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Abstract: NO2 (nitrogen dioxide) is a common pollutant in the atmosphere that can have serious
adverse effects on the health of residents. However, the existing satellite and ground observation
methods are not enough to effectively monitor the spatiotemporal heterogeneity of near-surface
NO2 concentrations, which limits the development of pollutant remediation work and medical
health research. Based on TROPOMI-NO2 tropospheric column concentration data, supplemented
by meteorological data, atmospheric condition reanalysis data and other geographic parameters,
combined with classic machine learning models and deep learning networks, we constructed an
ensemble model that achieved a daily average near-surface NO2 of 0.03◦ exposure. In this article, a
meteorological hysteretic effects term and a spatiotemporal term were designed, which considerably
improved the performance of the model. Overall, our ensemble model performed better, with a
10-fold CV R2 of 0.89, an RMSE of 5.62 µg/m3, and an MAE of 4.04 µg/m3. The model also had
good temporal and spatial generalization capability, with a temporal prediction R2 and a spatial
prediction R2 of 0.71 and 0.81, respectively, which can be applied to a wider range of time and
space. Finally, we used an ensemble model to estimate the spatiotemporal distribution of NO2 in
a coastal region of southeastern China from May 2018 to December 2020. Compared with satellite
observations, the model output results showed richer details of the spatiotemporal heterogeneity
of NO2 concentrations. Due to the advantages of using multi-source data, this model framework
has the potential to output products with a higher spatial resolution and can provide a reference for
downscaling work on other pollutants.

Keywords: nitrogen dioxide; air pollution; high-spatial-resolution estimation model; machine learning

1. Introduction

Nitrogen dioxide (NO2) is a common trace gas that plays an important role in the
atmosphere’s chemical environment [1,2]. As a component of nitrogen oxides (NOX),
NO2 has a strong correlation with nitrogen oxides, which can indirectly reflect the total
distribution of atmospheric nitrogen oxides [3]. As a precursor of ozone (O3), NO2 is of great
significance to the formation of changes in acid rain and photochemical smog [4,5]. NO2 is
also a harmful air pollutant in the atmosphere. A large number of medical studies have
shown that when the concentration of NO2 reaches a high level, it will cause respiratory
diseases such as coughing and lung infections [6,7], and increase the risk of cancer and
cardiovascular disease in humans, seriously endangering public health [8,9]. In order to
effectively understand the long-term impact of NO2 exposure on the region and effectively
control atmospheric NO2 and its related pollutants, it is urgent to monitor atmospheric
NO2 concentrations with a high spatial resolution in long-term sequences.

Remote Sens. 2022, 14, 2807. https://doi.org/10.3390/rs14122807 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14122807
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs14122807
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14122807?type=check_update&version=3


Remote Sens. 2022, 14, 2807 2 of 18

At the end of 2012, China established an air pollutant monitoring network covering
major cities across the country [10], which provided basic support for monitoring air
pollutants. However, due to the sparse distribution of the stations and the inherent defects
of point source monitoring, it is difficult for ground sites to achieve full coverage of regional
NO2 exposure. In order to solve the shortcomings of long-term observations on the ground,
satellites are widely used to monitor the spatial and temporal distribution of atmospheric
NO2 concentrations by virtue of their advantages such as coverage of a large area and
a long access period [11,12]. Currently, the mainstream NO2 monitoring satellites in the
world include MetOp-A(B) [13] with the Global Ozone Monitoring Experiment (GOME-2),
Aura [14] with the Ozone Monitoring Instrument (OMI), and the tropospheric monitoring
instrument (TROPOMI) Sentinel-5p [15]. These are able to acquire light backscattered
spectra and use inversion algorithms to estimate NO2 column concentrations. Among
these, TROPOMI, as the latest and best NO2 monitoring sensor, has provided a stable
global perspective of the spatial distribution of atmospheric NO2 concentrations since 2018,
with a resolution of about 7 km.

However, NO2 in cities mainly comes from mobile source emissions and industrial
combustion [16], and the variation gradient within a day is large [17]. The complex multi-
source emission characteristics make the NO2 in cities have obvious spatial and temporal
variability. The fixed transit time of satellites and their spatial resolution of less than
7 km are likely to homogenize these spatiotemporal heterogeneities, and the homogenized
features are often of great significance to the scientific prevention and control of NO2 and
health research.

Using data from site and satellite observations, a number of high-temporal- and spatial-
resolution NO2 exposure assessment models have been developed and have continued
to evolve over the decades. The existing high-spatial-resolution NO2 estimation models
are mainly divided into statistical models and physical models. Physical models improve
the spatial resolution of target pollutants through high-precision models of the physical
area, such as the Community Multiscale Air Quality (CMAQ). However, these are limited
by the amount of computation and precursor data [18,19]. Statistical models are exposure
assessment methods that simulate the statistical relationship between pollutants and im-
pact factors. Earlier statistical models, such as geostatistical models [20,21] and land use
regression models [22,23], improved spatial accuracy at the expense of reduced temporal
resolution. For the development of models, machine-learning- and deep-learning-based
methods have been applied in statistical models for NO2 estimation, which are able to
improve the resolution in both time and space [24,25]. Recent studies have shown that
these methods and their variants (e.g., ensemble models) capture the nonlinear variation
characteristics of pollutants well [26] and are significantly better than traditional statistical
models in terms of modeling accuracy, as they can achieve a certain degree of accuracy in
capturing the spatiotemporal heterogeneity of the target gas. These models have become
more and more popular in modeling studies of various atmospheric pollutants, including
NO2, at a high temporal and spatial resolution. For example, You et al. [27], Dou et al. [28],
and Liu [29] realized a fine-scale evaluation of NO2 in China based on machine learning
algorithms. However, research on high-precision modeling of NO2 at medium and small re-
gional scales in China has not been fully discussed, and there is still room for improvements
in the accuracy of the model. How to make full use of multi-source data, including satellite,
station, and physical model outputs; strengthen the ability of explanatory variables to
characterize changes in NO2 concentrations; and further improve the models’ estimation
accuracy require further consideration.

In order to improve the model performance and obtain high-precision, daily average
NO2 near-surface concentration distribution data with a high-spatial-resolution, we de-
signed a meteorological hysteretic effects term and a spatiotemporal term. At the same time,
by combining multi-source explanatory variables such as the tropospheric NO2 column
concentration observed by Sentinel-5p, atmospheric conditions, and human activities, an
ensemble “Classic Machine Learning + Deep Neural Network” model was constructed. On
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this basis, the NO2 concentration of a coastal region of southeastern China was generated
with a high spatial resolution, and the accuracy and error of three classic machine learning
algorithms and the ensemble model were compared and analyzed. Finally, based on tem-
poral, spatial, and completely random-set partitioning strategies, the inferring power of
the ensemble model in time and space was comprehensively evaluated.

2. Materials and Methods
2.1. Data and Pretreatment
2.1.1. Ground-Level NO2 Observations

This study obtained the hourly NO2 observation data from May 2018 to December
2020 from the China Environmental Monitoring Center (CEMC). All sites are based on
the GB3095-2012 standard, and the near-ground NO2 concentration is measured by the
chemiluminescence method [30]. The study area is the coastal area (116–124◦E, 25–33◦N)
with the main cities of the Yangtze River Delta as the core. There are 258 monitoring
stations within the range, most of which are located in urban areas, and a few are located
in suburban areas (Figure 1). In order to build a high-precision NO2 exposure assessment
model, we averaged the hourly NO2 observation records to the day, eliminated daily
observation data of less than 18 h, and finally obtained 225,197 valid observation records.
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2.1.2. TROPOMI NO2 Data

The TROPOspheric Monitoring Instrument (TROPOMI) can monitor the data of air
pollutants such as NO2, O3, SO2, and HCHO. The time when the satellite passes through
the study area (Beijing time) is about 13:00–14:00, and the spatial resolution is 7 km× 3.5 km
(30 April 2018 to 6 August 2019) and 5.5 km × 3.5 km (7 August 2019 to now), making it the
best atmospheric observation spectrometer at present. Under the processing framework of
the retrieval–assimilation–modeling system, the TROPOMI NO2 Level 2 product combines
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the DOAS algorithm and the TM5 chemical transport model, and converts the measured
Level-1B radiance and irradiance spectra into NO2 vertical column concentrations, in
units of molec/cm2 [24]. For this article, the TROPOMI NO2 Level 2 product from NASA
(https://disc.gsfc.nasa.gov/, accessed on 7 July 2021) was obtained and the tropospheric
NO2 column concentration was taken from it as a modeling factor. To weaken cloud cover,
snow landscapes, and other dubious retrievals, we kept the pixels in the file that had a
quality assurance value (QA) greater than 0.75. Data missing more than 30% were also
removed, as too many missings would increase uncertainty.

2.1.3. Meteorological Data

To include the influence of near-surface meteorological conditions on the potential
chemical and physical processes of NO2 in the atmosphere, we obtained the daily average
air pressure, air temperature, relative humidity, land surface temperature, 24 h cumulative
rainfall, and wind speed from China’s National Meteorological Data Center (http://data.
cma.cn/, accessed on 23 July 2021).

2.1.4. The Reanalysis Data

We also obtained ERA5 reanalysis data for 2018–2020 from the European Centre
Medium-Range Weather Forecasts (ECMWF), which combined past observations with
models to simulate hour-by-hour atmospheric, ocean wave, and land surface quantities
systematically. In order to assist in the establishment of an exposure assessment model
between satellite-observed NO2 and ground-level NO2, we selected 22 indicators from
the ERA5 data, including radiation, heat, atmospheric conditions, and wind fields, which
may affect changes in NO2 concentration (Table S1). According to the physical meaning
of the different indicators, the daily data of each indicator are generated by summing or
averaging, with a resolution of 0.25◦ × 0.25◦.

2.1.5. Geographical Variable Data

Human activities and the distribution of emission sources are also important factors af-
fecting regional NO2 changes. Transportation activities and industrial production activities
are the main reasons for the uneven distribution of NO2 in space, and geographical features
are closely related to these activities and also affect the spatial distribution of near-ground
NO2 concentrations to a certain extent [26,31,32]. Therefore, we selected five parameters
of the geographic environment, including elevation data (DEM), vegetation index data
(NDVI/EVI), road network data (L), gridded population data (POP), and land cover data
(LAND), to characterize these effects.

Among these, the 300 m land cover data come from the Climate Change Initiative (CCI)
project of the European Space Agency (ESA, http://maps.elie.ucl.ac.be/CCI/viewer/index.
php, accessed on 4 March 2021). This study reclassified the 22 types of land in the original
data from 2018 to 2020 into six types: forest land, grassland, agricultural land, urban land,
water bodies, and other land, and calculated the area within a grid range of 0.03◦ and
the proportion of each. The road network data were downloaded from OpenStreetMap
(OSM, http://download.geofabrik.de/asia/china.html#, accessed on 19 March 2021), and
we calculated the road network length and road network density within a 0.03◦ grid range
year by year.

In addition, we also processed the MODIS vegetation index data (MOD13A2), the
90 m DEM data of SRTM, and the grid population data of Worldpop. Detailed data
descriptions and sources can be seen in the modeling variable pre-selection table (Table S1).
All variables may affect the NO2 concentration but may not be necessary for high-precision
NO2 exposure assessment modeling.

2.1.6. Data Integration

In order to unify the explanatory variables with different scales from multiple sources,
we constructed a 0.03◦ × 0.03◦ (about 3 km) grid mesh, and integrated all data on the basis

https://disc.gsfc.nasa.gov/
http://data.cma.cn/
http://data.cma.cn/
http://maps.elie.ucl.ac.be/CCI/viewer/index.php
http://maps.elie.ucl.ac.be/CCI/viewer/index.php
http://download.geofabrik.de/asia/china.html#
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of this standard. For data with a spatial resolution lower than 0.03◦, the inverse distance
weighting method (IDW) was used to interpolate them into the mesh; for the data with a
spatial resolution higher than 0.03◦, we used resampling technology to upscale it into the
standard mesh. By matching the geographic locations of the NO2 ground observation sites,
all the data finally formed a dataset for modeling and validation.

2.1.7. Feature Selection

In both traditional statistical models and machine learning models, too many explana-
tory variables are an important factor causing model instability [33,34]. Although machine
learning is better at learning the nonlinear relationship between variables and weakens the
effect of collinearity between similar variables to a certain extent, it is still necessary to re-
duce similar and unnecessary predictors. By considering the Pearson correlation coefficient
between the variables (Figure S1a,b), we initially screened the explanatory variables with
low correlations with near-ground NO2 concentrations and deleted explanatory variables
with similar physical meanings and a high correlation between each other (|r| > 0.95) on
the premise of ensuring the completeness of the predictor system.

Finally, the NO2 column concentration (NO2_5p), air pressure (AP), land surface
temperature (LST), relative humidity (HD), rainfall (RF), boundary layer height (BLH),
surface latent heat flux (SLHF), lower surface solar radiation (SSRD), top net solar radiation
(TSR), 10 m wind speed (U10/V10), total column ozone (TCO3), road network density
(ROAD_E), elevation (DEM), population (POP), vegetation index (EVI), the proportion of
grassland (GLA_P), the proportion of forest land (tree_p), the proportion of agricultural
land (AGR_P), and the proportion of urban land (CITY_P) were used as the basic predictors.
By combining these with the meteorological hysteretic effects term and the spatiotemporal
term proposed in Section 2.2, we improved the underlying predictors and formed the final
set of predictors for the model.

2.2. Methodology
2.2.1. Hysteretic Effects Term

Meteorological conditions often have a continuous impact on atmospheric pollutants.
Over time, a change in the mechanism of influence or the accumulated effects of the
influence may increase the magnitude of the influence, usually called the hysteretic effects.
Examples include the chemical accumulation process of temperature-induced changes
in atmospheric pollutant concentrations [35] and the interaction mechanism between the
short-term wet deposition of trace gases by rainfall and the hydrolysis of pollutants such as
formaldehyde polymers in a humid atmospheric environment [36]. These physicochemical
processes create a certain hysteresis effect.

Therefore, in this study, we bundled the meteorological predictors observed at the
site with the records of the previous 2 days and used them as the meteorological hysteretic
effects to construct a NO2 exposure assessment model, which is conducive to solving
the problem that the single-day variables cannot fully characterize the characteristics of
the change in NO2 concentration due to the hysteretic impact. The details are shown in
Equation (1):

Vti = (vti, vti−1, vti−2) (1)

where Vti is the meteorological hysteretic effects term of day ti, and vti, vti−1 and vti−2 are
the meteorological factors of day ti and the previous two days, respectively.

2.2.2. Spatiotemporal Term

The spatiotemporal distribution of NO2 concentrations is highly spatially heteroge-
neous, as is the case for other air pollutants, such as formaldehyde and PM2.5. Spatially,
the NO2 concentration varies with location and exhibits different statistical relationships
with covariates. Incorporating spatial information into the model can effectively capture
the spatial variation in the target gas pollutants. Methods such as geographic weighted
regression [37] and spatiotemporal geographic weighted regression [38,39] use spatial
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coordinates to capture spatial heterogeneity. However, spatial coordinates are absolute
coordinates of the world as a whole. In applying machine learning methods directly to a
small- and medium-scale regions, it may not be able to explain spatial nonstationarity and
spatial autocorrelation well. Therefore, for this study, we calculated the Vincenty relative
ellipsoid distance from the sample location to the lower left corner (116◦E, 25◦N) and the
upper right corner (124◦E, 33◦N) of the study area in the WGS84 coordinate system [40]
as the spatiotemporal terms, which are reflected in Equation (2). Studies have shown that
machine learning models built with field distance as a spatial factor have a good ability to
capture spatially heterogeneous features [41,42]. In terms of time, the NO2 concentration
showed a strong cyclical trend, basically showing the characteristics of being high in spring
and winter, and low in summer and autumn (Figure S2). Therefore, we constructed a time
factor of months and introduced this rule into the model to improve the performance of the
NO2 exposure assessment model. See Equation (3) for details.

S(x,y)=(Vincenty
(

p(x,y) , L(x,y)

)
, Vincenty

(
p(x,y) , R(x,y)

)
) (2)

Ti = cos
(

tiπ

11
+

9π

22
+ 1
)

(3)

where S(x,y) is the spatial term at the grid’s center point, p(x,y) is the geographic coordinates
of the center of a grid point, L(x,y) is the geographic coordinates of the lower left corner of
the study area, R(x,y) is the geographic coordinates of the upper right corner of the study
area, Vincenty() represents an iterative function of the ellipsoid distance, Ti represents the
temporal heterogeneity factor for month i, and ti represents month i.

2.2.3. Ensemble Model

Our study adopted a “Classic Machine Learning + Deep Neural Network“ ensemble
model to evaluate the near-ground NO2 concentrations. First, we constructed a statistical
relationship between the explanatory variables and the NO2 concentrations based on
three machine learning models: Random Forest (RF), Extreme Random Forest (EXT), and
XGboost (XGB). These three models are all based on regression trees, which can learn
the nonlinear relationships among variables very well. However, due to the differences
in their principles, the deviation and variance in the predicted results will also be quite
different. Both RF and EXT are ensemble learning models based on the bagging strategy:
they randomly select prediction samples to increase the generalization of the model [43].
On the other hand, XGB is a boosting ensemble learning method and its base learners are
related to each other, which can maximize the model’s accuracy, although this will reduce
the generalizability to a certain extent [44]. Considering the prediction performance and
generalization ability of the model, the key hyperparameters of the three algorithms were
optimized with grid search. For RF and EXT, the number of trees (n_estimators) and the
tree depth (max_depth) were set to 150 and 25, respectively; for XGB, the number of trees
(n_estimators) and the tree depth (max_depth) were set to 500 and 13, respectively. In order
to prevent the model overfitting, we also set the gamma coefficient to 1.

Finally, in order to integrate and optimize the prediction results of these machine
learning methods, we inputted their prediction results into a deep learning network com-
posed of 3 fully connected layers and 2 ReLU layers, and realized the near-ground NO2
concentration exposure assessment. All models were implemented by the pytorch and
scikit-learn packages, and the detailed structure is shown in Figure 2.
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2.2.4. Model Validation

In the 10-fold cross-validation technique (10-fold CV), the dataset is randomly divided
into 10 data subsets and 1 data subset is selected in turn for model validation, with the
remaining 9 used for model establishment. The final evaluation of the 10-fold CV results is
the average of the 10 time validations, which can more realistically evaluate the model’s
performance. To evaluate the fitting performance and generalization performance of
the ensemble model, we used the 10-fold cross-validation technique to calculate the R2

(goodness of fit), MAE (mean absolute error), and RMSE (root-mean-square error). The
details are shown in Equations (4)–(7).

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (4)

MAE =
1
n

n

∑
i=1
|(yi − ŷi)| (5)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (6)

CV(p) =
1

10

10

∑
j=1

CVj(p), p ∈
(

R2, MAE, RMSE
)

(7)

where yi and ŷi are the true value and the model’s predicted value for the ith sample,
respectively, y is the average value of whole sample, and CVj(p) is the jth cross-validation
result of the p statistic.

3. Results
3.1. Model Development and Validation
3.1.1. Analysis of the Impact of Enhanced Variables on the Model

In order to explore the influence of the spatiotemporal term and the hysteretic effects
term on the model, we designed four variable combination schemes and used the CV
verification method to analyze the performance of different independent variable schemes
in the RF, EXT, and XGB models, which are shown in Table 1. The results show that the CV
R2 of the three machine learning models were significantly improved when the two model
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enhancement factors were added separately (Plan2 and Plan3). In particular, when the
spatiotemporal term was added, the R2 of the RF, EXT, and XGB models reached 0.81, 0.82,
and 0.88, meaning that the performance of the three models was improved by 4%, 4%, and
6%, respectively. When the meteorological hysteretic effects term and the spatiotemporal
term were added at the same time, the performance of each machine learning model still
increased slightly with an increase in the explanatory variables, and the R2 range was
0.82–0.88. Under the same scheme, the performances of the three models were ranked in
descending order as XGB, EXT, and RF.

Table 1. Evaluation of the performance of three machine learning models with different
variable combinations.

Scheme Name Predictors (x) Predictand (y) RF (R2) EXT (R2) XGB (R2)

Plan 1 Basic predictors

NO2 concentration
monitored by

the station

0.77 0.78 0.82

Plan 2 Basic predictors + meteorological
lag factors 0.80 0.81 0.86

Plan 3 Basic predictors + spatiotemporal
heterogeneity factor 0.81 0.82 0.88

Plan 4
Basic predictors + spatiotemporal

heterogeneity factor +
meteorological lag factors

0.82 0.84 0.88

Figure S3a–d show the relative importance of the independent variables for the four
schemes. When no model enhancement variables were introduced (Figure S3a), TROPOMI
NO2 was the most important factor (RF: 35%, EXT: 25%, XGB: 25%), followed by air pressure
(AP) and boundary layer height (BLH), which were two or three times less important
than TROPOMI NO2 concentrations. When the meteorological hysteretic effect term was
introduced into the model (Figure S3b,d), its relative importance in all models was 2–14%.
The relative importance of air pressure and land surface temperature two days ago was
higher than that of the current day, which indicates that the meteorological hysteretic effects
term is better than the simple meteorological factor. When the spatiotemporal term was
introduced into the model (Figure S3c,d), the temporal heterogeneity factor became one
of the most important factors (7–20%), second only to TROPOMI NO2. Overall, although
there were some differences in the relative importance of the variables in different models,
TROPOMI NO2, boundary layer height, the meteorological hysteretic effects term, and the
spatiotemporal term had important effects in all models.

3.1.2. Model Evaluation

We finally constructed a near-ground NO2 concentration exposure assessment model
based on the variable system of Plan 4. Figure 3 shows the CV results of the six models.
The RMSE values of the multiple linear, SVM, RF, EXT, XGB, and ensemble models were
11.88, 7.56, 7.22, 6.76, 5.71, and 5.62 µg/m3, and the corresponding MAE values were
9.20, 5.43, 5.26, 4.91, 4.11, and 4.04 µg/m3, respectively. The 10-fold cross-validation R2

of the ensemble model was 0.89, which was significantly better than the multiple linear
model (CV R2: 0.51) and the SVM model (CV R2: 0.80). The RF, EXT, and ensemble models
overestimated the near-ground NO2 concentration, and the SVM, multiple linear, and
XGB models underestimated the near-surface NO2 concentration. Overall, the ensemble
model corrected the predictions of the different machine learning models through the deep
learning network and outperformed the individual machine learning models.
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characteristics. The local R2 is high in the areas with a large population and densely
distributed monitoring stations, while the local R2 in the areas with a small population
and sparsely distributed stations is low. In the case of sparse sites, it is difficult for the
model to fully explore the statistical relationship between the NO2 concentration and the
explanatory variables. Across the entire study period, the range of local R2 is 0.13–0.94,
and 92% of the sites have a local R2 of >0.7. This result is consistent with the performance
results of local RMSE (Figure S4) and MAE (Figure S5), which means that the model has a
relatively stable fitting performance.
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We also captured the model prediction results for different site locations and plotted
the trend of changes in the daily average NO2 concentration from May 2018 to December
2020 (Figure S6). In the time series, the predicted results are basically consistent with the
actual observed results (Figure S2), and there is no obvious deviation, indicating that the
model shows high stability for the time series.

Based on the ensemble model framework, three validation sets were designed in this
study, namely all samples in the last 3 months of 2020, 30% randomly selected samples from
all sites, and 30% randomly selected samples. These validation sets did not participate in
model training, and their validation results represent the temporal, spatial, and comprehen-
sive predictive capabilities of the model, respectively, as detailed in Figure 5. The ensemble
model had the strongest comprehensive prediction ability (Figure 5a), with an R2 of 0.86
between the predicted value and the true value, which means that the model was able to
predict 86% of the near-ground NO2 concentrations. The performance of the model for
temporal (Figure 5b) and spatial (Figure 5c) variations was slightly weaker than the com-
prehensive prediction ability, but it still showed a relatively good spatiotemporal prediction
ability and applicability. The temporal and spatial R2 values of the model reached 0.71 and
0.81, respectively, and the corresponding RMSE and MAE were 10.24 µg/m3, 7.79 µg/m3,
7.39 µg/m3, and 5.50 µg/m3. Compared with the XGBoost model (Figure 5d–f), the com-
prehensive prediction R2, temporal R2, and spatial R2 of the ensemble model were improved
by 1%, 2%, and 1%, respectively, and the corresponding RMSE was reduced by 0.23 µg/m3,
0.19 µg/m3, and 0.23 µg/m3.
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Figure 5. The prediction accuracy of the ensemble and XGBoost model: (a) validation results
of completely random selection of 30% of the samples as the validation set (ensemble model);
(b) validation results using the samples from the last three months of 2020 as the validation set
(ensemble model); (c) validation results of randomly selecting 30% of samples from all sites as the
validation set (ensemble model); (d) validation results of completely random selection of 30% of the
samples as the validation set (XGBoost model); (e) validation results using the samples from the
last three months of 2020 as the validation set (XGBoost model); (f) validation results of randomly
selecting 30% of samples from all sites as the validation set (XGBoost model). The units of RMSE and
MAE are µg/m3.
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3.2. Analysis of the Fine-Scale Spatiotemporal Variation in NO2

To analyze the ability of the ensemble model of capturing the spatially heterogeneous
features, we interpolated the satellite-observed tropospheric NO2 vertical column concen-
trations to a spatial resolution of 0.03◦ and compared it with the ensemble model’s output
of the spatial distribution of the near-surface NO2 concentration (Figures S7 and S8). The
spatial distribution law of the model output and the interpolation results of satellite obser-
vations were basically consistent, which proves the correctness of the model output results
from a new perspective. In detail, the interpolation results of the satellite observations were
relatively smooth. Although the spatial resolution after interpolation was consistent with
the model output, the degree of step difference between adjacent pixels was not obvious.
Especially in Ningbo, Fuzhou, Wenzhou Province, and other areas with a small area of high
NO2 concentrations, as well as the median NO2 concentration between mountainous areas,
satellite observations cannot easily capture the spatial heterogeneity. The smoothing effect
is outstanding. In contrast, the NO2 concentration results of the model showed obvious step
differences, whether in urban areas with higher NO2 concentrations, such as Shanghai, or
in mountainous areas with lower NO2 concentrations, such as southern Zhejiang Province;
these features were directly smoothed in the satellite observations. Therefore, the results of
the ensemble model reflect the spatial heterogeneity of the near-ground NO2 concentration.

Figure 6 shows the seasonal distribution of NO2 concentrations over the studied
area. In Figure S9, the temporal variation in the characteristics of the NO2 concentration
across different seasons is obvious, while the spatial distribution characteristics are similar.
The average concentration of NO2 near the ground, from largest to smallest, is: winter
(22.51 µg/m3), autumn (18.89 µg/m3), spring (17.76 µg/m3), and summer (11.91 µg/m3),
which is consistent with Pan et al.’s study on the Chinese region [45]. Spatially, the
near-surface NO2 concentrations are high in the north and low in the south, and have
a decreasing trend from the coast to the inland areas. The high-value areas are mainly
distributed in the north of Zhejiang Province, Anhui Province, Jiangsu Province, and
Shanghai. It is worth noting that the average NO2 concentration level across the four
seasons is not high, which is because there are a large number of suburban and rural areas
in our research region, and the NO2 concentration in these areas is at a low level. In fact,
NO2 concentrations in urban areas are still at relatively high levels. Coal-fired heating and
natural seasonal conditions of unfavorable diffusion are important factors leading to this
phenomenon [45].

3.3. Analysis of Near-Surface NO2 Concentrations in Major Cities

As a typical area with a high near-surface NO2 concentration in the study area, the
Yangtze River Delta Plain has a large population base and complex human activities, and is
also one of the most important economic areas in China. In accordance with the national
ambient air quality standard GB 3095-2012, we calculated the NO2 air quality of major cities
in the Yangtze River Delta Plain with a daily average NO2 concentration of >80 µg/m3.
If any grid in the city did not meet the national regulations, it was considered to have
exceeded the standard. The details are shown in Figure 7.

Between 28 April 2018 and 31 December 2020, Hefei was the city most seriously
polluted by NO2, with 95 days of air NO2 exceeding the standard. In addition, Suzhou,
Wuxi, Hangzhou, Shanghai, and Nanjing had more than 60 days exceeding the standard,
and the corresponding maximum NO2 concentration was also relatively high, indicating
that the air quality of these cities was relatively poor. It is worth noting that when NO2
air pollution occurs, the near-surface NO2 concentration in Zhenjiang and Changzhou
can reach very high levels (greater than 135 µg/m3), although the number of days when
this occurs is not particularly great, indicating that the two cities need to be alert to the
occurrence of sudden NO2 air pollution incidents. Among the many cities in the Yangtze
River Delta Plain, only Ningbo City did not have the phenomenon of excessive NO2
concentrations in the air.
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All in all, there is still much room for improvement in the air quality of major cities in
the Yangtze River Delta Plain. Most of these places have relatively developed economies, a
large population, and low terrain. Anthropogenic emissions may be the main reason for
the formation of these high-value areas. In recent years, a series of effective measures for
environmental governance have reduced the average concentration of NO2 in the entire
region, but the effect has not been significant. It is still necessary to implement targeted
prevention and control measures for cities with more serious pollution.



Remote Sens. 2022, 14, 2807 14 of 18

Remote Sens. 2022, 14, 2807 14 of 19 
 

 

3.3. Analysis of Near-Surface NO2 Concentrations in Major Cities 
As a typical area with a high near-surface NO2 concentration in the study area, the 

Yangtze River Delta Plain has a large population base and complex human activities, and 
is also one of the most important economic areas in China. In accordance with the national 
ambient air quality standard GB 3095-2012, we calculated the NO2 air quality of major 
cities in the Yangtze River Delta Plain with a daily average NO2 concentration of >80 
µg/m3. If any grid in the city did not meet the national regulations, it was considered to 
have exceeded the standard. The details are shown in Figure 7. 

 
Figure 7. NO2 air quality in major cities. 

Between 28 April 2018 and 31 December 2020, Hefei was the city most seriously pol-
luted by NO2, with 95 days of air NO2 exceeding the standard. In addition, Suzhou, Wuxi, 
Hangzhou, Shanghai, and Nanjing had more than 60 days exceeding the standard, and 
the corresponding maximum NO2 concentration was also relatively high, indicating that 
the air quality of these cities was relatively poor. It is worth noting that when NO2 air 
pollution occurs, the near-surface NO2 concentration in Zhenjiang and Changzhou can 
reach very high levels (greater than 135 µg/m3), although the number of days when this 
occurs is not particularly great, indicating that the two cities need to be alert to the occur-
rence of sudden NO2 air pollution incidents. Among the many cities in the Yangtze River 
Delta Plain, only Ningbo City did not have the phenomenon of excessive NO2 concentra-
tions in the air. 

All in all, there is still much room for improvement in the air quality of major cities 
in the Yangtze River Delta Plain. Most of these places have relatively developed econo-
mies, a large population, and low terrain. Anthropogenic emissions may be the main rea-
son for the formation of these high-value areas. In recent years, a series of effective 
measures for environmental governance have reduced the average concentration of NO2 
in the entire region, but the effect has not been significant. It is still necessary to implement 
targeted prevention and control measures for cities with more serious pollution. 

4. Discussion 
Focusing on the scientific issue of assessing near-surface NO2 concentrations, we de-

signed a model enhancement factor considering the influencing mechanism of multi-
source explanatory variables on the near-surface NO2 concentration and the spatial heter-
ogeneity in NO2 concentration itself. With an ensemble model composed of a deep neural 
network and machine learning methods, a high-precision ground NO2 concentration ex-
posure assessment model was developed. 

Figure 7. NO2 air quality in major cities.

4. Discussion

Focusing on the scientific issue of assessing near-surface NO2 concentrations, we de-
signed a model enhancement factor considering the influencing mechanism of multi-source
explanatory variables on the near-surface NO2 concentration and the spatial heterogeneity
in NO2 concentration itself. With an ensemble model composed of a deep neural network
and machine learning methods, a high-precision ground NO2 concentration exposure
assessment model was developed.

Compared with previous studies, our model exhibits certain advantages. The ensemble
model in this study has a better ability to evaluate the NO2 concentrations, and its R2 in
the 10-fold cross-validation results is 0.89, which is better than the performance of most
models, such as the annual-scale stepwise regression model (CV R2: 0.78) constructed by
Xu et al. [46], the seasonal-scale land use regression model (CV R2: 0.70) constructed by
Zhang et al. [23], the annual-scale land use regression model (CV R2: 0.67) constructed by
Andrew Larkin et al. [47], the monthly scale random forest model in China constructed
by You et al. [27] (CV R2: 0.85), the daily-scale random forest and extreme random forest
models constructed by Qin et al. [43] (CV R2: 0.70 and 0.72), the XGBoost daily-scale model
(CV R2: 0.83) constructed by Liu [29], and the random forest spatiotemporal kriging (RF-
STK) model (CV R2: 0.62) constructed by Zhan et al. [48]. At the same time, the model in this
article outputs daily-scale results with a spatial resolution of 0.03◦ (about 3 km), which can
better meet the needs of research such as popular medicine and environmental protection.
As far as we know, there are not many daily-scale NO2 exposure assessment models with a
spatial resolution better than 0.03◦ in China. Only the random forest model constructed
by Pan et al. [45] and the ensemble model (Machine Learning + GAM) constructed by
Huang et al. [26] and Di et al. [49] reached a spatial resolution of 1 km, but the performance
of these models (CV R2: 0.67–0.82) was slightly lower than that of the model in this
study. The prediction performance of our model was also good: The spatial prediction R2

and the temporal prediction R2 were 0.81 and 0.71 respectively, which is slightly weaker
than the model with the best temporal prediction ability of the abovementioned studies
(Di et al. [49], spatial prediction R2: 0.84, temporal prediction R2: 0.73).

Multi-source predictors and their effective utilization are the keys to improving model
performance. As in most studies [29,43], the TROPOMI tropospheric NO2 column concen-
tration was the most important predictor in this model because it has a consistent trend with
near-surface NO2 concentrations (Figure S2). Compared with OMI-NO2 (the NO2 observed
by the Ozone Monitoring Instrument), the NO2 exposure assessment models constructed
with TROPOMI-NO2 had better accuracy, which was demonstrated in the study of Liu
et al. [29]. We also designed a meteorological hysteretic effects term and a spatiotemporal
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term. When used alone, they significantly improved the model’s performance (accuracy
improvement: 4–6%) and played an important role in the explanatory variable system
(Figure S1), which is consistent with previous studies in China [42,45]. However, when
the meteorological hysteretic effects term and the spatiotemporal term were used at the
same time, the performance of the model was not improved significantly, which may be
because the accuracy of the model itself had reached a high level, and there were systematic
errors in the explanatory variables themselves. In addition, the atmospheric condition
variables and other geographic factors in the hourly climate analysis data also play a role
to varying degrees. Although the relative importance of these variables is not high enough
to significantly improve the model’s performance, they increase the spatial heterogeneity
of the model. For example, DEM, city proportion, road network density, and population
are highly consistent with the predicted spatial distribution of NO2 concentrations.

The systematic and comprehensive multi-source explanatory variable system also
increases the interpretability and applicability of the model. It contains large-scale data
sources at fine spatial scales, giving the model the potential to produce higher-spatial-
resolution NO2 products (better than 1 km) and apply them to larger areas. In future
studies, the model is also expected to be applicable to other high-level exposure assessment
models for atmospheric pollutants that have both site and satellite observations.

However, there are still some limitations of our study. First, although the model
proposed in this article has a good temporal prediction ability (R2: 0.71), this is only a
short-term prediction, and the stationarity of the long-term prediction of the model needs
to be further explored and proved. Second, the performance of the model and the potential
for application of the model at higher time scales are limited due to the coarse resolution
of the geographic data and atmospheric condition data. On the one hand, the spatial
resolution of the analytical data (ERA5) used by the model is 0.25◦, and a single pixel
record is not enough to perfectly describe the atmospheric conditions at the site location,
which increases the uncertainty of the model. On the other hand, at a fine spatiotemporal
scale (hourly scales, 100 m level resolution), the information provided by TROPOMI NO2
and the meteorological data will not be sufficient to reflect the short-term changes in NO2
concentration caused by transportation, daily life, and industrial emissions. Variations in
human activity at a fine enough spatial and temporal resolution are needed to provide
relevant information. Currently, such data are difficult to obtain and are not publicly
available, which means that it is difficult for the model to improve in terms of temporal
resolution. Third, the meteorological hysteretic effects term proposed in this article only
considers the meteorological factors over 3 days. This assumption is too simple and may
limit the further improvement of the model’s performance. The time span involved in the
hysteretic effects may be more than 3 days and is not fixed. In future research, developing
a dynamic hysteretic effects term will help to improve the model.

5. Conclusions

In this article, we combined the XGB, RF, EXT, and deep neural network models,
and used multi-source data to develop a high-precision ensemble model, which was
successfully applied to the central and southern coastal areas of China, generating a near-
ground daily average NO2 concentration distribution of 0.03◦. Compared with other
studies, the ensemble model had better estimation accuracy, with 10-fold CV R2, RMSE,
and MAE values of 0.89, 5.62 µg/m3, and 4.04 µg/m3, respectively.

The model has good generalization in space and time, and the short-term daily av-
erage NO2 prediction effects were stable and reliable, which shows that the model can
be applied to larger areas and longer time series. Compared with satellite observations
and site observations, the ensemble model output provides rich and accurate details of the
spatiotemporal heterogeneity in NO2, which will be helpful for air pollutant traceability
and urban health research in the future.
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Figure S7: The distribution of the daily average NO2 concentrations outputted by the ensemble
model; Figure S8: The distribution of daily average tropospheric NO2 column concentrations interpo-
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