Algorithm for Training Deep and Large

Graph Convolutional Networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 257–266. [CrossRef]

57. Abu-El-Haija, S.; Kapoor, A.; Perozzi, B.; Lee, J. N-GCN: Multi-Scale Graph Convolution for Semi-Supervised Node Classification.
Uncertain. Artif. Intell. 2020, 115, 841–851. [CrossRef]

58. Zhang, S.; Li, S. Spectral-spatial classification of hyperspectral images via multiscale superpixels based sparse representation. In
Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July
2016; p. 16430041.

59. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. arXiv 2018, arXiv:1710.10903.
60. Woo, S.; Park, J.; Lee, J.-Y.; Kweon, I. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference

on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; Volume 11211, ISBN 978-3-030-01233-5.
61. Blanzieri, E.; Melgani, F. Nearest Neighbor Classification of Remote Sensing Images with the Maximal Margin Principle. IEEE

Trans. Geosci. Remote Sens. 2008, 46, 1804–1811. [CrossRef]
62. Zhong, S.; Chang, C.-I.; Zhang, Y. Iterative Support Vector Machine for Hyperspectral Image Classification. In Proceedings of the

25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 3309–3312.

http://doi.org/10.1016/j.patcog.2004.12.013
http://doi.org/10.1145/3292500.3330925
http://doi.org/10.48550/ARXIV.1802.08888
http://doi.org/10.1109/TGRS.2008.916090

	Introduction
	Related Works
	Graph Convolutional Network
	Hyperspectral Image Classification

	Method
	Graph Convolutional Network Framework
	Superpixel Segmentation
	Graph Fusion Evolution
	Multiscale Contextual Information Integration
	Local Contextual Information
	Global Contextual Information

	Feature-Spatial Attention Module
	Feature Attention Module
	Spatial Attention Module

	Experiment
	Datasets
	Indian Pines
	University of Pavia
	Kennedy Space Center
	Salinas

	Experimental Settings
	Classification Results
	Results on the Indian Pines Dataset
	Results on the University of Pavia Dataset
	Results on the Kennedy Space Center
	Results on the Salinas
	Training Convergence Plots

	Impact of the Number of Labeled Samples
	Impact of the Number of Superpixels
	Ablation Study
	Running Time and Overfitting Analysis

	Conclusions
	References

