Mapping Spatiotemporal Changes in Forest Type and Aboveground Biomass from Landsat Long-Term Time-Series Analysis—A Case Study from Yaoluoping National Nature Reserve, Anhui Province of Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Preprocessing
2.3. VCT-Based Forest Distribution Extraction in Yaoluoping Nature Reserve
2.4. Development and Validation of NDVI_DR Model
2.5. Forest AGB Modeling
2.5.1. Independent Variable
2.5.2. Development of Dependent Variables
Index | Formula |
---|---|
NDVI [48] | |
NDVIC [50] | |
RVI43 [47] | |
RVI54 [47] | |
NDMI [52] | |
mNDWI [52] | |
TCD [43] | |
TCA [44] |
2.5.3. Correlation Analysis
2.5.4. SGB-Based AGB Modelling and Its Time Extrapolation
2.6. Validation Method
2.6.1. Forest Distribution Verification
2.6.2. Forest Type Distribution Verification
2.6.3. Forest AGB Modeling Verification
3. Results
3.1. Forest Distribution Mapping and Validation
3.2. Forest Type Distribution Mapping
3.3. Biomass Estimation Results
3.3.1. Variable Selection Results
3.3.2. Modeling Accuracy Evaluation
3.3.3. AGB Extrapolation of SGB Model
4. Discussion
4.1. NDVI_DR Thresholding Model
4.2. Forest AGB Modeling
4.3. Driving Factors for Forest Area and AGB Changes
4.4. Limitations and Future Improvements
5. Conclusions
- (1)
- The NDVI_DR thresholding provides an efficient and accurate classification method for distinguishing between coniferous forest and broad-leaved forest. The overall accuracy is above 92%, with a kappa coefficient above 0.8.
- (2)
- The 2011 forest-type-dependent stochastic-gradient-boosting-based (SGB-based) AGB estimation model achieved an independent validation R square at 0.63 and an RMSE at 11.18 t/ha for broad-leaved forest, and 0.61 and 14.26 t/ha for coniferous forest. A time-series of AGB was generated by extrapolating the 2011 AGB models to other years, and the mapped AGB showed a gradual increasing trend over the past three decades.
- (3)
- There is a significant correlation between human disturbance and AGB, especially irregular deforestation. Thus, we suggest that the local government should properly consider the carrying capacity of the forest ecosystem to population density and establish an ecological compensation mechanism combined with its own characteristic forest industries.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, N.; Wang, D.; Guo, Q. Exploring the Influence of Large Trees on Temperate Forest Spatial Structure from the Angle of Mingling. For. Ecol. Manag. 2021, 492, 119220. [Google Scholar] [CrossRef]
- Ministry of Commerce, PRC. Circular of The State Council on the issuance of an Action plan to peak Carbon emissions by 2030. Bull. State Counc. People’s Repub. China 2021, 31, 48–58. (In Chinese) [Google Scholar]
- Diao, J.; Liu, J.; Zhu, Z.; Wei, X.; Li, M. Active Forest Management Accelerates Carbon Storage in Plantation Forests in Lishui, Southern China. For. Ecosyst. 2022, 9, 100004. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, X.; Ouyang, Z.; Avitabile, V.; Qi, J.; Chen, J.; Giannico, V. Estimating Aboveground Biomass in Subtropical Forests of China by Integrating Multisource Remote Sensing and Ground Data. Remote Sens. Environ. 2019, 232, 111341. [Google Scholar] [CrossRef]
- Cao, G. Application of Remote Sensing Technology in Forest Resources Investigation. Remote Sens. 2020, 9, 46. [Google Scholar] [CrossRef]
- Meigs, G.W.; Kennedy, R.E.; Cohen, W.B. A Landsat Time Series Approach to Characterize Bark Beetle and Defoliator Impacts on Tree Mortality and Surface Fuels in Conifer Forests. Remote Sens. Environ. 2011, 115, 3707–3718. [Google Scholar] [CrossRef]
- Röder, A.; Hill, J.; Duguy, B.; Alloza, J.A.; Vallejo, R. Using Long Time Series of Landsat Data to Monitor Fire Events and Post-Fire Dynamics and Identify Driving Factors. A Case Study in the Ayora Region (Eastern Spain). Remote Sens. Environ. 2008, 112, 259–273. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting Trends in Forest Disturbance and Recovery Using Yearly Landsat Time Series: 1. LandTrendr-Temporal Segmentation Algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Masek, J.G.; Thomas, N.; Zhu, Z.; Vogelmann, J.E. An Automated Approach for Reconstructing Recent Forest Disturbance History Using Dense Landsat Time Series Stacks. Remote Sens. Environ. 2010, 114, 183–198. [Google Scholar] [CrossRef]
- Gao, Y.; Solórzano, J.V.; Quevedo, A.; Loya-Carrillo, J.O. How BFAST Trend and Seasonal Model Components Affect Disturbance Detection in Tropical Dry Forest and Temperate Forest. Remote Sens. 2021, 13, 2033. [Google Scholar] [CrossRef]
- Singh, A. Review Article: Digital Change Detection Techniques Using Remotely-Sensed Data. Int. J. Remote Sens. 1989, 10, 989–1003. [Google Scholar] [CrossRef] [Green Version]
- Mas, J.F. Monitoring Land-Cover Changes: A Comparison of Change Detection Techniques. Int. J. Remote Sens. 1999, 20, 139–152. [Google Scholar] [CrossRef]
- Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change Detection Techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [Google Scholar] [CrossRef]
- Li, C.; Li, M.; Li, Y.; Qian, P. Estimating Aboveground Forest Carbon Density Using Landsat 8 and Field-Based Data: A Comparison of Modelling Approaches. Int. J. Remote Sens. 2020, 41, 4269–4292. [Google Scholar] [CrossRef]
- Singh, M.; Malhi, Y.; Bhagwat, S. Biomass Estimation of Mixed Forest Landscape Using a Fourier Transform Texture-Based Approach on Very-High-Resolution Optical Satellite Imagery. Int. J. Remote Sens. 2014, 35, 3331–3349. [Google Scholar] [CrossRef]
- Lu, D.; Chen, Q.; Wang, G.; Liu, L.; Li, G.; Moran, E. A Survey of Remote Sensing-Based Aboveground Biomass Estimation Methods in Forest Ecosystems. Int. J. Digit. Earth 2016, 9, 63–105. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Hu, L.; Yu, L.; Clinton, N.; Huang, H.; Yang, J.; Gong, P. A circa 2010 Thirty Meter Resolution Forest Map for China. Remote Sens. 2014, 6, 5325–5343. [Google Scholar] [CrossRef] [Green Version]
- Xiao, X.; Boles, S.; Liu, J.; Zhuang, D.; Liu, M. Characterization of Forest Types in Northeastern China, Using Multi-Temporal SPOT-4 VEGETATION Sensor Data. Remote Sens. Environ. 2002, 82, 335–348. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Ohlen, D.O.; Brown, J.F.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a Global Land Cover Characteristics Database and IGBP DISCover from 1 Km AVHRR Data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Raczko, E.; Zagajewski, B. Comparison of Support Vector Machine, Random Forest and Neural Network Classifiers for Tree Species Classification on Airborne Hyperspectral APEX Images. Eur. J. Remote Sens. 2017, 50, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Noi, P.T.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2017, 18, 18. [Google Scholar] [CrossRef] [Green Version]
- Chunhui, Z.; Bing, G.; Lejun, Z.; Xiaoqing, W. Classification of Hyperspectral Imagery Based on Spectral Gradient, SVM and Spatial Random Forest. Infrared Phys. Technol. 2018, 95, 61–69. [Google Scholar] [CrossRef]
- Tompoulidou, M.; Gitas, I.Z.; Polychronaki, A.; Mallinis, G. A GEOBIA Framework for the Implementation of National and International Forest Definitions Using Very High Spatial Resolution Optical Satellite Data. Geocarto Int. 2016, 31, 342–354. [Google Scholar] [CrossRef]
- Pan, L.; Sun, Y.; Wang, Y.; Chen, L.; Cao, Y. Estimation of Aboveground Biomass in a Chinese Fir (Cunninghamia lanceolata) Forest Combining Data of Sentinel-1 and Sentinel-2. J. Nanjing For. Univ. Nat. Sci. Ed. 2021, 44, 149–156. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, D.; Li, G.; Wang, G.; Chen, Q.; Liu, L.; Li, D. Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region. Remote Sens. 2018, 10, 627. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Wylie, B.K.; Brown, D.R.N.; Peterson, B.; Alexander, H.D.; Mack, M.C.; Rover, J.; Waldrop, M.P.; McFarland, J.W.; Chen, X.; et al. Spatially Explicit Estimation of Aboveground Boreal Forest Biomass in the Yukon River Basin, Alaska. Int. J. Remote Sens. 2015, 36, 939–953. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Wang, T. Automatic Identification of Tree Species Based on Deep Learning. J. Nanjing For. Univ. Nat. Sci. Ed. 2021, 44, 138–144. [Google Scholar] [CrossRef]
- Han, H.; Wan, R.; Li, B. Estimating Forest Aboveground Biomass Using Gaofen-1 Images, Sentinel-1 Images, and Machine Learning Algorithms: A Case Study of the Dabie Mountain Region, China. Remote Sens. 2022, 14, 176. [Google Scholar] [CrossRef]
- Frazier, R.J.; Coops, N.C.; Wulder, M.A.; Kennedy, R. Characterization of Aboveground Biomass in an Unmanaged Boreal Forest Using Landsat Temporal Segmentation Metrics. ISPRS J. Photogramm. Remote Sens. 2014, 92, 137–146. [Google Scholar] [CrossRef]
- Lei, C.; Ju, C.; Cai, T.; Jing, X.; Wei, X.; Di, X. Estimating Canopy Closure Density and Above-Ground Tree Biomass Using Partial Least Square Methods in Chinese Boreal Forests. J. For. Res. 2012, 23, 191–196. [Google Scholar] [CrossRef]
- Lawrence, R.; Bunn, A.; Powell, S.; Zambon, M. Classification of Remotely Sensed Imagery Using Stochastic Gradient Boosting as a Refinement of Classification Tree Analysis. Remote Sens. Environ. 2004, 90, 331–336. [Google Scholar] [CrossRef]
- Güneralp, I.; Filippi, A.M.; Randall, J. Estimation of Floodplain Aboveground Biomass Using Multispectral Remote Sensing and Nonparametric Modeling. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 119–126. [Google Scholar] [CrossRef]
- Dube, T.; Mutanga, O. Evaluating the Utility of the Medium-Spatial Resolution Landsat 8 Multispectral Sensor in Quantifying Aboveground Biomass in uMgeni Catchment, South Africa. ISPRS J. Photogramm. Remote Sens. 2015, 101, 36–46. [Google Scholar] [CrossRef]
- Wang, Z.G.; Zhang, Z.X.; Wang, W.G.; Chu, J. Preliminary Analysis of Forest Community Structure of Yaoluoping National Nature Reserve in Yuexi County, Anhui Province, China. Chin. J. Plant Ecol. 2016, 40, 615–619. [Google Scholar] [CrossRef] [Green Version]
- Skakun, S.; Vermote, E.F.; Roger, J.C.; Justice, C.O.; Masek, J.G. Validation of the LaSRC Cloud Detection Algorithm for Landsat 8 Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2439–2446. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. A Landsat Surface Reflectance Dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Shen, W.; Li, M.; Huang, C.; He, T.; Tao, X.; Wei, A. Local Land Surface Temperature Change Induced by Afforestation Based on Satellite Observations in Guangdong Plantation Forests in China. Agric. For. Meteorol. 2019, 276, 107641. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, H.; Shen, W.; Zhang, Y.; Su, H.; Li, M. Quantifying Forest Fire and Post-Fire Vegetation Recovery in the Daxing’anling Area of Northeastern China Using Landsat Time-Series Data and Machine Learning. Remote Sens. 2021, 13, 792. [Google Scholar] [CrossRef]
- Tang, D.; Fan, H.; Yang, K.; Zhang, Y. Mapping Forest Disturbance across the China–Laos Border Using Annual Landsat Time Series. Int. J. Remote Sens. 2019, 40, 2895–2915. [Google Scholar] [CrossRef]
- Gamon, J.A.; Peñuelas, J.; Field, C.B. A Narrow-Waveband Spectral Index That Tracks Diurnal Changes in Photosynthetic Efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G.; Major, D.J. TSAVI: A Vegetation Index which Minimizes Soil Brightness Effects on LAI and APAR Estimation. In Proceedings of the 12th Canadian Symposium on Remote Sensing Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 10–14 July 1989; Volume 3, pp. 1355–1358. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, G.; Huang, C.; Xie, C. Comparison of Tasselled Cap Transformations Based on the Selective Bands of Landsat 8 OLI TOA Reflectance Images. Int. J. Remote Sens. 2015, 36, 417–441. [Google Scholar] [CrossRef]
- Duane, M.V.; Cohen, W.B.; Campbell, J.L.; Hudiburg, T.; Turner, D.P.; Weyermann, D.L. Implications of Alternative Field-sampling Designs on Landsat-based Mapping of Stand Age and Carbon Stocks in Oregon Forests. For. Sci. 2010, 56, 405–416. [Google Scholar] [CrossRef]
- Powell, S.L.; Cohen, W.B.; Healey, S.P.; Kennedy, R.E.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L. Quantification of Live Aboveground Forest Biomass Dynamics with Landsat Time-Series and Field Inventory Data: A Comparison of Empirical Modeling Approaches. Remote Sens. Environ. 2010, 114, 1053–1068. [Google Scholar] [CrossRef]
- Ahmed, O.S.; Franklin, S.E.; Wulder, M.A.; White, J.C. Characterizing Stand-Level Forest Canopy Cover and Height Using Landsat Time Series, Samples of Airborne LiDAR, and the Random Forest Algorithm. ISPRS J. Photogramm. Remote Sens. 2015, 101, 89–101. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Cohen, W.B.; Kennedy, R.E.; Yang, Z. Using Landsat-Derived Disturbance and Recovery History and Lidar to Map Forest Biomass Dynamics. Remote Sens. Environ. 2014, 151, 124–137. [Google Scholar] [CrossRef]
- Li, C.; Wang, J.; Wang, Q.; Wang, D.; Song, X.; Wang, Y.; Huang, W. Estimating Wheat Grain Protein Content Using Multi-Temporal Remote Sensing Data Based on Partial Least Squares Regression. J. Integr. Agric. 2012, 11, 1445–1452. [Google Scholar] [CrossRef]
- Todd, S.W.; Hoffer, R.M.; Milchunas, D.G. Biomass Estimation on Grazed and Ungrazed Rangelands Using Spectral Indices. Int. J. Remote Sens. 1998, 19, 427–438. [Google Scholar] [CrossRef]
- Mutanga, O.; Adam, E.; Cho, M.A. High Density Biomass Estimation for Wetland Vegetation Using Worldview-2 Imagery and Random Forest Regression Algorithm. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 399–406. [Google Scholar] [CrossRef]
- Brown, L.; Chen, J.M.; Leblanc, S.G.; Cihlar, J. A shortwave infrared modification to the simple ratio for LAI retrieval in boreal forests: An image and model analysis. Remote Sens. Environ. 2000, 71, 16–25. [Google Scholar] [CrossRef]
- Nemani, R.; Pierce, L.; Running, S.; Band, L. Forest Ecosystem Processes at the Watershed Scale: Sensitivity to Remotely-Sensed Leaf Area Index Estimates. Int. J. Remote Sens. 1993, 14, 2519–2534. [Google Scholar] [CrossRef]
- Singh, K.V.; Setia, R.; Sahoo, S.; Prasad, A.; Pateriya, B. Evaluation of NDWI and MNDWI for Assessment of Waterlogging by Integrating Digital Elevation Model and Groundwater Level. Geocarto Int. 2015, 30, 650–661. [Google Scholar] [CrossRef]
- Hawlick, R.M. Statistical and Structural Approaches to Texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Tuominen, S.; Pekkarinen, A. Performance of Different Spectral and Textural Aerial Photograph Features in Multi-Source Forest Inventory. Remote Sens. Environ. 2005, 94, 256–268. [Google Scholar] [CrossRef]
- Chica-Olmo, M.; Abarca-Hernandez, F. Computing Geostatistical Image Texture for Remotely Sensed Data Classification. Comput. Geosci. 2000, 26, 373–383. [Google Scholar] [CrossRef] [Green Version]
- He, D.C.; Wang, L. Texture Unit, Texture Spectrum, and Texture Analysis. IEEE Trans. Geosci. Remote Sens. 1990, 28, 509–512. [Google Scholar] [CrossRef]
- Garzelli, A. Possibilities and Limitations of the Use of Wavelets in Image Fusion. IEEE Int. Geosci. Remote Sens. Symp. 2002, 1, 66–68. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 6, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, J.M.; Melendez-Pastor, I.; Navarro-Pedreño, J.; Bitencourt, M.D. Remotely Sensed Biomass over Steep Slopes: An Evaluation among Successional Stands of the Atlantic Forest, Brazil. ISPRS J. Photogramm. Remote Sens. 2014, 88, 91–100. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Wang, C.; Lin, H.; Long, J.; Zhao, L.; Fu, H.; Liu, Z. Forest Growing Stock Volume Estimation in Subtropical Mountain Areas Using PALSAR-2 L-Band PolSAR Data. Forests 2019, 10, 276. [Google Scholar] [CrossRef] [Green Version]
- McRoberts, R.E.; Chen, Q.; Walters, B.F. Multivariate Inference for Forest Inventories Using Auxiliary Airborne Laser Scanning Data. For. Ecol. Manag. 2017, 401, 295–303. [Google Scholar] [CrossRef]
- You, R.; Zhu, N.; Deng, X.; Wang, J.; Liu, F. Variation in Wood Physical Properties and Effects of Climate for Different Geographic Sources of Chinese Fir in Subtropical Area of China. Sci. Rep. 2021, 11, 4664. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Sun, S.; Li, X.; Liu, R. Accuracy Evaluation of the CCI Remote Sensing Soil Moisture for Revealing Drought in Northeast China. IOP Conf. Ser. Earth Environ. Sci. 2018, 185, 012040. [Google Scholar] [CrossRef]
- Friedman, J.H. Stochastic Gradient Boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Bauer, E.; Kohavi, R. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Mach. Learn. 1999, 36, 105–139. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Healey, S.P.; Yang, Z.; Cohen, W.B.; Pierce, D.J. Application of Two Regression-Based Methods to Estimate the Effects of Partial Harvest on Forest Structure Using Landsat Data. Remote Sens. Environ. 2006, 101, 115–126. [Google Scholar] [CrossRef]
- Canty, M.J.; Nielsen, A.A.; Schmidt, M. Automatic Radiometric Normalization of Multitemporal Satellite Imagery. Remote Sens. Environ. 2004, 91, 441–451. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Lin, B.Y.; Lee, K.Y.; Chen, Y.C. Radiometric Normalization and Cloud Detection of Optical Satellite Images Using Invariant Pixels. ISPRS J. Photogramm. Remote Sens. 2015, 106, 107–117. [Google Scholar] [CrossRef]
- Li, M.; Im, J.; Beier, C. Machine Learning Approaches for Forest Classification and Change Analysis Using Multi-temporal Landsat TM Images Over Huntington Wildlife Forest. GIScience Remote Sens. 2013, 50, 361–384. [Google Scholar] [CrossRef]
- Hill, R.A. Image Segmentation for Humid Tropical Forest Classification in Landsat TM Data. Int. J. Remote Sens. 1999, 20, 1039–1044. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, D. Improving Forest Aboveground Biomass Estimation Using Seasonal Landsat NDVI Time-Series. ISPRS J. Photogramm. Remote Sens. 2015, 102, 222–231. [Google Scholar] [CrossRef]
- Dong, J.; Kaufmann, R.K.; Myneni, R.B.; Tucker, C.J.; Kauppi, P.E.; Liski, J.; Buermann, W.; Alexeyev, V.; Hughes, M.K. Remote Sensing Estimates of Boreal and Temperate Forest Woody Biomass: Carbon Pools, Sources, and Sinks. Remote Sens. Remote Sens. Environ. 2003, 84, 393–410. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, T.H.; Jones, S.D.; Soto-Berelov, M.; Haywood, A.; Hislop, S. Monitoring Aboveground Forest Biomass Dynamics Over Three Decades Using Landsat Time-Series and Single-Date Inventory Data. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101952. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Cohen, W.B.; Kennedy, R.E.; Grodzki, W.; Pflugmacher, D.; Griffiths, P.; Hostert, P. Monitoring Coniferous Forest Biomass Change Using a Landsat Trajectory-Based Approach. Remote Sens. Environ. 2013, 139, 277–290. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A.; Alejandro, P. Historical Forest Biomass Dynamics Modelled with Landsat Spectral Trajectories. ISPRS J. Photogramm. Remote Sens. 2014, 93, 14–28. [Google Scholar] [CrossRef] [Green Version]
- Karlson, M.; Ostwald, M.; Reese, H.; Sanou, J.; Tankoano, B.; Mattsson, E. Mapping Tree Canopy Cover and Aboveground Biomass in Sudano-Sahelian Woodlands Using Landsat 8 and Random Forest. Remote Sens. 2015, 7, 10017–10041. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, K.S.; Gower, S.T.; MacKenzie, M.D.; Nordheim, E.V.; Lillesand, T.M. Estimating the Leaf Area Index of North Central Wisconsin Forests Using the Landsat Thematic Mapper. Remote Sens. Environ. 1997, 61, 229–245. [Google Scholar] [CrossRef]
- Zheng, D.; Rademacher, J.; Chen, J.; Crow, T.; Bresee, M.; Moine, J.L.; Ryu, S.R. Estimating Aboveground Biomass Using Landsat 7 ETM+ Data Across a Managed Landscape in Northern Wisconsin, USA. Remote Sens. Environ. 2004, 93, 402–411. [Google Scholar] [CrossRef]
- Agramont, A.R.E.; Maass, S.F.; Bernal, G.N.; Hernández, J.I.V.; Fredericksen, T.S. Effect of Human Disturbance on the Structure and Regeneration of Forests in the Nevado De Toluca National Park, Mexico. J. For. Res. 2012, 23, 39–44. [Google Scholar] [CrossRef]
- Shi, F.; Liu, M.; Qiu, J.; Zhang, Y.; Su, H.; Mao, X.; Li, X.; Fan, J.; Chen, J.; Lv, Y.; et al. Assessing Land Cover and Ecological Quality Changes in the Forest-Steppe Ecotone of the Greater Khingan Mountains, Northeast China, from Landsat and MODIS Observations from 2000 to 2018. Remote Sens. 2022, 14, 725. [Google Scholar] [CrossRef]
- Xie, Z.; Wu, G. The Vegetation Types and Distributions in Yaoluoping Natural Reserve of Anhui Province. J. East China Norm. Univ. Nat. Sci. 1995, 3, 93–102. (In Chinese) [Google Scholar]
- Bahurudeen, A.; Moorthi, P.V.P. Testing of Construction Materials, 1st ed.; CRC Press: Boca Raton, FL, USA, 2021; pp. 95–128. [Google Scholar]
- Rozendaal, D.M.; Chazdon, R.L. Demographic Drivers of Tree Biomass Change During Secondary Succession in Northeastern Costa Rica. Ecol. Appl. 2015, 25, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, K.; Wang, X.; Zhang, Y.; Wen, Y. Study on Ecological Compensation Mechanism of National Nature Reserve Based on the Case of Yaoluoping. Environ. Sustain. Dev. 2014, 39, 143–146. (In Chinese) [Google Scholar] [CrossRef]
- Xu, H.; Qian, Y.; Zheng, L.; Peng, B.Z. Assessment of Indirect Use Values of Forest Biodiversity in Yaoluoping National Nature Reserve, Anhui Province. Chin. Geogr. Sci. 2003, 13, 277–283. [Google Scholar] [CrossRef]
Acquisition Date | Satellite/Sensor | Cloud % | Acquisition Date | Satellite/Sensor | Cloud % |
---|---|---|---|---|---|
7 February 1987 | Landsat 5 TM | 0% | 17 September 2004 | Landsat 5 TM | 0% |
19 September 1987 | Landsat 5 TM | 0% | 18 July 2005 | Landsat 5 TM | 35% |
21 September 1988 | Landsat 5 TM | 9% | 19 June 2006 | Landsat 5 TM | 1% |
23 August 1989 | Landsat 5 TM | 33% | 29 January 2007 | Landsat 5 TM | 0% |
23 June 1990 | Landsat 5 TM | 40% | 25 August 2007 | Landsat 5 TM | 23% |
29 August 1991 | Landsat 5 TM | 1% | 12 September 2008 | Landsat 5 TM | 49% |
5 February 1992 | Landsat 5 TM | 9% | 17 October 2009 | Landsat 5 TM | 0% |
30 July 1992 | Landsat 5 TM | 1% | 4 October 2010 | Landsat 5 TM | 5% |
3 September 1993 | Landsat 5 TM | 8% | 24 January 2011 | Landsat 5 TM | 2% |
24 October 1994 | Landsat 5 TM | 0% | 5 September 2011 | Landsat 5 TM | 69% |
5 June 1995 | Landsat 5 TM | 1% | 12 October 2013 | Landsat 8 OLI | 0.04% |
25 July 1996 | Landsat 5 TM | 1% | 25 January 2013 | Landsat 8 OLI | 2.1% |
18 February 1997 | Landsat 5 TM | 0% | 15 October 2014 | Landsat 8 OLI | 1.91% |
29 August 1997 | Landsat 5 TM | 2% | 2 October 2015 | Landsat 8 OLI | 0.01% |
28 May 1998 | Landsat 5 TM | 23% | 4 October 2016 | Landsat 8 OLI | 20.39% |
2 July 1999 | Landsat 5 TM | 2% | 25 February 2017 | Landsat 8 OLI | 11.84% |
18 June 2000 | Landsat 5 TM | 0% | 7 October 2017 | Landsat 8 OLI | 17.18% |
23 July 2001 | Landsat 5 TM | 19% | 8 September 2018 | Landsat 8 OLI | 0.77% |
30 December 2001 | Landsat 5 TM | 2% | 27 September 2019 | Landsat 8 OLI | 15.83% |
28 September 2002 | Landsat 5 TM | 5% | 18 February 2020 | Landsat 8 OLI | 2.12% |
29 July 2003 | Landsat 5 TM | 16% | 28 August 2020 | Landsat 8 OLI | 1.14% |
Code | Class Description in VCT Model | Aggregated Class |
---|---|---|
0 | Background | Abandoned |
1 | Persisting non-forest | Non-forest |
2 | Persisting forest | Forest |
3 | Persisting water | Non-forest |
4 | Probable forest with recent disturbance | Forest |
5 | Disturbed in this year | Non-forest |
6 | Post-disturbance non-forest | Non-forest |
Tree Species | Aboveground Biomass Formula |
---|---|
Cedarwood | |
Oak | |
Larch | |
Masson pine | |
Sclerophyllous broad-leaved forest | |
Soft-leaved broad-leaved forest |
Texture Index | Formula |
---|---|
Mean, (ME) | |
Variance, (VA) | |
Homogeneity, (HO) | |
Contrast, (CO) | |
Dissimilarity, (DI) | |
Entropy, (EN) | |
Second Moment, (SM) | |
Correlation (CR) |
Predicter Results | Forest | Non-Forest | Total | |
---|---|---|---|---|
Actual Results | ||||
Forest | 863 | 16 | 879 | |
Non-Forest | 37 | 84 | 121 | |
Total | 900 | 100 | 1000 | |
OA = 0.947 | Kappa = 0.731 |
Year | Overall Accuracy (%) | Kappa Coefficient |
---|---|---|
1987 | 93.2% | 0.66 |
1992 | 93.1% | 0.66 |
1997 | 92.8% | 0.64 |
2002 | 90.5% | 0.56 |
2007 | 93.9% | 0.70 |
2011 | 93.1% | 0.67 |
2017 | 90.2% | 0.55 |
2020 | 94.7% | 0.73 |
Year | Overall Accuracy (%) | Kappa Coefficient |
---|---|---|
1987 | 94.5% | 0.87 |
1992 | 94.0% | 0.85 |
1997 | 94.2% | 0.86 |
2002 | 92.5% | 0.82 |
2007 | 93.5% | 0.84 |
2011 | 94.0% | 0.85 |
2017 | 92.0% | 0.81 |
2020 | 94.8% | 0.87 |
Characteristic | Correlation Index | Characteristic | Correlation Index |
---|---|---|---|
B1 | −0.152 * | RVI54 | 0.294 ** |
B2 | −0.314 ** | NDMI | 0.287 * |
B3 | −0.221 * | mNDWI | 0.267 * |
B4 | −0.265 * | B5_mean | −0.473 ** |
B5 | −0.469 ** | B7_mean | −0.473 ** |
B7 | −0.486 ** | RVI54_mean | 0.211 * |
TCW | −0.478 ** | NDVIC _mean | 0.452 ** |
TCB | −0.406 ** | B2_ Correlation | 0.166 * |
TCG | −0.263 ** | RVI54_ Correlation | 0.154 * |
TCD | −0.341 ** | DBH | 0.326 ** |
NDVI | 0.305 ** | bio2.8 | 0.196 * |
NDVIC | 0.466 ** |
Characteristic | Correlation Index | Characteristic | Correlation Index |
---|---|---|---|
B1 | −0.138 * | RVI54 | 0.324 ** |
B2 | −0.301 ** | NDMI | 0.246 * |
B3 | −0.191 * | mNDWI | 0.207 ** |
B4 | −0.224 * | NDVI | 0.312 ** |
B5 | −0.435 ** | NDVIC | 0.459 ** |
B7 | −0.477 ** | bio2.8 | 0.186 * |
TCD | −0.264 ** |
Characteristic | Correlation Index | Characteristic | Correlation Index |
---|---|---|---|
B2 | −0.173 * | RVI54 | 0.163 * |
B4 | −0.107 * | NDMI | 0.142 * |
B5 | −0.227 * | mNDWI | 0.101 * |
B7 | −0.248 ** | NDVI | 0.152 * |
TCD | −0.134 * | NDVIC | 0.279 ** |
Year | Forest | Coniferous Forest | Broad-Leaved Forest | |||
---|---|---|---|---|---|---|
Mean (t/hm2) | Summation (10,000 Tons) | Mean (t/hm2) | Summation (10,000 Tons) | Mean (t/hm2) | Summation (10,000 Tons) | |
1987 | 57.37 | 70.57 | 62.27 | 6.77 | 56.68 | 60.20 |
1992 | 61.56 | 75.72 | 64.84 | 5.41 | 60.12 | 65.20 |
1997 | 64.38 | 79.19 | 67.53 | 5.59 | 63.74 | 64.72 |
2002 | 70.14 | 86.27 | 72.03 | 7.37 | 69.45 | 69.76 |
2007 | 73.21 | 90.05 | 74.71 | 5.45 | 72.37 | 76.23 |
2011 | 75.52 | 92.89 | 76.43 | 4.08 | 74.72 | 80.84 |
2017 | 76.23 | 93.76 | 78.98 | 6.97 | 75.46 | 77.59 |
2020 | 78.85 | 96.99 | 80.45 | 8.88 | 78.85 | 81.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Zhang, Y.; Mao, X.; Lv, Y.; Shi, F.; Li, M. Mapping Spatiotemporal Changes in Forest Type and Aboveground Biomass from Landsat Long-Term Time-Series Analysis—A Case Study from Yaoluoping National Nature Reserve, Anhui Province of Eastern China. Remote Sens. 2022, 14, 2786. https://doi.org/10.3390/rs14122786
Yang B, Zhang Y, Mao X, Lv Y, Shi F, Li M. Mapping Spatiotemporal Changes in Forest Type and Aboveground Biomass from Landsat Long-Term Time-Series Analysis—A Case Study from Yaoluoping National Nature Reserve, Anhui Province of Eastern China. Remote Sensing. 2022; 14(12):2786. https://doi.org/10.3390/rs14122786
Chicago/Turabian StyleYang, Boxiang, Yali Zhang, Xupeng Mao, Yingying Lv, Fang Shi, and Mingshi Li. 2022. "Mapping Spatiotemporal Changes in Forest Type and Aboveground Biomass from Landsat Long-Term Time-Series Analysis—A Case Study from Yaoluoping National Nature Reserve, Anhui Province of Eastern China" Remote Sensing 14, no. 12: 2786. https://doi.org/10.3390/rs14122786
APA StyleYang, B., Zhang, Y., Mao, X., Lv, Y., Shi, F., & Li, M. (2022). Mapping Spatiotemporal Changes in Forest Type and Aboveground Biomass from Landsat Long-Term Time-Series Analysis—A Case Study from Yaoluoping National Nature Reserve, Anhui Province of Eastern China. Remote Sensing, 14(12), 2786. https://doi.org/10.3390/rs14122786