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Abstract: In 2007, China discovered a hydrothermal anomaly in the Longqi hydrothermal area of
the Southwest Indian Ridge. It was the first seabed hydrothermal area discovered in the ultraslow
spreading ocean ridge in the world. Understanding the types of seabed sediments in this area
is critical for studying the typical topography and geological characteristics of deep-sea seabed
hydrothermal areas. The traditional classification of deep-seabed sediments adopts box sampling or
gravity column sampling and identifies the types of seabed sediments through laboratory analysis.
However, this classification method has some shortcomings, such as the presence of discrete sampling
data points and the failure of full-coverage detection. The geological sampling in deep-sea areas is
particularly inefficient. Hence, in this study, the EM122 multibeam sonar data collected in the Longqi
hydrothermal area, Southwest Indian Ridge, in April 2019 are used to analyze multibeam backscatter
intensity. Considering various errors in the complex deep-sea environment, obtaining backscatter
intensity data can truly reflect seabed sediment types. Through unsupervised and supervised
classification, the seabed sediment classification in the Longqi hydrothermal area was studied. The
results showed that the accuracy of supervised classification is higher than that of unsupervised
classification. Thus, unsupervised classification is primarily used for roughly classifying sediment
types without on-site geological sampling. Combining the genetic algorithm (GA) and the support
vector machine (SVM) neural network, deep-sea sediment types, such as deep-sea clay and calcareous
ooze, can be identified rapidly and efficiently. Based on comparative analysis results, the classification
accuracy of the GA-SVM neural network is higher than that of the SVM neural network, and it can be
effectively applied to the high-precision classification and recognition of deep-sea sediments. In this
paper, we demonstrate the fine-scale morphology and surface sediment structure characteristics of the
deep-sea seafloor by finely processing high-precision deep-sea multibeam backscatter intensity data.
This research can provide accurate seabed topography and sediment data for the exploration of deep-
sea hydrothermal resources and the assessment of benthic habitats in deep-sea hydrothermal areas.

Keywords: Southwest Indian Ridge; Longqi hydrothermal area; multibeam echo sounder system;
backscatter intensity; seabed sediment classification

1. Introduction

The seabed sediment type is an essential marine environmental parameter, and its
distribution has scientific and practical significance for marine scientific research, ma-
rine engineering construction, and marine resources exploration. With the large-scale
development and utilization of marine resources, a fast and accurate method is urgently
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required to understand the types and distribution of seabed sediments comprehensively
and systematically.

Multibeam sonar technology is a new generation of underwater acoustic detection
technology developed in the 1960s. The multibeam echo sounder system can obtain high-
precision data of seabed topography and seabed backscatter intensity. The backscatter
intensity corresponds to the reflection and scattering abilities of the seabed to sound
waves. It depends on the incident angle of the sound waves, the roughness of the seabed,
the acoustic parameters of sediments (such as density, sound velocity, attenuation, and
scattering), and the propagation of sound waves in water and reflects the characteristics of
different seabed sediment types [1]. Sediments are classified based on backscatter intensity
data and traditional geological samples, providing a fast and effective detection method
for seabed sediment distribution [2].

Researchers have employed spectrum analysis [3,4], texture analysis [5–8], statisti-
cal analysis [9–11], cluster analysis [12], geomorphometric analysis [13–15], neural net-
works [16–24], and other methods to classify and identify seabed sediments. However,
most of these studies focus on the nearshore shallow water areas; due to the influence of
the complex marine environment in the deep sea, it is more difficult to use multibeam
to classify the seabed sediments there than in shallow water, and few studies have been
reported on the classification of acoustic sediments in deep-sea areas [25,26]. On the basis of
previous studies, this paper focuses on the classification of the deep-sea seabed, especially
the classification of the seabed sediment of the mid-ocean ridge hydrothermal area which
has been rarely carried out using the multibeam acoustic method. This study solves the
correction of deep-sea acoustic wave propagation loss and the correction of seabed terrain
slope influence. The high-precision neural network classification model is used to classify
and identify the submarine hydrothermal area, which provides important technical support
for the development and utilization of deep-sea resources. In this study, based on the April
2019 data from the Southwest Indian Ridge, the deep-water multibeam sonar data collected
from Longqi hydrothermal area and the fine processing and analysis of the area’s backscat-
ter intensity data, combined with seabed geological sampling data, the classification of
deep-seabed sediments in Longqi hydrothermal area was studied by unsupervised and
supervised classifications. The results showed that combining the genetic algorithm (GA)
and the support vector machine (SVM) neural network could obtain higher classification
accuracy than an SVM neural network. Acoustic seabed classification using a multibeam
echo sounder has wide application prospects for deep-sea seabed sediment classification.

Studies have shown that human activities have profoundly affected the entire ocean
system. Both shallow and deep waters have been or will be directly or indirectly affected
by human activities [27–29]. The deep-sea hydrothermal area is an important part of
the ocean system. Our research helps to understand the fine seabed topography and
sediment characteristics of the hydrothermal area in the Southwest Indian Ridge with the
high-precision underwater acoustic detection method and technology.

2. Materials and Methods
2.1. Overview of the Study Area

The mid-ridge of the Southwest Indian Ocean is approximately 8000 km long, starting
from the Bouvet Triple Junction (BTJ, 55◦S, 00◦40′W) in the West and the Rodrigues Triple
Junction (RTJ, 25◦30′S, 70◦E) in the East, which forms the boundary between the African
and Antarctic Plates [30]. The West end of the Southwest Indian Ridge meets the Atlantic
Ridge and America–Antarctica Ridge at the BTJ. At the Eastern end of the Southwest
Indian Ridge, it meets the Central Indian Ridge and Southeast Indian Ridge at the RTJ. The
expansion rate of the Indian Ocean ridge is 13–16 mm/a, which belongs to the ultraslow
expansion mid-ocean ridge [31–34].

The Longqi hydrothermal area (37◦47′S, 49◦39′E) is the hydrothermal anomaly area
discovered in the Southwest Indian Ridge in 2007, and it is the first area with hydrothermal
activity discovered in the global ultraslow spreading oceanic ridge [31–34]. The water depth
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of the Longqi hydrothermal area is approximately 2100–3400 m. The Longqi hydrothermal
point is located on a high hill at the Southeast end of the ridge valley at a depth of
approximately 1755 m. The topography of the surrounding area significantly fluctuates;
it is higher in the South and lower in the West. Overall, it has a steep slope, and basalt
appears on the seabed with few surface sediments [31–34] (Figure 1).
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An EM122 high-precision deep-water multibeam echo sounder system, which is
produced by the Kongsberg company of Norway, is used in the topographic and geomor-
phological survey of the Southwest Indian Ridge. Its working frequency is 12 kHz, the
depth measurement range is 20–11,000 m, the beam spacing is 1◦ × 1◦, the number of
beams is 288, and the coverage width is typically 6 times that of the water depth, to more
than 30 km. EM 122 uses both CW and FM pulse forms, its effective pulse length is 1 ms
CW to 100 ms FM. FM sweep with pulse compression on reception was used to increase the
maximum useful swath width, as well as the resolution; the range sampling rate is 3.03 kHz
(25 cm). The system was used to acquire a large amount of high-precision multibeam sonar
data in the Longqi hydrothermal area of the Southwest Indian Ocean. Pushcore was used
to acquire deep-sea sediment sampling data, providing a large amount of detailed data
for the quantitative study of the topography and the distribution characteristics of surface
sediments in the hydrothermal seabed area.

2.2. Fine Processing of Deep-Sea Multibeam Backscatter Intensity Data

The backscatter intensity represents the reflection and scattering abilities of seabed
media. It depends on the incident angle of the sound waves, the roughness of the seabed,
and the physical characteristics of the sediments.

The seabed backscatter intensity can be expressed as [36–38]:

BS = BSB + 10logA (1)
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Here, BSB is the intrinsic scattering intensity of the seabed, which typically depends
on the incident angle θ of the beam. A represents the area of the beam irradiation, which
can be obtained from the propagation speed (c) of sound waves in water, pulse width (τ),
transmitting beam width (θT), receiving beam width (θR), and incident angle (θ) of beams.
For different values of θ, A corresponds to different areas.{

BSN + 10log(θTθRR2) (θ = 0◦)
BSO + 10logcos2θ + 10log cτθT R

2 sin θ (θ 6= 0)
(2)

When θ = 0◦, BSB is approximately equal to a constant BSN. When θ 6= 0◦, BSB depends
on the incident angle of the beam and the characteristics of seabed sediment types, and its
variation obeys Lambert’s law.

BSN and BSO are the backscatter intensities of seabed sediment at the normal and
oblique incidence of sound waves, respectively. BSO only reflects the characteristics of
seabed sediment types. The incident angle θ can be determined according to Snell’s law.

Because of the absorption of sound waves by the sea, the energy of sound decays with
increasing distance, and the variation of the seabed topography will affect the size of the
beam irradiation area, leading to the deviation of intensity calculation. The original multi-
beam backscatter intensity cannot directly reflect the real seabed sediment characteristics;
it must be subjected to fine postprocessing [21]. The commonly used deep-sea multibeam
backscatter intensity postprocessing algorithm does not consider the effects of deep-sea
acoustic signal propagation loss, seabed topography fluctuation, and central beam specular
reflection on backscatter intensity. In this study, the effects of deep-sea acoustic signal
propagation loss and seabed topography fluctuation on backscatter intensity were ana-
lyzed. We used sediment classification software independently developed by the research
group. Furthermore, this process included an existing multibeam backscatter intensity data
correction model that was improved, in particular, by taking into consideration factors
such as the influence of the seabed topography and the influence of reflected signals in the
central beam area, and obtained the backscatter intensity value, which can truly reflect the
characteristics of seabed sediments using a median filtering algorithm (Figure 2).
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2.2.1. Compensation for Propagation Loss of Deep-Sea Acoustic Signal

The acoustic signal transmitted by the multibeam echo sounder system weakens as
the propagation time increases because of the expansion loss and absorption by seawater
and seabed sediments. The loss of backscatter intensity is more significant in deep-sea
detection; thus, it is necessary to amplify and compensate the signal intensity according to
the time variation. Thus, the original level of the echo signal is achieved and the effect of
the marine environment on the sound wave intensity is weakened.
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In the process of multibeam sonar data acquisition, the system maintains the acoustic
signal within a certain dynamic range for automatic gain processing. However, due to
different working environments, this automatic gain processing method produces a large
error. In the fine processing of multibeam backscatter intensity data, it is necessary to
remove the system gain. Then, the gain is recalculated and added to the correction process.
The time variable gain (TVG) of an EM series multibeam is calculated as follows:

GL = xlogR + 2αR + c (3)

where x and c are typically set as fixed parameters of 20, and R represents the transmission
distance of sound waves. α represents the absorption coefficient, which is related to the
emission frequency of sound waves, seawater temperature, and salinity, and is 29 dB/km
at 100 kHz.

After calculating the system gain of a multibeam using Formula (3), the real echo
intensity level was obtained using the receiving transducer before correction, which is
convenient for correction according to the real-time marine environment state.

According to the sonar equation, the propagation loss related to the distance (time)
can be obtained as follows:

GLr = 2× n×10logR + 2αR/103 (4)

The coefficient n (=1.5) is related to the beam emission angle; the EM122 series multi-
beam system has a transmission frequency of 12 kHz; the absorption coefficient α is
6 dB/km; and R represents the transmission distance of sound waves.

2.2.2. Correction of the Influence of Deep-Sea Seabed Terrain Slope

In the Longqi hydrothermal area, the seabed topography is complex, and the water
depth varies significantly. The seabed terrain slope significantly influences the intensity of
multibeam backscatter. In addition, the terrain influence correction model is complex. To
obtain an accurate terrain influence correction model, an accurate seabed digital terrain
model (Figure 3) was constructed using finely processed high-precision multibeam bathy-
metric data. Then, the terrain slope influence correction calculation was performed for each
backscatter intensity value.
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Considering terrain slope correction, the actual incident angel θ’ of the multibeam is:

θ′ = arccos
(

Vi•Vn

‖Vi‖‖Vn‖

)
(5)

Vi represents the incident angle vector and Vn represents the normal vector perpendic-
ular to the seabed.

Due to the influence of terrain slope, area A of the beam irradiation changes, affecting
the calculation accuracy of backscatter intensity. Thus, it needs to be corrected.

The total influence of seabed terrain on echo intensity is as follows:

∆Bs = 10log
cτψtR

2sin(θ + β)
+ 10logcos(θ + β)−

(
10log

cτψtR
2 sin(θ)

+ 10logcos(θ)
)

(6)

Among them, c represents the sound velocity, τ represents the pulse width, ψt repre-
sents the received beamwidth, and β represents the slope angle.

β = arccos(
|C|√

A2 + B2 + C2
) (7)

After multiple filtering, the least square method was used to fit the surface for five
consecutive pings. Then, the normal vectors (A, B, and C) of each sampling point were
obtained, thereby obtaining the accurate slope angle.

2.3. Fuzzy ISODATA Unsupervised Sediment Classification
2.3.1. Principle of Algorithm

The fuzzy ISODATA algorithm [39] was used to select the initial cluster center accord-
ing to the preset number of clusters. Then, the fuzzy matrix U is compared according to the
criterion function. At the same time, it merges and decomposes the categories not meeting
the requirements until they are satisfied. The fuzzy ISODATA algorithm differs from the
traditional K-means clustering algorithm [40], mainly by introducing U and incorporating
the two mechanisms of merging and splitting in the iterative process. When the number of
samples belonging to a certain category is too small, the category is removed. Conversely,
when the number of samples belonging to a certain category is too large and scattered, the
category is divided into two subcategories.

Assume that the number of sampling matrix X = {X1, X2, · · · , XN} is N and each sam-
pling point contains S-dimensional features. Define the cluster center Z = {Z1, Z2, · · · , ZK}.
The construction criterion function is defined as follows:

J =
K

∑
i=1

K

∑
i=1

[
µij(L + 1)

]m∣∣Xj − Zi
∣∣2 (8)

where µij means the matrix element of membership matrix U. L represents the number
of iterations. Through repeated iterations of the matrix U and the clustering center Z, the
criterion function J was minimized.

2.3.2. Algorithm Flow

The fuzzy ISODATA algorithm flow is as follows:

1. Input the initial parameters and randomly select the initial cluster center Zi(0).
2. Calculate the initial membership matrix U(0) according to Formula (8).
3. Through the initial membership matrix U(0), calculate all kinds of new cluster centers

Zi(0).
4. Choose whether to perform the split operation.
5. Judge the merge operation. If the distance between the categories is less than the set

threshold or the number of samples in a category is less than the specified number,
then the merge operation will be performed.
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6. According to the new clustering results, calculate the distance d between each sample
and each clustering center.

7. Calculate a new membership matrix.
8. Return to step 3 and repeat the iteration until it completes.

2.4. Improved SVM Supervised Sediment Classification
2.4.1. Classification Method

SVM is a new machine learning method proposed by Vapnik [41,42] based on sta-
tistical theory and structural risk minimization criteria. It is used to solve classification
and function approximation problems. SVM has a stricter theoretical and mathematical
foundation and stronger generalization ability than traditional machine learning methods,
such as backpropagation neural networks. It does not have a local minimum problem. It is
suitable for small sample learning and can solve the problems of local minima, nonlinearity,
over-learning, and dimension disaster [42]. It is widely used in complex data classification,
signal processing, and regression function estimation [43,44]. However, in practice, because
the problem of selecting optimal parameters of SVM has not been satisfactorily solved,
the commonly used SVM parameter selection generally adopts the exhaustive method.
This method has many disadvantages, such as large calculation, long operation time, low
optimization precision, and difficulty in obtaining optimal parameters.

GA is an adaptive optimization technique proposed by Holland [45] that is based on
genetics and evolutionary mechanisms and is suitable for complex system optimization.
Compared with traditional optimization algorithms, GA optimization has the advantages
of high search efficiency, global optimal solution search, avoidance of falling into a local
optimal solution, no influence of objective functions, and strong adaptability.

In this study, to solve the problems of difficult parameter selection and low precision
of SVM, GA is used to build a GA–SVM classification model. Based on high-precision
multibeam sonar data obtained from the Longqi hydrothermal area in the Southwest Indian
Ocean, the multidimensional seabed topography and seabed intensity information features
of the Longqi hydrothermal area were extracted and input to the GA–SVM optimization
classification model. The experimental results showed that the model could further improve
the classification accuracy and speed of deep-sea seabed sediments.

2.4.2. GA-SVM Classification Model

The SVM classification model maps sample space to high-dimensional space and then
constructs the optimal decision function in the high-dimensional feature space [46]:

y = wT ·ϕ(x) + b (9)

Here, w represents a weight vector and b. represents the offset.
The SVM model is used to solve classification problems through optimizations [42],

min
1
2
‖ w ‖2 +C

n

∑
i=1

εi , s.t., yi(wxi + b) ≥ 1− εi, εi > 0 (10)

Here, εi represents the introduced relaxation variable, and C represents the penalty
factor. The Lagrange multiplier is introduced for an optimal calculation to obtain the SVM
decision function [45]:

f (x) = sign

[
n

∑
i=1

αiyiK(xi, yi) + b

]
(11)

The value of the penalty factor C in the SVM classification model and the RBF parame-
ter g directly affect the accuracy of SVM classification. In particular, C is proportional to the
fitting degree of data. The larger the value of C, the higher the degree of data fitting. The
RBF parameter g, i.e., linear indivisibility, is determined. g that is excessively large after the
sample data are mapped to the high-dimensional feature space reduces the classification
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accuracy. Therefore, a reasonable selection of parameters is essential to ensure and improve
the classification performance of SVM.

GA has a strong robustness and global optimization ability. Its greatest advantage
is that only the objective function (fitness function) is used in the optimization process
instead of the gradient and other auxiliary information. Its optimization process starts
from the solution space point set to the global optimum. With this feature, we can choose
the best optimization parameters for SVM, thereby improving the convergence speed
and classification accuracy of the network. The specific optimization process is shown in
Figure 4.
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2.4.3. Feature Extraction

We extracted 24-dimensional feature information, including topographic factors and
texture features, from the seabed topographic and sound intensity data obtained from the
Longqi hydrothermal area in the Southwest Indian Ridge, as shown in Table 1.
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Table 1. Statistical table of 24-dimensional characteristic information.

Number Characteristics Description Number Characteristics Description

1 Gray Intensity value 13 GLCM [47] Correlation

2 Depth Depth 14 Contrast

3 Terrain factor Slope 15 Variance

4 Curvature 16
Inverse

different
moment

5 Laws [48]
Laws

microscopic filter
operator-L5R5

17 Mean

6
Laws

microscopic filter
operator-L5S5

18 Dissimilarity

7
Laws

microscopic filter
operator-E5S5

19 Gabor [49] 0◦

8
Laws

microscopic filter
operator-E5W5

20 45◦

9
Laws

microscopic filter
operator-S5W5

21 90◦

10
Laws

microscopic filter
operator-S5R5

22 Tamura [50] Contrast

11 GLCM [47] Energy 23 Roughness

12 Entropy 24 LBP [51]
Local binary

pattern
feature

R5, L5, E5, S5, and W5 constitute a one-dimensional vector set with a length of 5. They
represent grayscale, edge, point, wave, and ripple characteristics, respectively, which are
defined as follows: 

L5 = [1 4 6 4 1]
E5 = [−1− 2 0 2 1]
S5 = [−1 0 2 0− 1]
W5 = [−1 2 0− 2 1]
R5 = [1− 4 6− 4 1]

(12)

S5R5, L5R5, L5S5, E5S5, E5W5, S5W5 are obtained by the convolution of the correspond-
ing texture vector.

3. Results
3.1. Processed Results of Deep-Sea Multibeam Backscatter Intensity Data
3.1.1. Results of Compensation for Propagation Loss of Deep-Sea Acoustic Signal

In the Formula (4), n and α can be adjusted during data processing to obtain the best
sonar image. As shown in Figure 5, after the acoustic signal is corrected, and most of
the outliers of sound intensity are effectively eliminated. In the red square area of the
Figure 5b,c, the intensity changes are balanced, and the intensity value of noise is restored
to a normal magnitude after TVG correction. The image darkening caused by transmission
loss is improved, and the intensity value of the abnormal bulge is reduced (Figure 5).
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Figure 5. Influence of propagation loss on backscatter intensity: (a) correction intensity diagram of
acoustic signal propagation loss; (b) original sonar image without TVG correction; and (c) seabed
sonar image after TVG correction.
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3.1.2. Results of Correction of the Influence of Deep-Sea Seabed Terrain Slope

The actual beam irradiation area A’ was calculated using Formulas (6) and (7). The
seabed terrain slope and beam irradiation area were corrected using Formula (1). Finally,
the BS, which is independent of the incident angle and only reflects the characteristics of
the deep seabed, was obtained. As shown in Figure 6a, green and blue represent the sound
intensity data corrected by TVG and the terrain slope, respectively. The abnormal mutation
of the original sound intensity data is eliminated and the corrected sound intensity changes
smoothly, preserving the intensity characteristic information. By correcting the effect of
propagation loss and the seabed terrain slope, the image details in different areas were
preserved, the influence of the intensity change was weakened, and the speckle noise in the
image was removed by median filtering. We obtained backscatter intensity data reflecting
real seabed sediment characteristics to generate sonar images (Figure 6b,c). The details
of the image are clear, the transition of the survey line is natural, and the bright band in
the central area was successfully removed. The trend characteristics of the backscatter
intensity changing with the incident angle can be observed. However, when they are
combined with the sound intensity variation graph, information about seabed sediments in
the strip coverage area can be visually described. Thus, the types of seabed sediments can
be accurately and quantitatively analyzed.
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image in the Longqi hydrothermal area: (a) sound intensity contrast chart after TVG correction and
terrain slope correction; (b) original sonar image without terrain slope correction; and (c) seabed
sonar image after terrain slope correction.

3.2. Deep-Sea Sediment Classification Results Using Fuzzy ISODATA Unsupervised

Four areas were selected as the test data of the fuzzy ISODATA classification algorithm
from the seabed sediment sampling data collected in the Longqi hydrothermal area in the
third leg of Dayang 52 voyage (Figure 1) and the sediment sampling data collected in this
area through the census of seafloor sediments in the world’s ocean [52]. One of these is
sulfide and has a total of 9000 samples (as shown in the purple box in Figure 7). There are
9000 samples in 3 calcareous ooze sediment areas (as shown in the green box in Figure 7).
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The fuzzy ISODATA algorithm was used to obtain the distribution of seabed sediment
types in the Longqi hydrothermal area in the Southwest Indian Ridge (Figure 8).
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3.3. Deep-Sea Sediment Classificaiton Results Using Improved SVM Supervised Sediment Classification

To verify the effectiveness of the GA–SVM classification model in classifying deep-
seabed sediments, two types of seabed sediments—sulfide and calcareous ooze—were
selected in the Longqi hydrothermal area in the Southwest Indian Ridge (Figure 7). In total,
9000 sulfide samples (4500 training and test samples) and 9000 calcareous ooze samples
(4500 training and test samples) were collected.

Training data were input into the SVM and GA–SVM classification models for training
and learning, respectively. Then, the models were tested with the test data. Finally, the
entire Longqi hydrothermal area was classified by sediment; the classification results of the
two classifiers are shown in Figure 9.
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4. Discussion

Previous studies mainly focused on acoustic sediment classification in shallow seas.
This study achieves the automatic identification and classification of deep-seabed sediment
types using an acoustic remote sensing method, which has important theoretical and
practical significance for deep-sea resource investigation, deep-sea marine engineering
applications, and deep-sea marine scientific research.

First, the unsupervised fast classification of deep-seabed sediment was realized using
the fuzzy ISODATA algorithm, and the overall classification accuracy and Kappa coefficient
were calculated according to Formulas (13)–(15) [53,54].

Overall = ∑ xii
N

(13)

kappa =
Overall− pe

1− pe
(14)

pe =
∑n

i=1

(
∏n

j=1 xij + ∏n
i=1 xji

)
N2 (15)

where, xii is the number of correctly classified, N is the total number of samples, ∏ n
j=1xij is

the sum of the i-th row, and ∏ n
i=1xji is the sum of the i-th column elements.

As shown in Figure 8, unsupervised classification does not require an in-depth un-
derstanding of the image to be classified in advance. It can quickly classify the types
according to the set types. However, compared with supervised classification, its classifica-
tion accuracy is lower (shown in Table 2). In addition, because the input data is unlabeled,
unsupervised classification has no definite result. The fuzzy ISODATA unsupervised
classification is mainly used to roughly classify sediment types without on-site geological
sampling.

Table 2. Classification accuracy of fuzzy ISODATA unsupervised sediment.

Method Classification Accuracy (%) Overall (%) Kappa

ISODATA Sulfide/83.47
Calcareous ooze/85.43 85.45 0.689
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Second, combining GA with the SVM neural network can rapidly and efficiently
identify deep-sea sulfide, deep-sea calcareous ooze, and other sediment types. Figure 9
and Table 3 show that the classification accuracy of the GA-SVM model is higher than that
of the SVM neural network, achieving up to 89.10% and 89.66% classification accuracy for
deep-sea sulfide and calcareous ooze, respectively. Based on experimental comparison and
analysis results, the classification accuracy of the GA-SVM model is significantly higher
than that of the SVM model, and the overall accuracy reaches 89.66%. It can be effectively
applied to high-precision deep-sea sediment classification and recognition.

Table 3. Classification accuracy of SVM and GA-SVM.

Method Classification Accuracy (%) Overall (%) Kappa

SVM Sulfide/84.81
Calcareous ooze/86.10 85.46 0.7091

GA-SVM Sulfide/89.10
Calcareous ooze/89.66 89.66 0.7932

Due to the lack of more sampling data of different types of sediment in the Longqi
hydrothermal area, our multibeam acoustic sediment classification test has certain limita-
tions. In future research, we will collect more sediment sampling data in deep water areas
and extend the acoustic sediment classification method to identify various types of seabed
sediments.

5. Conclusions

In this study, the EM122 multibeam sonar data collected in the Longqi hydrother-
mal area in the Southwest Indian Ridge, in April 2019 were used to analyze multibeam
backscatter intensity data considering various errors in the complex deep-sea environment.
Thus, backscatter intensity data truly reflecting the seabed sediment types were obtained.
Through unsupervised and supervised classification, the classification of seabed sediments
in the Longqi hydrothermal area was studied. The results showed that the accuracy of
supervised classification is higher than that of unsupervised classification. Unsupervised
classification is mainly used to roughly classify sediment types without on-site geological
sampling. The classification accuracy of the GA-SVM algorithm is better than that of the
traditional SVM algorithm and ISODATA algorithm. However, due to parameter iterative
optimization and training, it takes longer than the other two methods. When there is
enough sampling data, the GA-SVM algorithm is recommended.

Through this research work, we can provide accurate seabed topography and sedi-
ment data for the exploration of deep-sea hydrothermal resources and the assessment of
benthic habitats in deep-sea hydrothermal areas, thereby contributing to a comprehensive
understanding of the impact of human activities on the deep-sea environment.
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