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Abstract: Shanghai Lingang New City, located in the southeast corner of Shanghai, was constructed
by land reclamation from 2002 to 2005, in an area where the geological structure is prone to subsidence
over time. Firstly, we explore the spatio-temporal pattern of ground subsidence and its mechanism
using the Persistent Scatterers Interferometric Synthetic Aperture Radar (PSInSAR) technique by
processing 50 scenes of Sentinel-1A images acquired from May 2016 to May 2018. In order to assess the
accuracy of PSInSAR derived deformation, we collect the first-class leveling data at two benchmarks
located in the study area; the comparison between the two settlement indicates that the maximum
difference is 1.93 mm and 2.9 mm, respectively, which validates the PSInSAR’s high accuracy. We
then obtain the skeleton release coefficients by the joint analysis of PSInSAR measurements and
groundwater level data. Finally, we find that this coastal area has undergone both elastic and inelastic
deformation from 2016 to 2018. The outcome shows that the combination of different techniques is
conductive to understand the deformation mechanism of the aquifer system in these coastal areas,
which is expected to be a valuable reference for ground subsidence monitoring and groundwater
extraction management.

Keywords: ground deformation; PSInSAR; leveling; groundwater; Shanghai Lingang New City

1. Introduction

Land reclamation, as an important way to use coastal areas to expand land resources,
has been conducted in many regions such as the Netherlands [1,2], the Hong Kong Inter-
national Airport [3–5], Macau [6], Tianjin [7,8], and Shanghai Lingang New City [9–11],
which is located in the southeast corner of Shanghai, China. Due to the compaction and
consolidation of the soil layer and groundwater extraction, these areas suffer from ground
subsidence, which raises potential risks to urban buildings, bridges, metro lines, and
other infrastructures, even threatening people’s lives. The monitoring of land subsidence,
the estimation of water release coefficient of the aquifer, and the correlation analysis be-
tween land subsidence and groundwater in these areas provide an important basis for
the study of subsidence mechanisms and the formulation and implementation of certain
protective measures.

InSAR (Interferometric Synthetic Aperture Radar) time series analysis techniques–
such as PS-InSAR (Persistent Scatterers-InSAR), SBAS-InSAR (Small Baseline Line- InSAR),
TCP-InSAR (Temporarily Coherent Point Interferometric Synthetic Aperture Radar) [12,13],
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DS interferometry (DSI) [14], and other InSAR techniques–have been proven to be effi-
cient in monitoring ground subsidence and the relationship between land subsidence and
groundwater changes. Galloway et al. used radar data collected from ERS-1 satellite to
detect and quantify land subsidence caused by aquifer system compaction in the Antelope
Valley, Mojave Desert, California [15]. Hoffmann et al. used ERS-2 satellite data to monitor
land subsidence in the Antelope Valley and compared these data with repeatedly surveyed
benchmarks [16]. Erban et al. collected L-band ALOS PALSAR data to measure the land
subsidence rate in the Mekong Delta in Vietnam [17]. Matano et.al processed three SAR
datasets of ascending and descending orbits acquired over the Campania coastal sectors
from June 1992 to July 2010, which provided new insights into the spatial variability of ver-
tical ground deformation (subsidence/uplift) of the Volturno River coastal plain [18]. Wang
et al. used C-band Envisat ASAR data to investigate the rate and extent of coastal land
subsidence in the Pearl River Delta in China [19]. Liu et al. detected subsidence in a coastal
area by implementing the ultrashort-baseline TCPInSAR algorithm with high-resolution
TerraSAR-X images acquired over Tianjin (close to Bohai Bay) in China [20]. Zhao et al. used
ASAR (2007–2010), CSK (2013–2016), and Sentinel-1A SAR images (2015–2017) to obtain
the ground deformation rate in coastal areas in Shanghai using InSAR techniques [21–23].
There are many research results of the application of PSInSAR in Shanghai [24–33]; most
scholars have analyzed the subsidence of the Shanghai area with InSAR space technology
and levelling data. In this paper, we involve various technologies including not only
PS-InSAR and leveling, but also groundwater level measurements taken monthly that
are used to cross-validate each other, establish the relationship between settlement and
groundwater in the delta area, and further distinguish the deformation types. This is
helpful to further understand the evolution of land compaction and consolidation in the
land reclamation area.

In this paper, we adopted 50 scenes of Sentinel-1A images acquired from May 2016
to May 2018 to detect and process persistent scatterers (PS) in Shanghai Lingang New
City using the Persistent Scatterers Interferometric Synthetic Aperture Radar (PSInSAR)
technique. Then, we compared the displacement time series of these high coherence points
with groundwater well data and leveling data using PSInSAR technology. Finally, we
estimated the aquifer parameters at groundwater wells and analyzed the deformation
characteristics and their geophysical mechanism.

2. Study Area

Lingang New City is located in the southeast corner of Pudong New District, Shanghai,
China, where 60% of the land was constructed by reclamation between 2002 and 2005 [9–11].
It is about 75 km from the center of Shanghai and has a total area of 152.15 km2. Most
of the Lingang New City area was built by land reclamation. Its coastal zone–a frequent
landing site of typhoons and storm surges–is vulnerable to a number of natural disasters.
Factors such as the natural consolidation of mucky soil and the compression effect of the
underground soil layer structure often cause ground subsidence in this area.

The geographical location of Shanghai Lingang New City is shown in Figure 1. The
locations of two groundwater wells (W65, W66) and two leveling points (F65, F66) are
marked with asterisks in Figure 1. The names W65 and W66 under these asterisks are
abbreviations for groundwater monitoring wells. The names F65 and F66 are abbreviations
for leveling monitoring points. Groundwater well W65 and leveling point F65 are located
at the same place, and W66 and F66 are similarly in the same location.
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Figure 1. The geographical location of Shanghai Lingang New City and the location of groundwater
wells and leveling monitoring points (marked with asterisk).

As shown in Table 1, the aquifers of Shanghai include: the submerged aquifer (A0),
first confined aquifer (A1), second confined aquifer (A2), third confined aquifer (A3),
fourth confined aquifer (A4), and the fifth confined aquifer (A5). Weakly permeable layers
include: the topsoil layer (B0), first weakly permeable layer (B1), second weakly permeable
layer (B2), third weakly permeable layer (B3), fourth weakly permeable layer (B4), fifth
weakly permeable layer (B5), and the sixth weakly permeable layer (B6). This is according
to the hydrogeological profile of the Shanghai area, as shown in Figure 2; aquifers and
weakly permeable layers are missing in some areas. The second, third, fourth, and fifth
confined aquifers contain abundant groundwater resources and are the main targets for
emergent groundwater exploitation. To explore the relationship between groundwater
and ground subsidence in Shanghai Lingang New City, we mainly consider here the
thickness changes of the fourth confined aquifer, as the first, second, and third confined
aquifers are in a reverse relationship between the upper and lower soft soil layers and
the fifth aquifer is rare in the Lingang area. The large thickness index of the third and
fourth aquifer sand layer in Lingang New City indicates that the development of the sand
layer may increase ground subsidence during exploitation, especially during unreasonable
groundwater extraction. Otherwise, it will not lead to ground subsidence disasters [34];
that is, the cumulative thickness indicators of the fourth confined aquifer can reflect the
abundance of groundwater resources, and the thickness changes can reflect the surface
subsidence. We take the changes in the water levels of the fourth confined aquifer as the
research object in this paper.
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Table 1. The List of Hydrogeological Section.

Hydrogeological Section Full Name Short Name

Aquifers

Submerged aquifer A0
First confined aquifer A1

Second confined aquifer A2
Third confined aquifer A3

Fourth confined aquifer A4
Fifth confined aquifer A5

Weakly permeable layers

Topsoil layer B0
First weakly permeable layer B1

Second weakly permeable layer B2
Third weakly permeable layer B3

Fourth weakly permeable layer B4
Fifth weakly permeable layer B5
Sixth weakly permeable layer B6
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Figure 2. Hydrogeological Section Map of Shanghai City [34].

3. Materials and Methods
3.1. SAR Data

A total of 50 scenes of Sentinel-1A images acquired from 15 May 2016 to 5 May 2018
(seen in Table 2) are used to detect and process the high coherence points in Lingang New
City, Shanghai. Figure 3 shows the distribution of the spatial and temporal baselines, where
the image acquired on 27 June 2017 was selected as the reference image. In [35–38] the
maximum temporal baseline was 408 days, and the maximum spatial baseline was 90 m.
And thus the thresholds of temporal and spatial baselines were empirically set as 408 days
and 90 m, respectively, to select interferograms.
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Table 2. The List of SAR data and acquisition times.

No Acquisition Time No Acquisition Time No Acquisition Time

1 20160515 18 20170311 35 20171013
2 20160608 19 20170404 36 20171106
3 20160726 20 20170416 37 20171118
4 20160819 21 20170428 38 20171130
5 20160912 22 20170510 39 20171212
6 20161006 23 20170522 40 20171224
7 20161018 24 20170603 41 20180117
8 20161030 25 20170615 42 20180129
9 20161111 26 20170627 43 20180210

10 20161123 27 20170709 44 20180222
11 20161205 28 20170721 45 20180306
12 20161217 29 20170802 46 20180318
13 20161229 30 20170814 47 20180330
14 20170122 31 20170826 48 20180411
15 20170203 32 20170907 49 20180423
16 20170215 33 20170919 50 20180505
17 20170227 34 20171001
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3.2. Leveling Data

We collected the measurements from two first-class leveling points (i.e., F65 and F66,
marked as asterisks in Figure 1) located in the study area to verify the accuracy of the InSAR
measurements. The Trimble DINI03 digital level was used to obtain the leveling data with
first-class leveling accuracy. The accuracy of the vertical displacement monitoring was
±0.3 mm. The F65 and F66 leveling points were observed monthly since 15 February 2011
and 25 February 2009, respectively.

3.3. Water Level Well Data

The Shanghai Institute of Geological Survey has conducted long-term monitoring of
groundwater level changes in Shanghai. There are two groundwater level wells (W65, W66)
in the study area, as shown in Figure 1, and the groundwater level is monitored monthly.

3.4. PSInSAR Technique

PSInSAR is an advanced InSAR technology that can accurately detect ground surface
deformation from a stack of SAR images [39–43]. The PSInSAR technique has been widely
used in urban areas with a high density of coherent points. This algorithm is a time
series analysis method based on point targets with stable scattering characteristics (e.g.,
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buildings, bridges, roads, and bare rocks). Then, time series analysis is performed on the
interference phase to obtain high-precision surface observation information from these
persistent scatterers.

When processing these SAR images, one SAR image is usually selected as the master
image and the others are used as slave images. After registration and mitigation of the
flattening effect, the external DEM (e.g., SRTM DEM 90 m × 90 m) is used to remove the
topographic phase, and the differential interferograms are generated. Then, persistent
scatterers (PS) that can keep high coherence in all the interferograms are selected. A
Delaunay triangle network is generated from these PS points [44–48]. The wrap phase (ϕk

i )
at the point i in the k th interferogram can be written as follows:

ϕk
i = W

{
ϕk

i,de f + ϕk
i,hgt + ϕk

i,orb + ϕk
i,atm + ϕk

i,noise

}
(1)

where W{·} is the wrapping operator; ϕk
i,de f is the phase contributed by ground deforma-

tion, ϕk
i,hgt is the phase associated with height errors, ϕk

i,orb is the phase associated with

orbital errors, ϕk
i,atm is the phase that is related to the atmospheric delay, and ϕk

i,noise is
the noise.

The atmospheric phase and the orbit phase can be separated by temporal and spatial
filtering. Finally, the time series deformation phase and average deformation rate of
the line of sight of the satellite are obtained [49–53]. The deformation phase reflects the
displacement of the ground during the observation time. SAR belongs to active remote
sensing. The signal is measured twice from transmission to reception. Therefore, the phase
change caused by ground point deformation can be expressed as:

ϕk
i,de f = −

4π

λ
De fLOS (2)

where λ is the wavelength of the radar signal. De fLOS is the deformation of the radar line
of sight, and in the data analysis and comparison, it is necessary to transfer it to the vertical
direction to compare it with levelling data or other vertical measuring data.

3.5. Reduction of InSAR Measurement

In order to investigate the relationship between ground deformation monitoring by
PSInSAR and groundwater well observations, we processed them to the same scale by
using the inverse distance square weighted (IDW) method, which has been widely used in
many fields such as meteorological research, mine reserves research, oceans research, and
other fields.

In this case study, the coherent points located within 100 m of the groundwater well
and their subsidence time series were extracted. The deformation value of the groundwater
well was calculated by the former IDW method for the coherent points. Then, the weighted
deformation was seen as the surface deformation of the groundwater well within this time.

The weight function to calculate the weight of each PS point:

wi =
D−P

i

∑n
i=1 D−P

i
(3)

where wi is the weight of each PS point, Di is the Euclidean distance between the PS point
and the groundwater level point, Pis the power parameter, and n is the number of PS point.
In this paper, we use P = 2, which is the commonly used method of the inverse distance
square weighted method.
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Then, we use the inverse distance weighted function to obtain the estimated deforma-
tion value at the coordinates of the groundwater well:

Disp(h0) =
D−P

i ∑n
i=1 Disp(hi)

∑n
i=1 D−P

i
(4)

where Disp(h0) is the estimated deformation value of the groundwater well, Disp(hi) is
the deformation value of the PS point.

Based on this method, the characteristics of the unknown geographic space are predicted.

3.6. Aquifer Parameters Estimation

According to the Terzaghi-Jacob theoretical model [54], the total stress of the con-
fined aquifer (σT) is equal to the sum of the pore stress (p) and the effective stress (σe) of
the aquifer.

σT = p + σe (5)

When the groundwater in the confined aquifer is extracted, the groundwater level of
the confined aquifer will decrease, resulting in the decrease of the pore stress and increase
of the effective stress. The sum of these two stresses will introduce compression to the
aquifer, which will cause ground subsidence.

When the effective stress of the aquifer σe is less than the historical effective stress
σe(max), the aquifer system undergoes elastic deformation, and the surface settlement can
be recovered by measures such as recharging the groundwater. If the effective stress of
the aquifer σeis continuously greater than the historical effective stress σe(max), the aquifer
system will undergo inelastic deformation, i.e., consolidation deformation, and the ground
surface will have permanent ground subsidence.

The water release capacity of the confined aquifer is expressed by the water release
coefficient. According to the Terzaghi-Jacob theoretical model, the relationship between
the aquifer system deformation and groundwater level change can be represented by two
different skeleton water release coefficients. Such coefficients are key hydraulic parameters
for evaluating the water storage capacity of groundwater aquifer systems.

s∗ke =
∆b∗

∆h
, σe < σe(max) (6)

s∗ki =
∆b∗

∆h
, σe > σe(max) (7)

where s∗ke is the elastic water release coefficient of the aquifer skeleton, s∗ki is the inelastic
water release coefficient of the aquifer skeleton, ∆b∗ is the deformation of the aquifer system
obtained from the deformation results of PSInSAR, ∆h is the change of groundwater level,
which can be obtained by the change of groundwater level at the well.

When the aquifer thickness changes due to changes in the groundwater level, the
actual observed water release coefficient can be compared with the theoretical value to
determine whether the water release coefficient is elastic or inelastic. Therefore, whether
elastic deformation or inelastic deformation occurs in the aquifer system can be determined.

4. Results and Discussion
4.1. PSInSAR Derived Deformation

Based on PSInSAR technology, the Sentinel-1A images covering Shanghai Lingang
New City acquired from 15 May 2016 to 05 May 2018 were processed. The deformation rate
map generated from 21,447 PS points is shown in Figure 4. PS points are mainly distributed
on the west side of Dishui Lake in the experimental area. The deformation rate ranges
from −67 mm/year to 1.1 mm/year in the LOS (line of sight) direction, and the average
deformation rate is −3.4 mm/year in the LOS direction.
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Figure 4. The map of the deformation rate map of Shanghai Lingang New City.

Dishui Lake is an artificial lake built on the beach in Lingang New City, the construction
of which was started in 2002. The east and north sides of Dishui Lake are mainly farmlands
and wetlands, where quite sparse PS points were identified. As shown in Figure 4, the area
with large deformation is mainly concentrated on the east side of Dishui Lake. Although
ground subsidence also occurred on the west side of Dishui Lake, it is relatively stable.

The coastal embankment on the east side of Dishui Lake suffered large subsidence,
and notable subsidence also occurred around Huanhu East Road. Due to the late formation
of land on the east side of Dishui Lake, such subsidence is mainly contributed by the
compaction and consolidation of the soil layer in the area.

The coastal embankment, located on the east side of Dishui Lake in Shanghai Lingang
New City, has a length of 4 km and was built on the beach with cement or bare rocks.
The coastal embankment can help avoiding the erosion of the coast by external factors
and is also an important guarantee for flood prevention. Figure 4 indicates the coastal
embankment has larger deformation. To investigate the spatial pattern of the deformation,
the PS points on the coastal embankment were extracted and their deformation rates were
plotted in Figure 5. There are 334 PS points in total, and the density of PS points is about
85.6 points per kilometer. The deformation rate of the coastal embankment ranges from
−18.23 mm/year to −4.69 mm/year in the LOS direction. The average deformation rate is
−10.55 mm/year in the LOS direction. The statistics of the deformation rate of the coastal
embankment from south to north is shown in Figure 6.
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The results show that the deformation rate on the north side of the coastal embankment
is larger than that on the south side, see Figure 6. The deformation rate of the coastal
embankment is continuous. Since there are no GPS measurements or leveling data on
the coastal embankment section, the deformation results derived from InSAR technology
provide useful data for the study of settlements in the area.
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4.2. Analysis of Subsidence Characteristics and Leveling Verification

A comparison between the leveling observation data and the PSInSAR result at ground-
water monitoring wells W65 and W66 is shown in Figures 7 and 8. Figure 7 shows the time
series relationship between the leveling observation data F65 and the PSInSAR result at
groundwater monitoring well W65. Figure 8 shows the time series relationship between
the leveling observation data F66 and the PSInSAR result at groundwater monitoring well
W66. InSAR results have been converted from the LOS direction to the vertical direction
and then compared with the leveling data. The maximum difference of these two datasets
at W65 and W66 is 1.93 mm and 2.9 mm, respectively. It indicates that the PSInSAR derived
deformation time series has comparable accuracy with the leveling data. As the noise level
at the selected PS points is similar, the deformation retrieved is expected to be reliable for
exploring the geophysical mechanism behind the data.
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4.3. The Relationship between Groundwater Level Changes and Ground Subsidence

In order to study the ground subsidence of Shanghai Lingang New City and its
mechanism, we used the groundwater level data at two monitoring wells (i.e., W65 and
W66) to analyze the relationship between ground subsidence and groundwater level
changes. The distribution map of groundwater wells is shown in Figure 1. The landscapes
around these wells are shown in Figures 9 and 10. The groundwater monitoring well W65
is close to the coastline, surrounded by wasteland, houses, roads, and ponds. There was no
new construction during our observation period. The W66 monitoring well is located on
the west side of Hucheng Ring Road and is also near the river. This area is mostly occupied
by farmlands.
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Figures 11 and 12 show the relationships between the groundwater level monitoring
value of the fourth confined aquifer and the surface deformation obtained by the InSAR
technique. During the observation period, the groundwater level of W65-4 (the fourth
confined aquifer of groundwater monitoring well W65) varied within 2 m and had notable
seasonal fluctuations. It is well documented that the groundwater level starts to rise in
winter and spring and starts to decrease in summer and autumn. The ground deformation
value obtained by the PSInSAR method at the monitoring well W65 is around 2 mm within
two years, and the average deformation rate is −0.3 mm/year. The ground deformation
trend is consistent with the variation of groundwater level data. The variation between
InSAR results and groundwater level data had some relevance. It can be considered that
it is stable relatively. On the other hand, during the observation period, the groundwater
well level of W66-4 was quite steady before August 2017, and from August 2017 to May
2018 had undergone tremendous changes, but it still has the same deformation trend as the
InSAR deformation results in the region.
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Table 3 shows elastic and inelastic skeleton release coefficients determined by PSInSAR
deformation and groundwater level variations. W65 groundwater well skeleton release
coefficient is between 0.0013–0.0087, and the correlation coefficient between PSInSAR de-
formation and groundwater level of W65-4 is 0.24 (positive correlation). Groundwater well
skeleton release coefficient at well W66 is between 0.0024–0.0054, and the max correlation
coefficient between InSAR deformation and groundwater level is 0.68 (positive correlation).
According to the study conducted by Hoffmann in 2003 [55], the theoretical value of the
elastic water release coefficient is generally between 10−5 and 10−3 for aquifers dominated
by loose clay and silt, and the inelastic water release coefficient often reaches tens to hun-
dreds of times the value of the elastic water release coefficient. Therefore, this indicates
that the aquifer at the W65 well and W66 well had undergone elastic deformation.

Table 3. Elastic and inelastic skeleton release coefficients determined by InSAR deformation and
groundwater level variations.

ID Time Span (year/month) Well (m) InSAR (mm) S*
ki

W65-4
201605–201611 −0.37 −0.83 0.0022
201611–201707 0.15 1.3 0.0087
201706–201805 0.45 0.56 0.0013

W66-4
201605–201611 −0.19 −0.83 0.0044
201611–201707 0.24 1.3 0.0054
201706–201804 1.11 2.71 0.0024

4.4. Discussion

By using the Sentinel-1 A SAR images, leveling data, and groundwater well data, we
have monitored the land subsidence in the delta area and reveal the geophysical mechanism
behind this deformation.

In terms of the precision of PSInSAR vertical subsidence, the maximum difference of
PSInSAR and leveling time series at two level points is 1.93 mm and 2.9 mm, respectively,
which is basically consistent with Zhao et al.’s result that the mean of absolute difference
values between COSMO-SkyMed and leveling measurements is 3.0 mm, and the mean
difference value between Sentinel-1 A and leveling measurements is 3.6 mm; these data
were obtained by studying Shanghai coastal deformation from February 2007 to April
2017 [21]. It validates that the PSInSAR derived deformation time series has millimeter-
level comparable accuracy with the leveling data [32], which shows that the PSInSAR
derived deformation is reliable for exploring the geophysical mechanism behind the data.
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After extracting the settlement from the PSInSAR LOS deformation, we analyze the
displacement of these PS points and the fluctuation of the two groundwater wells and
confirm that the changes of the fourth layer confined aquifer data of Shanghai can better
reflect the surface deformation in this area from 2016 to 2018. Previous research results
related to the zone of the ocean-reclaimed lands of Shanghai are subject to subside due
to soil consolidation and compression. Our results show that except for this reason, the
settlement in our research of interest may be related to groundwater extraction. This was
demonstrated by the comparative analysis of the PSInSAR settlement and groundwater
level in the period from May 2016 to May 2018.

Furthermore, according to the Terzaghi-Jacob theoretical model [54], we determine
the types of the ground subsidence near the coastal area in the delta by calculating skeleton
water release coefficients, which shows that part of Shanghai Lingang New City suffered
inelastic ground deformation; this type of deformation is difficult to recover and may result
in secondary disasters [16].

The coastal embankment on the southeast side of Lingang New City suffered large
subsidence, as shown through the PSInSAR from May 2016 to May 2018, which has been
investigated in other period stages using ASAR, COSMO-SkyMed, and Sentinel-1 SAR
images from February 2007 to April 2017 [21–23]. Its subsidence mechanism has not yet
been fully studied due to lack of sufficient ground-truth validation, however this settlement
should be taken seriously due to its special geographical location.

5. Conclusions

In this paper, we mainly used 50 scenes of Sentinel-1A images acquired from May
2016 to May 2018 to obtain the displacement time series of Lingang New City after 14 years’
reclamation using the PSInSAR technique. By establishing the relationship between land
subsidence and groundwater changes, we firstly combine ground in-situ observations such
as first-class leveling data to validate the precision of PSInSAR, which indicates that the
PSInSAR derived deformation time series has comparable accuracy with leveling data.
Then, we integrate the groundwater well data to obtain the elastic and inelastic skeleton
release coefficients, and finally obtain the type of deformation of this area.

The results show that the combination of multiple technologies is more conductive to
understand the deformation mechanisms and fluctuation of aquifer systems in these coastal areas.

Therefore, we will next consider carrying out longer time series of SAR combined
with ground monitoring to investigate the evolution of Shanghai Lingang New City for the
management of coastal embankment safety risk assessment and adjustment, which is also
extended to other case study areas.
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