Monitoring Desertification Using Machine-Learning Techniques with Multiple Indicators Derived from MODIS Images in Mu Us Sandy Land, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.3. Methods
2.3.1. Classification System, Model Samples and Field Verification
Classification System of Desertification Land
The Sample Selection and Sample Size
Model Samples Verification
2.3.2. Models Used—CART-DT, RF and CNN
Classification and Regression Tree-Decision Tree (CART-DT)
Random Forest (RF)
Convolutional Neural Networks (CNN)
2.3.3. Models Accuracy Assessment
2.3.4. Landscape Index and Surface Wetness Index
2.3.5. Scheme Optimization
3. Results
3.1. Comparison of Model Accuracy
3.2. Optimal Classification Results
3.3. Distribution of Desertification in Mu Us Sandy Land
3.3.1. Current Status and Spatial Distribution of Desertified Land in 2018
3.3.2. The Changes in Time Series Desertification Land from 2000 to 2018
4. Discussion
4.1. The Optimal Method and Index Combination for Desertification Monitoring in Mu Us Sandy Land
4.2. The Spatio-Temporal Changes in Desertification in Mu Us Sandy Land Based on the Optimal Method and Index Combination
4.2.1. The Inter-Annual Volatility of Light Desertification Land Area
4.2.2. The Transformation of Extremely Severe Desertification Land Area
4.2.3. The Ecological Restoration of Sandy Land
4.3. The Advantages and Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Levels of Desertification Land | Percentage of Mobile Sand Dunes (%) | Vegetation Cover (%) | Landscape Characteristics |
---|---|---|---|
Light | <5 | 50–70 | Quicksand is speckled and appears on the windward slope of sand dunes. Vegetation begins to decline, but most of the area still resembles the original landscape. |
Moderate | 5–25 | 30–50 | There are degenerate plants and low shrub sand piles. |
Severe | 25–50 | 10–30 | Sand dunes are in a half-shifting state; a large number of sandy pioneers’ plants appear. |
Extremely severe | >50 | <10 | Sand dunes are in a shifting state; vegetation disappears regionally. |
Levels of Desertification Land | Tone and Texture of Landsat Image | Photo of Landscape | Landsat Image (Combination of NIR, RED, and GREEN Bands) |
---|---|---|---|
Light | Vegetation is light red and discontinuously distributed. Sparse sand covers the vegetation in spots with milky or yellow patches. | ||
Moderate | Fixed and semi-fixed sand dunes are depicted as strips or plaques with red and white spots. Red vegetation accounts for 30–50% of the area. | ||
Severe | Semi-fixed and semi-mobile sand dunes are patchy, with light yellow or yellow-white base colors and a few red spots. | ||
Extremely severe | Mobile sand dunes are shown as scaly, with clear ripples, and the overall display is bright white or light yellow with few red spots. |
References
- Ma, H.; Zhao, H. United Nations: Convention to combat desertification in those countries experiencing serious drought and/or desertification, particularly in Africa. Int. Legal Mater. 1994, 33, 1328–1382. [Google Scholar]
- UNEP. Status of Desertification and Implementation of the United Nations Plan of Action to Combat Desertification: United Nations Environmental Program; UNEP: Nairobi, Kenya, 1992. [Google Scholar]
- Hellden, U.; Tottrup, C. Regional desertification: A global synthesis. Global Planet. Change 2008, 64, 169–176. [Google Scholar]
- Xu, D.; Zhang, X. Multi-scenario simulation of desertification in North China for 2030. Land Degrad. Dev. 2021, 32, 1060–1074. [Google Scholar] [CrossRef]
- Chasek, P.; Akhtar-Schuster, M.; Orr, B.J.; Luise, A.; Ratsimba, H.R.; Safriel, U. Land degradation neutrality: The science-policy interface from the UNCCD to national implementation. Environ. Sci. Policy 2019, 92, 182–190. [Google Scholar] [CrossRef]
- Wang, T.; Xue, X.; Zhou, L.; Guo, J. Combating aeolian desertification in northern China. Land Degrad. Dev. 2015, 26, 118–132. [Google Scholar] [CrossRef]
- Kéfi, S.; Rietkerk, M.; Alados, C.L.; Pueyo, Y.; Papanastasis, V.P.; ElAich, A.; de Ruiter, P.C. Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 2007, 449, 213–217. [Google Scholar] [CrossRef]
- Hanson, P.R.; Joeckel, R.M.; Young, A.R.; Horn, J. Late Holocene dune activity in the Eastern Platte River Valley, Nebraska. Geomorphology 2009, 103, 555–561. [Google Scholar] [CrossRef]
- Du, H.; Zuo, X.; Li, S.; Wang, T.; Xue, X. Wind erosion changes induced by different grazing intensities in the desert steppe, Northern China. Agric. Ecosyst. Environ. 2019, 274, 1–13. [Google Scholar] [CrossRef]
- Qi, Y.; Chang, Q.; Jia, K.; Liu, M.; Liu, J.; Chen, T. Temporal-spatial variability of desertification in an agro-pastoral transitional zone of northern Shaanxi Province, China. Catena 2012, 88, 37–45. [Google Scholar] [CrossRef]
- Na, R.; Du, H.; Na, L.; Shan, Y.; He, H.S.; Wu, Z.; Zong, S.; Yang, Y.; Huang, L. Spatiotemporal changes in the Aeolian desertification of Hulunbuir Grassland and its driving factors in China during 1980–2015. Catena 2019, 182, 104123. [Google Scholar] [CrossRef]
- Duan, H.; Wang, T.; Xue, X.; Yan, C. Dynamic monitoring of aeolian desertification based on multiple indicators in Horqin Sandy Land, China. Sci. Total Environ. 2019, 650, 2374–2388. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Q.; Shen, Y.; Zhou, N.; Wang, X.; Li, J.; Jia, W. Monitoring of aeolian desertification on the Qinghai-Tibet Plateau from the 1970s to 2015 using Landsat images. Sci. Total Environ. 2018, 619, 1648–1659. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Li, C.; Song, X.; Ren, H. The dynamics of desertification in the farming-pastoral region of North China over the past 10 years and their relationship to climate change and human activity. Catena 2014, 123, 11–22. [Google Scholar] [CrossRef]
- Sternberg, T.; Tsolmon, R.; Middleton, N.; Thomas, D. Tracking desertification on the Mongolian steppe through NDVI and field-survey data. Int. J. Digit. Earth 2011, 4, 50–64. [Google Scholar] [CrossRef]
- Tomasella, J.; Silva Pinto Vieira, R.M.; Barbosa, A.A.; Rodriguez, D.A.; Santana, M.D.O.; Sestini, M.F. Desertification trends in the Northeast of Brazil over the period 2000–2016. Int. J. Appl. Earth Obs. 2018, 73, 197–206. [Google Scholar] [CrossRef]
- Sun, J.; Hou, G.; Liu, M.; Fu, G.; Zhan, T.; Zhou, H.; Tsunekawa, A.; Haregeweyn, N. Effects of climatic and grazing changes on desertification of alpine grasslands, Northern Tibet. Ecol. Indic. 2019, 107, 105647. [Google Scholar] [CrossRef]
- Kempf, M. Monitoring landcover change and desertification processes in northern China and Mongolia using historical written sources and vegetation indices. Clim. Past Discuss. 2021, 2021, 1–29. [Google Scholar]
- Wei, H.; Wang, J.; Cheng, K.; Li, G.; Ochir, A.; Davaasuren, D.; Chonokhuu, S. Desertification Information Extraction Based on Feature Space Combinations on the Mongolian Plateau. Remote Sens. 2018, 10, 1614. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Zang, W.; Han, B.; Yang, F.; Luo, W.; He, T.; Fan, Y.; Yang, X.; Chen, S. Dynamic monitoring of desertification in Naiman Banner based on feature space models with typical surface parameters derived from LANDSAT images. Land Degrad. Dev. 2020, 31, 1573–1592. [Google Scholar] [CrossRef]
- Munkhnasan, L.; Woo-Kyun, L.; Seong, J.; Jong-Yeol, L.; Song, C.; Dongfan, P.; Chul, L.; Akhmadi, K.; Itgelt, N. Correlation between Desertification and Environmental Variables Using Remote Sensing Techniques in Hogno Khaan, Mongolia. Sustainability 2017, 9, 581. [Google Scholar]
- Xu, D.; Kang, X.; Qiu, D.; Zhuang, D.; Pan, J. Quantitative Assessment of Desertification Using Landsat Data on a Regional Scale—A Case Study in the Ordos Plateau, China. Sensors 2009, 9, 1738–1753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, Y.; Li, M.; Wang, L.; Zhu, A.-X. A data-mining-based approach for aeolian desertification susceptibility assessment: A case-study from Northern China. Land Degrad. Dev. 2019, 30, 1968–1983. [Google Scholar] [CrossRef]
- Fan, Z.; Li, S.; Fang, H. Explicitly Identifying the Desertification Change in CMREC Area Based on Multisource Remote Data. Remote Sens. 2020, 12, 3170. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Li, S.; Li, S.; Lei, J. Monitoring desertification in Mongolia based on Landsat images and Google Earth Engine from 1990 to 2020. Ecol. Indic. 2021, 129, 107908. [Google Scholar] [CrossRef]
- Welsink, A. Comparing Classification of Ghana’s Complex Agroforestry Land Cover by a Random Forest and a Convolutional Neural Network with a Small Training Set. Master’s Thesis, Wageningen University, Wageningen, The Netherlands, 2020. [Google Scholar]
- Pi, W.; Du, J.; Liu, H.; Zhu, X. Desertification Glassland Classification and Three-Dimensional Convolution Neural Network Model for Identifying Desert Grassland Landforms with Unmanned Aerial Vehicle Hyperspectral Remote Sensing Images. J. Appl. Spectrosc. 2020, 87, 309–318. [Google Scholar] [CrossRef]
- Pi, W.; Du, J.; Bi, Y.; Gao, X.; Zhu, X. 3D-CNN based UAV hyperspectral imagery for grassland degradation indicator ground object classification research. Ecol. Inform. 2021, 62, 101278. [Google Scholar] [CrossRef]
- Feng, K.; Wang, T.; Liu, S.; Yan, C.; Kang, W.; Chen, X.; Guo, Z. Path analysis model to identify and analyse the causes of aeolian desertification in Mu Us Sandy Land, China. Ecol. Indic. 2021, 124, 107386. [Google Scholar] [CrossRef]
- Wu, B.; Ci, L.J. Developing stages and causes of desertification in the Mu Us sandland. Chin. Sci. Bull. 1999, 44, 845–849. [Google Scholar] [CrossRef]
- Zhou, W.; Gang, C.; Zhou, F.; Li, J.; Dong, X.; Zhao, C. Quantitative assessment of the individual contribution of climate and human factors to desertification in northwest China using net primary productivity as an indicator. Ecol. Indic. 2015, 48, 560–569. [Google Scholar] [CrossRef]
- Huang, L.; Xiao, T.; Zhao, Z.; Sun, C.; Liu, J.; Shao, Q.; Fan, J.; Wang, J. Effects of grassland restoration programs on ecosystems in arid and semiarid China. J. Environ. Manag. 2013, 117, 268–275. [Google Scholar] [CrossRef]
- Guo, Q.; Fu, B.; Shi, P.; Cudahy, T.; Zhang, J.; Xu, H. Satellite monitoring the spatial-temporal dynamics of desertification in response to climate change and human activities across the Ordos Plateau, China. Remote Sens. 2017, 9, 525. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Cao, Z.; Long, H.; Liu, Y.; Li, W. Dynamic analysis of ecological environment combined with land cover and NDVI changes and implications for sustainable urban–rural development: The case of Mu Us Sandy Land, China. Clean. Prod. 2017, 142, 697–715. [Google Scholar] [CrossRef]
- FAO; FAO/IUSS Working Group WRB. World Reference Base for Soil Resources 2006; World Soil Resources Reports; FAO: Rome, Italy, 2006; 103p. [Google Scholar]
- Zhang, M.; Wu, X. The rebound effects of recent vegetation restoration projects in Mu Us Sandy land of China. Ecol. Indic. 2020, 113, 106228. [Google Scholar] [CrossRef]
- Fan, X.; Liu, Y. A global study of NDVI difference among moderate-resolution satellite sensors. ISPRS J. Photogramm. 2016, 121, 177–191. [Google Scholar] [CrossRef]
- Wu, X.; Wen, J.; Xiao, Q.; You, D.; Dou, B.; Lin, X.; Hueni, A. Accuracy Assessment on MODIS (V006), GLASS and MuSyQ Land-Surface Albedo Products: A Case Study in the Heihe River Basin, China. Remote Sens. 2018, 10, 2045. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, G.; Huang, C. Monitoring desertification processes in Mongolian Plateau using MODIS tasseled cap transformation and TGSI time series. J. Arid Land. 2018, 10, 12–26. [Google Scholar] [CrossRef] [Green Version]
- Liang, D.; Cowles, M.K.; Linderman, M. Bayesian MODIS NDVI back-prediction by intersensor calibration with AVHRR. Remote Sens. Environ. 2016, 186, 393–404. [Google Scholar] [CrossRef]
- Lin, X.; Niu, J.; Berndtsson, R.; Yu, X.; Zhang, L.; Chen, X. NDVI Dynamics and Its Response to Climate Change and Reforestation in Northern China. Remote Sens. 2020, 12, 4138. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Tateishi, R.; Bayaer, W. Development of topsoil grain size index for monitoring desertification in arid land using remote sensing. Int. J. Remote Sens. 2006, 27, 2411–2422. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef] [Green Version]
- Larose, D.T.; Larose, C.D. Discovering Knowledge in Data: AnIntroduction to Data Mining; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Lamrini, B. Contribution to Decision Tree Induction with Python: A Review. In Data Mining-Methods, Applications and Systems; IntechOpen: London, UK, 2020. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.C.; Paelinckx, D. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 2008, 112, 2999–3011. [Google Scholar] [CrossRef]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Chen, X.; Wang, T.; Liu, S.; Peng, F.; Tsunekawa, A.; Kang, W.; Guo, Z.; Feng, K. A New Application of Random Forest Algorithm to Estimate Coverage of Moss-Dominated Biological Soil Crusts in Semi-Arid Mu Us Sandy Land, China. Remote Sens. 2019, 11, 1286. [Google Scholar] [CrossRef] [Green Version]
- Valueva, M.V.; Nagornov, N.N.; Lyakhov, P.A.; Valuev, G.V.; Chervyakov, N.I. Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Math. Comput. Simulat. 2020, 177, 232–243. [Google Scholar] [CrossRef]
- Sarigul, M.; Ozyildirim, B.M.; Avci, M. Differential convolutional neural network. Neural Netw. 2019, 116, 279–287. [Google Scholar] [CrossRef]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a Convolutional Neural Network. In Proceedings of the International Conference on Engineering and Technology, Antalya, Turkey, 21–23 August 2017. [Google Scholar]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef] [Green Version]
- Guirado, E.; Alcaraz-Segura, D.; Cabello, J.; Puertas-Ruiz, S.; Herrera, F.; Tabik, S. Tree Cover Estimation in Global Drylands from Space Using Deep Learning. Remote Sens. 2020, 12, 343. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Liu, B.; Lu, Y.; Xie, F. Correlating Analysis on Spatio-temporal Variation of LUCC and Water Resources Based on Remote Sensing Data. In Proceedings of the 18th National Symposium on Remote Sensing of China, Wuhan, China, 20–23 September 2014; Tong, Q., Shan, J., Zhu, B., Eds.; SPIE: Bellingham, WA, USA, 2014; Volume 9158. [Google Scholar]
- Fang, S.F.; Gertner, G.; Wang, G.X.; Anderson, A. The impact of misclassification in land use maps in the prediction of landscape dynamics. Landscape Ecol. 2006, 21, 233–242. [Google Scholar] [CrossRef]
- Chen, Y.; Dou, P.; Yang, X. Improving Land Use/Cover Classification with a Multiple Classifier System Using AdaBoost Integration Technique. Remote Sens. 2017, 9, 1055. [Google Scholar] [CrossRef] [Green Version]
- Ge, G.; Shi, Z.; Zhu, Y.; Yang, X.; Hao, Y. Land use/cover classification in an arid desert-oasis mosaic landscape of China using remote sensed imagery: Performance assessment of four machine learning algorithms. Glob. Ecol. Conserv. 2020, 22, e00971. [Google Scholar] [CrossRef]
- Sui, D.Z.; Zeng, H. Modeling the dynamics of landscape structure in Asia’s emerging desakota regions: A case study in Shenzhen. Urban Plan. 2001, 53, 37–52. [Google Scholar] [CrossRef]
- Zhuguo, M.A.; Dan, L.; Yuewen, H.U. The extreme dry/wet events in northern China during recent 100 years. J. Geogr. Sci. 2004, 14, 275–281. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS J. Photogramm. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Zhang, G.; Biradar, C.M.; Xiao, X.; Dong, J.; Zhou, Y.; Qin, Y.; Zhang, Y.; Liu, F.; Ding, M.; Thomas, R.J. Exacerbated grassland degradation and desertification in Central Asia during 2000–2014. Ecol. Appl. 2018, 28, 442–456. [Google Scholar] [CrossRef] [Green Version]
- Liang, P.; Yang, X. Landscape spatial patterns in the Maowusu (Mu Us) Sandy Land, northern China and their impact factors. Catena 2016, 145, 321–333. [Google Scholar] [CrossRef]
Product | Data Used | Spatial Resolution | Temporal Resolution | Reference |
---|---|---|---|---|
NDVI | MOD13A1 | 500 m | 16 d | [37] Fan and Liu (2016) |
Albedo | MCD43A3 | 500 m | Daily | [38] Wu et al. (2018) |
LST | MOD11A2 | 1000 m | 8 d | [39] Wan (2014) |
TGSI | MCD43A4 | 500 m | Daily | [40] Liu et al. (2018) |
Predicted Results | ||||||
---|---|---|---|---|---|---|
L | M | S | ES | Non | ||
Actual Results | L | p11 | p12 | p13 | p14 | p15 |
M | p21 | p22 | p23 | p24 | p25 | |
S | p31 | p32 | p33 | p34 | p35 | |
ES | p41 | p42 | p34 | p44 | p45 | |
Non | p51 | p52 | p35 | p45 | p55 | |
is the proportion of sample size (in the i, jth cell) to total sample size. | ||||||
is the sum of rows i; is the sum of columns i. | ||||||
The accuracy of Class i prediction is true: ; The accuracy of Class i actual is true: . | ||||||
Prediction consistency (overall classification accuracy, OA): ; | ||||||
Actual consistency: , k = 5. | ||||||
Kappa coefficient: ; Kappa coefficient of class i: . |
Different Combinations | CART-DT | RF | CNN | ||||
---|---|---|---|---|---|---|---|
OA(%) | Kappa | OA(%) | Kappa | OA(%) | Kappa | ||
C(4,4) | ANLT | 69.07 | 0.59 | 87.67 | 0.84 | 78.46 | 0.73 |
C(4,3) | ANL | 60.05 | 0.45 | 82.86 | 0.77 | 72.08 | 0.68 |
ANT | 64.32 | 0.52 | 83.72 | 0.78 | 74.78 | 0.69 | |
ATL | 66.61 | 0.55 | 85.25 | 0.80 | 76.29 | 0.71 | |
NTL | 68.17 | 0.58 | 85.74 | 0.81 | 76.47 | 0.71 | |
C(4,2) | AN | 52.32 | 0.32 | 77.65 | 0.70 | 61.42 | 0.58 |
AL | 54.68 | 0.36 | 78.88 | 0.72 | 65.87 | 0.60 | |
AT | 58.69 | 0.44 | 80.47 | 0.74 | 68.22 | 0.62 | |
NL | 57.79 | 0.41 | 79.68 | 0.73 | 67.48 | 0.61 | |
NT | 61.34 | 0.48 | 81.40 | 0.75 | 72.20 | 0.66 | |
TL | 58.36 | 0.44 | 80.40 | 0.74 | 68.37 | 0.62 |
Combination | Fragmentation Index | Separation Index_ES | |
---|---|---|---|
CART-DT | ANLT | 0.078 | 1.47 |
NTL | 0.071 | 1.03 | |
NT | 0.052 | 0.67 | |
AN | 0.013 | 0.46 | |
RF | ANLT | 0.091 | 1.12 |
NTL | 0.105 | 1.55 | |
NT | 0.376 | 1.74 | |
AN | 0.411 | 1.68 | |
CNN | ANLT | 0.054 | 0.82 |
NTL | 0.086 | 1.13 | |
NT | 0.235 | 1.55 | |
AN | 0.022 | 0.66 |
Level of Desertification | Prediction Accuracy (%) | |
---|---|---|
Prediction Precision | Prediction Recall | |
Light Desertification (L) | 80.43 | 81.57 |
Moderate Desertification (M) | 82.05 | 82.96 |
Severe Desertification (S) | 83.19 | 84.19 |
Extremely Severe Desertification (ES) | 94.84 | 92.38 |
Non-Desertification (Non) | 93.92 | 90.08 |
Overall Classification Accuracy | 87.67 |
Counties | L/km2 | M/km2 | S/km2 | ES/km2 | Total/km2 | Percentage/% |
---|---|---|---|---|---|---|
Otog Banner | 5431.85 | 6003.52 | 2538.33 | 1321.37 | 15,295.07 | 28.20 |
Otog Front Banner | 4431.60 | 4036.53 | 2475.10 | 968.33 | 11,911.57 | 21.96 |
Wushen County | 2709.19 | 2247.98 | 2905.14 | 1326.61 | 9188.92 | 16.94 |
Yuyang District | 1568.00 | 1334.38 | 1412.71 | 136.23 | 4451.32 | 8.21 |
Ejin Horo Banner | 2576.71 | 703.83 | 348.52 | 69.30 | 3698.35 | 6.82 |
Yanchi County | 2294.00 | 907.84 | 246.83 | 52.62 | 3501.28 | 6.46 |
Shenmu | 896.40 | 611.87 | 649.29 | 98.15 | 2255.71 | 4.16 |
Jingbian County | 1132.03 | 213.22 | 193.31 | 16.88 | 1555.44 | 2.87 |
Dingbian County | 999.63 | 327.64 | 166.93 | 19.68 | 1513.89 | 2.79 |
Hengshan District | 680.02 | 104.55 | 72.19 | 6.28 | 863.04 | 1.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, K.; Wang, T.; Liu, S.; Kang, W.; Chen, X.; Guo, Z.; Zhi, Y. Monitoring Desertification Using Machine-Learning Techniques with Multiple Indicators Derived from MODIS Images in Mu Us Sandy Land, China. Remote Sens. 2022, 14, 2663. https://doi.org/10.3390/rs14112663
Feng K, Wang T, Liu S, Kang W, Chen X, Guo Z, Zhi Y. Monitoring Desertification Using Machine-Learning Techniques with Multiple Indicators Derived from MODIS Images in Mu Us Sandy Land, China. Remote Sensing. 2022; 14(11):2663. https://doi.org/10.3390/rs14112663
Chicago/Turabian StyleFeng, Kun, Tao Wang, Shulin Liu, Wenping Kang, Xiang Chen, Zichen Guo, and Ying Zhi. 2022. "Monitoring Desertification Using Machine-Learning Techniques with Multiple Indicators Derived from MODIS Images in Mu Us Sandy Land, China" Remote Sensing 14, no. 11: 2663. https://doi.org/10.3390/rs14112663
APA StyleFeng, K., Wang, T., Liu, S., Kang, W., Chen, X., Guo, Z., & Zhi, Y. (2022). Monitoring Desertification Using Machine-Learning Techniques with Multiple Indicators Derived from MODIS Images in Mu Us Sandy Land, China. Remote Sensing, 14(11), 2663. https://doi.org/10.3390/rs14112663