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Abstract: A ground-based multichannel microwave radiometer (GMR) is commonly used to observe
the atmospheric radiation brightness temperature (TB) in order to retrieve atmospheric temperature
and humidity profiles. At present, GMRs are used only in meteorology and climate monitoring.
However, theoretical analysis showed that GMRs can be also used to observe the solar radiation.
Therefore, we tried to improve the antenna servo control system of a GMR so that it could track
and observe the sun, and the results showed that the GMR could respond to the variation of solar
radiation. A further question was: can a GMR observe the variation of the sun during a solar
eclipse? Fortunately, two solar eclipse events were captured by the GMR on 26 December 2019 and
21 June 2020 in Xi’an, China. We used the upgraded GMR to observe the variation of solar radiation
during the two solar eclipses. The observation and analysis results showed that (1) the GMR could
accurately track the sun and respond to the variation of solar radiation during the solar eclipse. We
analyzed the variation features of the solar radiation by combining the solar phase during the two
solar eclipses. (2) We found that the GMR could respond to the variation of the solar radiation arising
from the Earth–Sun distance, and we further propose a novel method to measure the eccentricity of
earth orbit with the GMR by using the passive solar observation. The results show that the eccentricity
measured was 0.0169, which agreed quite well with the value of 0.0167 in the literature. (3) The
average variation percentages of both the Earth–Sun distance and the intensity of the incident solar
radiation throughout the year were estimated to be 3.44% and 6.6%, respectively. According to these
results, the solar observation techniques can broaden the field usage of GMR.

Keywords: microwave radiometer; solar eclipse; solar radiation; eccentricity

1. Introduction

The sun is a natural external source with high radiation intensity, it radiates in a
wide frequency band [1], and the solar emission is an approximate blackbody of 6000 to
20,000 K at millimeter and submillimeter wavelengths [2]. Observations of the thermal
radio emission of the sun at millimeter wavelengths are important in the evaluation of
theoretical atmospheric and surface models [3]. Generally, spectrographs, polarimeters and
telescopes are used to observe the solar microwave radiation and activity [3–8], but these
devices are generally large, expensive and complicated to operate. The GMR is a typical
atmospheric passive remote sensing device, has high sensitivity and it can be also used
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to observe the solar radiation. Mattioli et al. (2016) attempted to measure the TB of solar
radiation and propose the parametric retrieval of the atmospheric extinction at 23.8, 31.4,
72.5 and 82.5 GHz [1], but an operational GMR has rarely been used to track and observe
solar radiation or a solar eclipse.

At present, as GMRs can continuously observe the atmospheric microwave radiation
TB at K- and V-bands and provide valuable information on the temperature, humidity and
liquid water structure of the troposphere [9,10], they have been widely used in meteorology
and climate monitoring in last few decades [11–13]. Although there have been some new
applications of the technology for radiometers, their applications are limited to atmospheric
observation and they are only used to observe and retrieve the temperature and humidity
profiles, their value has not been fully utilized in other fields.

Nowadays, new applications have been found for radiometers. For example, based on the
theory of atmospheric radiation and the remote sensing potential of GMR, Wang et al. (2014)
proposed a method to measure the microwave radiation of a hot air cylinder caused by
lightning [14], and Jiang et al. (2018, 2020) observed microwave heating and the duration of
artificial rocket-triggered lightning using a GMR [15,16]. In addition, because the sun has
strong microwave radiation, theoretical analysis and experimentation show that GMRs are
able to observe and monitor solar radiation, and radiometers can be used to observe solar
radiation and measure the brightness temperature of solar radiation; the solar monitoring
method can be used to measure the antenna pattern, monitor the antenna alignment
and evaluate the receiver stability of a GMR in operational field applications [2,17–19].
Therefore, we propose the improvement of the antenna servo control system of a GMR
so that it can track and observe the sun automatically, and then attempt to observe the
variations of solar radiation. Thus, an operational GMR can be used to observe the TB
variations which reach the antenna due to solar radiation and to study the solar activity
and variations of solar radiation [17,18].

A solar eclipse is one of nature’s most impressive celestial performances and it happens
rarely. So, we wanted to know whether a radiometer could respond to the variation of
solar radiation during the solar eclipse. Fortunately, two solar eclipse events happened
on 26 December 2019 and 21 June 2020 and were able to be observed in Xi’an, China. The
solar eclipses provided a good opportunity for observing the variation of solar radiation.
Based on the observation experiment of the sun with a radiometer, we attempted to observe
the variation radiation of the sun during the solar eclipse. We monitored the complete
duration of solar eclipse with the upgraded GMR, and the results showed that the GMR
could respond to the variation of solar radiation and the effective radiation area of the sun
during the solar eclipse. More importantly, we successfully observed the variation of the
intensity of the solar radiation arising from the Earth–Sun distance and we used these data
to evaluate the eccentricity of earth’s orbit. The eccentricity is an important astronomical
parameter, which may modulate both the earth’s magnetic field and climate [20–22].

In this study, we introduced the experiment and theory that the solar eclipse can be
remotely sensed with a GMR and attempted to observe the variation radiation of the sun
during the solar eclipse. Furthermore, we proposed a novel and simple method to measure
the eccentricity of the earth’s orbit by using the radiometer to observe the variation of the
solar radiation near the perihelion and aphelion. This method does not need complicated
astronomical calculation but only observes the variation of solar microwave radiation
with a GMR near the perihelion and aphelion. This method is of great significance in real
terms. In addition, we also measured the variation percentages of both the Earth–Sun
distance and the intensity of the solar radiation. In order to observe solar radiation, solar
observations were performed using a GMR installed at the Xi’an field experimental site
(34.091◦N, E108.89◦E) in China. During this experiment, we found that the GMR could
be used to monitor the variation radiation of sun and that it could also respond to the
variation of the solar radiation arising from the Earth–Sun distance. This solar observation
method demonstrates a potential application for GMR and broadens the application field
of the radiometer.
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2. Theory and Method
2.1. The Observation of the Sun and a Solar Eclipse

In general, a GMR can be used to observe the TB of the atmosphere. When the antenna
is pointed at a certain elevation angle to the sky, the antenna temperature with only the
clear sky in the beam can be estimated by [23]:

Tsky(θ) = Tbge−τ(θ) + Tm

[
1− e−τ(θ)

]
, (1)

where θ is the observation elevation angle of GMR, Tm is the atmospheric effective tempera-
ture and Tbg is the cosmic background TB (Tbg = 2.75 K). τ(θ) is the atmospheric attenuation
at the elevation angle.

When a GMR is used to observe the sun, the TB measured by the antenna depends
on the average solar radiation and the ratio of the solar solid angle to the antenna solid
angle and the TB observation is inversely proportional to the solar solid angle [24]. During
the solar eclipse, when the antenna is pointed to the sun, the antenna temperature Tsm(θ)
received from both the sun and the moon in the antenna beam would be:

Tsm(θ) = Tbge−τ(θ) + Tm

[
1− e−τ(θ)

]
+

Ωs −Ω0

ΩA
Tsune−τ(θ) +

Ωm

ΩA
Tmoone−τ(θ), (2)

where Tsun and Tmoon are the average TB for the sun and moon, Ωm, Ωs and ΩA are the
solid angles of the moon, the sun and the antenna beam, respectively. Ω0 is the solid angle
of the sun shaded by the moon. Ω0 equals zero when there is no eclipse and equals the
solar solid angle when there is a total solar eclipse. The value of Ω0 is between (0, Ωs) for
annular or partial eclipse cases.

During observation of the sun, the TB increment measured by the GMR can be obtained
by subtracting (1) from (2),

∆T′sun(θ) = [
Ωs −Ω0

ΩA
Tsun +

Ωm

ΩA
Tmoon]e−τ(θ). (3)

According to the Equations (1)–(3), when the atmospheric distribution is homogeneous,
we can obtain the solar TB increment by observing the radiation of the sky without the
sun and the direction of the sun at same elevation (the solar elevation). When the GMR
observes the solar radiation, because of the atmospheric attenuation, the solar radiant
energy reaching the earth is reduced. During the observation, the atmospheric attenuation
is a key factor and it must be calculated.

The atmospheric attenuation τ(θ) can be calculated by using elevation scanning of the
sky [23]. After atmospheric opacity calibration, one obtains:

∆Tsun =
Ωs −Ω0

ΩA
Tsun +

Ωm

ΩA
Tmoon, (4)

where ∆Tsun is the power from the sun arriving at the antenna without atmospheric
attenuation. Considering that Tsun � Tmoon, i.e., Tmoon = 0 in Equation (4), one has:

∆Tsun =
Ωs −Ω0

ΩA
Tsun. (5)

This is the simplified formula for estimating the TB increment of the sun reaching the
antenna during the solar eclipse.
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2.2. The Effect of Earth-Sun Distance for the Solar Observation

From Equation (5), when there is no eclipse and the antenna is centered directly
towards the sun, the TB that antenna receives from the sun without atmospheric attenuation
can be given as:

∆Tsun =
Ωs

ΩA
Tsun. (6)

The solar solid angle would be derived as follows:

Ωs = 2π[1− cos(θs)], (7)

where θs is the angular radius of the sun. For a small angle θs, cos(θs) can be approximated
as follows:

cos(θs) ≈ 1− 1
2

θs
2, (8)

and θs can be given by:

θs ≈
r
d

, (9)

where r is the radius of the sun and d is the distance from the sun to the earth. Then the solid
angle subtended by the cone given by Equation (7) would be approximately as follows:

Ωs = π
r2

d2 . (10)

Then, Equation (6) becomes:

∆Tsun =
π

ΩA

r2

d2 Tsun. (11)

According to Equation (11), the TB increment is inversely proportional to the square
of the distance between the sun and the earth. Since the earth’s orbit around the sun is
an elliptical and the sun is at one focus of the ellipse, the Earth–Sun distance varies by
about 3.4% and the intensity of the solar radiation is 6.5% throughout the year [25]. This
is to say that the TB observation is related to the Earth–Sun distance. The variation of the
Earth–Sun distance affects the ratio R of the solar solid angle to the antenna solid angle. If
the beam width is known, the ratio R can be calculated accurately. However, as the antenna
beamwidth measurement is usually carried out in a microwave anechoic chamber, it is
complex and expensive. That being said, antenna pattern measurements with the sun as a
signal are widely used by active and passive microwave instruments in meteorology [1,17].
The sun can be assumed to be a point source for the antenna. During the scanning of the
sun, the received solar power can be approximated using a Gaussian function. Assuming a
Gaussian function for the antenna pattern, the ratio can be approximated as follows [26,27]:

R =
Ωs

ΩA
= 1− exp

[
−4 ln 2(θs/θA)

2
]
. (12)

Taking into account that the beamwidth of the GMR was less than 5◦, we simulated
the relationship between the sun filled-beam factor and antenna beamwidth, as shown
in Figure 1. The beamwidths of the GMR were around 3~5◦ at the K-band, and the sun
filled-beam factor was less than 0.02. The orbit of the earth is an ellipse and the ratio R is
depends on the Earth–Sun distance.

Utilizing Equation (6), we can accurately estimate the TB increment. For example,
when the antenna beamwidth is 4.5◦, the calculation results show that the variation of the
TB increment is about 3 K throughout the year, and the variation is more obvious with
a narrower beamwidth. The sensitivity for most GMRs for meteorological applications
consists of less than 0.3 K in 1 s of integration time and therefore it is certain that a
radiometer is capable of precise measurements of the annual variation of TB increment.
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During observation, we can ignore the variation of the TB increment due to sun movements
in 1 s of integration time.
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2.3. Measuring Eccentricity of the Earth Orbit

According to the observation results, a GMR can respond to the variation of the solar
radiation arising from the Earth–Sun distance, and, therefore, we propose a new method
to calculate the eccentricity of the earth’s orbit by using the observed solar microwave
radiation TB with a GMR when the earth is near the perihelion and aphelion. This method
is simple and does not require complicated observations and mathematical calculations.

For an elliptic orbit, the eccentricity e is given by:

e =
c
a

, (13)

where a is the length of the semi-major axis, c is the semi-distance between the two foci.
When the earth is at the perihelion and aphelion, the distance between earth and sun is
a− c and a + c, respectively. According to Equations (11) and (12), one has

∆Tp
sun

∆Ta
sun

=
(a + c)2

(a− c)2 =
(1 + e)2

(1− e)2 , (14)

where ∆Tp
sun and ∆Ta

sun are the TB increment when the earth is at the perihelion and

aphelion. Let M = ∆Tp
sun

∆Ta
sun

, and one has

e =
√

M− 1√
M + 1

, (15)

and

Q =

(
a + c
a− c

− 1
)
× 100% =

(√
M− 1

)
× 100%, (16)

R =

(
1− 1

M

)
× 100% (17)

where Q represents the percentage of the variation of the Earth–Sun distance, and R
represents the percentage of the variation of the solar radiation intensity.

3. Instrument and Experiments
3.1. The Radiometer and Observation Mode

The GMR (model MWP967KV) used for this experiment, shown in Figure 2, was de-
veloped and manufactured by our research team. It is a passive remote sensing instrument
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that measures the atmospheric radiation to retrieve temperature, humidity and liquid water
profiles as well as integrated water vapor and liquid water paths in real time.

The GMR usually measures TB in the K-band (22–30 GHz) and V-band (51–59 GHz).
It is comprised of an antenna system and two sensitive heterodyne receivers as well as a
detector unit and data retrieval system. It contains a high-precision elevation and azimuth-
stepping scanning system to scan the sky, and the angle resolution is 0.1◦. The receiver
system consists of two super-heterodyne receivers covering K- and V-bands, each band
is independently received and detected, and all channels use a common local oscillator
signal. The antenna system contains a parabolic reflector, beam splitter and compactness a
corrugated feed-horn. In addition, it is calibrated by using liquid nitrogen (LN2), hot load,
a noise diode and the tipping curve method. During observations, the GMR underwent
regular maintenance and the LN2 calibrations were performed twice a year. The system
performance parameters are given in Table 1.
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Table 1. The system performance of the GMR used in this study.

Parameter Specification

Frequency K-band (22~30 GHz); V-band (51~59 GHz)
Beam width K-band: ≤5◦; V-band: ≤3◦

Gain ≥25 dB
Sidelobe level ≤−25 dB

Brightness temperature accuracy 0.5 K
Brightness temperature sensitivity K-band: ≤0.25 K (RMS); V-band: ≤0.3 K (RMS);

Integration time Typically, 1 s
Antenna azimuth and elevation scanning +/−180◦ stepping scanning

Antenna angular resolution 0.1◦

Calibration method Hot load; Noise diode; Tipping method; LN2

In order to track and observe the sun, the antenna servo control system was improved
so that the GMR could be adjusted to control its antenna beam to scan the sun. When the
GMR tracked and observed the sun, we were easily able to obtain the TB variation from the
sun arriving at the antenna and thus study the solar activity.

The upgraded GMR was set up at the Xi’an field experiment site (34.091◦N, 108.89◦E).
The GMR works on two modes, the meteorological observation mode and the solar obser-
vation mode.
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(1) Meteorological observation mode. Generally, the GMR adopts meteorological ob-
servation mode to obtain atmospheric TBs which are used to retrieve atmospheric
temperature and humidity profiles.

(2) The solar observation mode. This observation mode was developed and was used to
track and remotely observe solar radiation. Firstly, the antenna system was adjusted
to point towards the center of the sun and then the antenna beam was tuned to scan
the sun using a polar plane indicator (PPI) by adding a step value on the antenna
azimuth. Secondly, the antenna was adjusted so that the sun was completely out of
the beam in order to scan the sky using a range height indicator (RHI) by adding a
step value to the antenna elevation, then the antenna was moved from the sun in order
to obtain the sky background radiation as a reference and to calculate the atmospheric
opacity with the tipping calibration method. Finally, we obtained the TB increment of
the sun without the atmospheric attenuation by utilizing Equations (1) to (5). This
scanning can last up to 3 min for each observation, depending on the scanning step
angle count.

Since the sun moves through the sky within this time interval, in order to reduce errors,
the antenna direction also follows the sun. We needed to recalculate the solar azimuth and
elevation prior to changing the antenna pointing position in real-time, and the azimuth
and elevation step angles are the relative angle between the antenna beam direction and
the sun; this relative angle was fixed for each observation. Common scan parameters are
listed in Table 2.

When tuning the antenna beam to scan the sun in the azimuth, a rotation of the antenna
in the azimuth with a constant elevation does not describe a great circle on the sky-sphere,
there were some distortions [1]. There is an extreme case when the azimuth of the antenna
is rotated at an elevation angle of 90◦, but the antenna beam pointing would not move on the
sky. For the distortion and the calibration method, Reimann and Hagen (2016) described it in
detail [1]. We calculated the distortion angle by using their method. If we had not calibrated
the angle distortion, it would have caused a large bias in the beamwidth measurement.

Table 2. Scan parameters used for sun measurements.

Parameter Specification

Frequencies for solar observation 22.235, 25.0, 30.0 GHz
Antenna scanning type PPI/RHI

Scanning position Around the sun as the center
Azimuth scanning range −10◦~10◦

Azimuth scanning step 0, ±0.1, ±0.25, ±0.5, ±1, ±1.5, ±2, ±2.5, ±3, ±4, ±5,
±6, ±7, ±8, ±10◦

Sky elevation scanning Elevation: 30, 45, 60, 90, 120, 135, 150◦

Integration time Typically, 1 s
Scanning time ~3 min

3.2. The Solar Eclipse Events

Solar eclipses rarely happen, but fortunately we witnessed two partial solar eclipses
on 26 December 2019 and 21 June 2020 in Xi’an, China. These partial eclipses were visible in
most parts of China. However, an annular solar eclipse was also seen in some areas of China
on 21 June 2020, the annular phase of this eclipse was visible from a narrow part of southern
of China (darker shaded area in the map below). In the lighter shaded areas, the partial
solar eclipse was visible. Figure 3 shows the path of the eclipse shadow and the percentage
of maximum obscuration, the two maps show the visibility of the annular solar eclipse on
26 December 2019 and 21 June 2020, and stages and times of the eclipse events observed
by this study are summarized in Table 3 (for details, see: https://www.timeanddate.com/
eclipse (accessed on 10 October 2020)).

During a solar eclipse, because the sun is shaded by the moon, the radiant energy
reaching the earth is reduced. Therefore, the variations of solar radiation can be observed

https://www.timeanddate.com/eclipse
https://www.timeanddate.com/eclipse
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by a GMR. In order to trace and observe the process of the solar eclipse, we improved and
developed a solar observation mode so that it could track and observe the sun, and we
used the upgraded GMR to observe the variation of solar radiation. Fortunately, the two
solar eclipse events were captured by our GMR; the sun was tracked and scanned at three
frequencies (22.235, 25.0, 30.0 GHz) in K-band on 26 December 2019 and 21 June 2020, and
the progress of the two solar eclipses was observed and recorded with the GMR during the
period of the two eclipses.
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Table 3. Stages and times of the eclipse events outlined for Xi’an (all times were local time, CST).

Eclipse Time First Contact Maximum Phase Last Contact Duration Max-Obscuration

26 December 2019 12:21 13:29 14:36 2 h 15 min 11.4%
21 June 2020 14:16 15:47 17:06 2 h 50 min 74.9%

4. Discussion
4.1. The Scanning Data Analysis during the Two Solar Eclipses

During the scanning of the sun, the sun can be assumed to be a point source for the
antenna, the solar TB increment received by the antenna can be assumed to be a Gaussian
function of the radial distance to the antenna beam axis [4,27]. The TB increment is given by:

∆Tsun(x) = Ad exp[−4 ln 2
(

x
θA

)2
], (18)

where x is the angle radius distance from the sun to the center of the antenna beam, θA
is the antenna half-power beamwidth, and Ad is the maximum TB increment when the
antenna is pointing to the center of the sun. During scanning data by the GMR, the antenna
beamwidth and the maximum TB increment can be easily fitted by the least-square method.
That is to say that the sun can be used to measure the antenna pattern of the radiometer.
The measurement of principle and method have already been reported in detail in previous
papers [17,18].

We used the upgraded radiometer to track and scan the sun during the two solar
eclipses. The GMR recorded the variation of the TB at three frequencies (22.235, 25.0,
30.0 GHz) in K-band on 26 December 2019 and 21 June 2020. These two eclipses provided
a very good opportunity for us to observe the solar eclipse process with a microwave
radiometer. In order to compare the variation of solar radiation TB, we also scanned and
observed the solar TB without solar eclipse. During the process of scanning the solar eclipse,
we measured TB increments at many step angles at three frequencies after correction for
the angle distortion, as is shown in Figures 4 and 5 for 26 December 2019 and 21 June 2020,
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respectively. The observation results showed that the solar eclipse could be observed by
the GMR. According to Equation (17), the scanning data were fitted with Gaussian function
using the least squares fitting, and the statistical results are given in Table 4. The results
showed that:

(1) the scanning points near the sun showed good symmetry and consistency with the
results from a fitting using the Gaussian function. The scanning data were able to be
used to measure the antenna pattern;

(2) the maximum value of TB increment was different for each frequency, but they were
related to the antenna beamwidth, and the fitting of beamwidth (β) was not affected
by solar eclipse (see Table 4). Because the Earth–Sun distance is very far, the sun can
be regarded as a point source during the solar eclipse. Therefore, it did not affect the
measurement of antenna beamwidth;

(3) during the solar eclipse, the TB increment decreased significantly when compared
to the main beam without the solar eclipse, because the sun disk was shaded by the
moon and the level of solar radiation became small;

(4) the TB increment was related to the portion of the sun shaded by the moon, when
the solar eclipse reached its maximum phase, the decrease of the TB increment was at
its maximum;

(5) because of the variations of the Earth–Sun distance, the TB observed by radiometer is
different at different times.
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Figure 4. The variation of TB increment during the scanning of the sun at the azimuth on 26 December
2019. BE means “before eclipse” and ME means “maximum eclipse”. The dots are observed data and
the line is a fitting of the Gaussian function (Gau). (a) 22.235 GHz, (b) 25.0 GHz, (c) 30.0 GHz.
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Figure 5. The variation of TB increment during the scanning of the sun at the azimuth on 21 Jun 2020.
BE means “before eclipse” and ME means “maximum eclipse”. The dots are observed data and the
line is a fitting of the Gaussian function (Gau). (a) 22.235 GHz, (b) 25.0 GHz, (c) 30.0 GHz.

Table 4. The parameters obtained by curve fitting with the Gaussian function at each of the three
frequencies. BE means “before eclipse” and ME means “maximum eclipse”.

Date Eclipse Phase
Ad (K) β (◦)

22.235 GHz 25.0 GHz 30.0 GHz 22.235 GHz 25.0 GHz 30.0 GHz

26 December 2019
BE 89.4 136.4 157.7 4.6 3.9 3.3
ME 79.2 121.1 142.3 4.7 3.8 3.4

21 June 2020
BE 86.1 127.6 150.3 4.6 3.7 3.4
ME 29.8 44.7 52.5 4.6 3.9 3.3

4.2. The Process and Characteristics of a Solar Eclipse

Our study was based on the measurements from the GMR on the day of eclipse and
several days before and after eclipse occurred. During a solar eclipse, the sun might be
totally or partially shaded by the moon, which could affect the irradiance level from the
sun. Therefore, we tried to use the radiometer to observe the process of a solar eclipse.
To describe the solar eclipse, we accurately calculated the eclipse obscuration, and it was
determined as a covered-to-total solar disc surface ratio [28,29]. The non-covered ratio is shown
with a blue dash line in Figures 6 and 7 for 26 December 2019 and 21 June 2020, respectively.
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Figure 6. The variation of the TB increment (left axis) during the solar eclipse on 26 December
2019 (red solid curve with I marks) as compared with that before and after the solar eclipse on
22 December and 27 December (black curve with other marks). All times were local times (CST). The
blue dash line represents the percentage of the unshaded solar disk area (right axis). (a) 22.235 GHz;
(b) 25.0 GHz; (c) 30.0 GHz.

We calculated and analyzed the TB increment of the sun as it reached the GMR antenna.
The relationship between the eclipse obscuration and the TB increment are also shown in
Figures 6 and 7, the signed line curve gives the experimentally observed values, and we
tried to achieve the closest agreement between the observed and theoretical eclipse curves.
In order to compare the change between the eclipse obscuration and the TB increment, we
also provided the non-eclipse observation data. According to our observations, a good
agreement between the calculated non-covered ratio curve and the observed eclipse curves
were found at every frequency. Normally, the TB increment had no obvious fluctuation
during non-eclipse conditions, but the solar eclipse started to affect the TB increment
when it initially occurred (first contact), and this effect disappeared at last contact. The
observation results showed that the TB increment was at a minimum when the shadow
area was at a maximum.
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(a) 22.235 GHz, (b) 25.0 GHz, (c) 30.0 GHz.

4.3. The Effect of the Earth-Sun Distance to TB Increment

The orbit of the earth is an ellipse, as can be seen from the distance between the sun and
the earth at the perihelion and aphelion. There is periodic variation for Earth–Sun distance,
and the angular radius of the sun depends on the distance. According to the Equations (10)
and (11), the Earth–Sun distance determines the ratio of solar solid angle of the antenna
beam. During the solar observation, the earth is near at perihelion in early January, when
the sun is closest to the earth, and the solar solid angle is near the maximum and the
average radiation TB increment received by the antenna is at its maximum. However, in
early July, when the sun is farthest from the earth, the solar solid angle is the smallest in the
year, and the average radiation TB increment received by the antenna is also at a minimum.

According to this theory, we analyzed the observed solar radiation TB without a solar
eclipse and the results showed that the TB increment was also variable at three frequencies
when there was no eclipse, as shown by Figure 8. The earth was near the perihelion on
27 December 2019 and 1 January 2020, and the average radiation TB increment received by
the GMR was at a maximum and the earth was farthest from the sun on 30 June and 2 July
2020, where the average radiation TB increment received by the GMR was at a minimum.
The average percentage of the TB variation was 6.6% at three frequencies. These observation
data indicate the variation of the Earth–Sun distance. The statistical results are given in
Table 5.
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Figure 8. The variation of the TB increment as a function of time before the solar eclipse on
26 December 2019 and 21 June 2020 (red curve) as compared with that after the solar eclipse on
27 December 2019 and 30 June 2020 (blue curve). (a) 22.235 GHz, (b) 25.0 GHz, (c) 30.0 GHz.

Table 5. Average TB increment during non-eclipse conditions.

Date
Average ∆Tsun (K)

22.235 GHz 25.0 GHz 30.0 GHz

27 December 2019 90.2 ± 0.6 134.3 ± 1.2 157.6 ± 1.6
1 January 2020 90.5 ± 1.6 135.1 ± 1.9 158.7 ± 2.1
30 June 2020 84.5 ± 1.1 125.5 ± 1.7 147.4 ± 1.8
2 July 2020 84.3 ± 0.6 126.3 ± 1.0 147.9 ± 1.5

4.4. Measuring the Eccentricity of the Earth’s Orbit

During observation of the sun, we obtained the TB increments observed on 27 December
2019, 1 January 2020, 30 June 2020, and 2 July 2020, which are quite close to the perihelion and
aphelion; the statistical results are shown in Table 5. From Equation (14) to Equation (17), the
TB increments observed on the perihelion and aphelion days could be used to calculate the
values of e, Q and R, which were 0.0169, 3.44% and 6.6%, respectively. These results were
consistent with previous studies [25,30]. We can see that the average eccentricity estimated
is relatively in good agreement with the 0.0167 given in the literature. The average variation
of the Earth–Sun distance is 3.44% throughout the year. The intensity of the incident solar
radiation at the aphelion should be about 6.6% less than at the perihelion.
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This method broadens the field usage of GMR, and it shows that the GMR can be
used to measure the eccentricity of earth orbit accurately and even to monitor the variation
of the solar radiation. The measurements of the solar TB increment and eccentricity both
depend on antenna errors, regarding its pointing towards the sun, and observation errors.
Therefore, these effects have to be taken into account during observation and calibration.
In order to reduce the observation error, the GMR underwent regular maintenance and the
LN2 calibrations were performed twice a year.

The antenna direction is an important factor of the observations, and it has to be
calibrated. During the scanning observation, the maximum TB increment can be received
by the GMR when the antenna beam points to the center of the sun, and the biases of
the antenna beam pointing between the peak TB and the predicted sun position can be
used to calibrate the antenna direction [17]. In addition, solar activity may be a factor
influencing the observation results, an effect which we will study further though future
long-term observation.

5. Conclusions

The microwave TB observation experiment with the upgraded GMR was carried out
at the Xi’an field experiment site, where we made an attempt to observe the sun with a
GMR. The two solar eclipse events happened on 26 December 2019 and on 21 June 2020
and were observed at three frequencies (22.235, 25.0 and 30.0 GHz). We observed and
studied the variation of the intensity of the solar radiation arising from the eccentricity of
the earth’s orbit with the GMR for the first time, and the results from the data analysis were
herein presented.

(1) We provided a new method to observe and monitor the process of the solar eclipse
with a GMR. This method develops and extends the application possibilities of the
GMR. The observation results showed that the GMR can accurately respond to the
variations of solar radiation, and we analyzed the variation features of solar radiation
by combining the solar phase during two solar eclipses. During the solar eclipse, the
effective radiation region of the sun was shadowed by the moon and the observed
TB increment were in good agreement with the percentage of the shadow of the solar
eclipse. The two solar eclipses gave us the unique possibility to observe and study the
varying features of solar radiation.

(2) More importantly, we found that the GMR could respond to the variation of the
solar radiation arising from the Earth–Sun distance. Therefore, a good experimental
determination of the eccentricity of earth orbit by using GMR has been described and
the estimated eccentricity of the earth’s orbit is 0.0169, which is in relatively good
agreement with the 0.0167 found in the literature.

(3) In addition, we also estimated the average variation of the Earth–Sun distance and
the intensity of the incident solar radiation with the GMR, and the results showed
that the variations are 3.44% and 6.6% throughout the year, which supports previous
theoretical and observational results.

In future work, we will continue to observe the long-term variation of the solar
microwave radiation with the GMR, so that a possible study regarding the features of solar
activity and their effects on the earth’s atmosphere can be carried out.
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