Relative Radiometric Correction of Pushbroom Satellites Using the Yaw Maneuver
Abstract
:1. Introduction
1.1. Radiometric Calibration
Relative Gain Corrections
1.2. Landsat 8
1.2.1. Scanner Types
1.2.2. OLI
1.2.3. TIRS
2. Background
2.1. Current Methods for Relative Gain Estimation
2.1.1. Solar Diffuser Panel
2.1.2. On-Board Lamp
2.1.3. Lifetime Statistics
2.1.4. Histogram Statistics
2.1.5. Side Slither
3. Methodology
3.1. Side-Slither Maneuver
3.2. Data Processing for Landsat 8
3.2.1. 12 to 14-bit Conversion
3.2.2. Bias Subtraction
3.2.3. Linearized Image
3.3. Pushbroom Satellite Relative Gain Algorithm
3.3.1. Pixel Shift
3.3.2. Uniform Frame Selection
3.3.3. FPM-to-FPM Correlation
3.3.4. Detector Relative Gain Calculation
3.3.5. FPM Relative Gain Calculation
3.4. Scene Selection
3.5. Other Methods of FPM Gain Estimation
3.5.1. In-Scene Estimation
3.5.2. Periodic Model Estimation
3.6. Evaluation Metrics
3.6.1. Streaking Metrics
3.6.2. Overlap Detector Metric
3.7. Side-Slither Selection for Scene Type
3.7.1. Best SS Location per Band
3.7.2. Temporal Integrity of SS Relative Gains
4. Results & Discussion
4.1. Detector Relative Gain Comparison
4.2. FPM Relative Gain Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Antarctica Snow Scenes | Australian Desert Scenes | |||||
Band | Antarctic SS Y2019 D015 (µDN) | Greenland SS Y2019 D195 (µDN) | N. Africa SS Y2018 D290 (µDN) | Antarctic SS Y2019 D015 (µDN) | Greenland SS Y2019 D195 (µDN) | N. Africa SS Y2018 D290 (µDN) |
C/A | 351 | 454 | 620 | 373 | 370 | 447 |
Blue | 292 | 401 | 725 | 307 | 346 | 579 |
Green | 251 | 307 | 458 | 319 | 305 | 364 |
Red | 276 | 167 | 214 | 389 | 315 | 322 |
NIR | 156 | 177 | 286 | 273 | 291 | 347 |
SWIR-1 | 1567 | 1198 | 1092 | 1367 | 1217 | 634 |
SWIR-2 | 774 | 1033 | 904 | 767 | 1030 | 594 |
PAN | 230 | 211 | 505 | 418 | 358 | 283 |
TIRS-1 | 1054 | 2880 | 5559 | 4889 | 2830 | 1541 |
TIRS-2 | 2476 | 5236 | 9727 | 8225 | 5673 | 5029 |
Amazon Forest Scenes | N. African Desert Scenes | |||||
Band | Antarctic SS Y2019 D015 (µDN) | Greenland SS Y2019 D195 (µDN) | N. Africa SS Y2018 D290 (µDN) | Antarctic SS Y2019 D015 (µDN) | Greenland SS Y2019 D195 (µDN) | N. Africa SS Y2018 D290 (µDN) |
C/A | 402 | 394 | 457 | 450 | 340 | 365 |
Blue | 376 | 429 | 655 | 388 | 339 | 451 |
Green | 556 | 576 | 634 | 371 | 324 | 367 |
Red | 908 | 878 | 879 | 363 | 315 | 339 |
NIR | 908 | 913 | 934 | 318 | 290 | 353 |
SWIR-1 | 1699 | 1488 | 1222 | 1358 | 1257 | 632 |
SWIR-2 | 1530 | 1710 | 1530 | 795 | 1041 | 562 |
PAN | 607 | 588 | 806 | 341 | 297 | 305 |
TIRS-1 | 4279 | 2281 | 1784 | 4989 | 2935 | 1440 |
TIRS-2 | 7688 | 5298 | 5618 | 8121 | 5613 | 4875 |
Greenland Snow Scenes | Arabian Desert Scenes | |||||
Band | Antarctic SS Y2019 D015 (µDN) | Greenland SS Y2019 D195 (µDN) | N. Africa SS Y2018 D290 (µDN) | Antarctic SS Y2019 D015 (µDN) | Greenland SS Y2019 D195 (µDN) | N. Africa SS Y2018 D290 (µDN) |
C/A | 335 | 233 | 251 | 395 | 302 | 338 |
Blue | 337 | 260 | 269 | 327 | 278 | 393 |
Green | 222 | 182 | 226 | 290 | 219 | 281 |
Red | 261 | 153 | 189 | 304 | 206 | 243 |
NIR | 147 | 164 | 249 | 234 | 220 | 290 |
SWIR-1 | 1636 | 1164 | 1126 | 1341 | 1241 | 598 |
SWIR-2 | 809 | 1038 | 937 | 759 | 1031 | 538 |
PAN | 223 | 196 | 331 | 357 | 288 | 253 |
TIRS-1 | 1418 | 1423 | 4043 | 5052 | 2968 | 1456 |
TIRS-2 | 2023 | 2683 | 7733 | 7896 | 5254 | 4522 |
Antarctica Snow Scenes | Greenland Snow Scenes | |||
Band | CPF Streaking Average (µDN) | SS Streaking Average (µDN) | CPF Streaking Average (µDN) | SS Streaking Average (µDN) |
C/A | 733.6 | 687.7 | 319.1 | 201.3 |
Blue | 751.3 | 613.0 | 345.6 | 190.2 |
Green | 466.1 | 414.1 | 238.2 | 157.9 |
Red | 185.5 | 192.1 | 156.8 | 156.1 |
NIR | 230.9 | 242.3 | 159.5 | 169.5 |
SWIR-1 | 997.2 | 1317.9 | 1031.9 | 1246.9 |
SWIR-2 | 755.1 | 1066.1 | 826.5 | 939.9 |
PAN | 426.2 | 366.0 | 292.1 | 234.4 |
TIRS-1 | 2389 | 1587 | 1451 | 647.9 |
TIRS-2 | 771.0 | 562.5 | 696.0 | 329.6 |
Mediterranean Sea Scenes | Australian Desert Scenes | |||
Band | CPF Streaking Average (µDN) | SS Streaking Average (µDN) | CPF Streaking Average (µDN) | SS Streaking Average (µDN) |
C/A | 499.2 | 399.1 | 656.0 | 565.1 |
Blue | 528.5 | 345.6 | 798.3 | 630.9 |
Green | 631.0 | 570.3 | 490.2 | 427.9 |
Red | 841.1 | 837.5 | 478.2 | 479.6 |
NIR | 1532.1 | 1529.3 | 308.9 | 315.3 |
SWIR-1 | 3400.7 | 3633.9 | 440.9 | 1037.7 |
SWIR-2 | 3474.3 | 3614.7 | 409.2 | 919.3 |
PAN | 900.6 | 844.2 | 310.3 | 305.7 |
TIRS-1 | 407.6 | 474.6 | 559.1 | 392.3 |
TIRS-2 | 520.8 | 386.2 | 569.9 | 332.1 |
N. African Desert Scenes | Amazon Forest Scenes | |||
Band | CPF Streaking Average (µDN) | SS Streaking Average (µDN) | CPF Streaking Average (µDN) | SS Streaking Average (µDN) |
C/A | 503.3 | 396.8 | 733.2 | 649.4 |
Blue | 642.7 | 475.3 | 907.8 | 762.0 |
Green | 374.9 | 322.2 | 793.5 | 745.0 |
Red | 290.1 | 287.9 | 881.4 | 880.8 |
NIR | 283.0 | 282.3 | 567.3 | 570.1 |
SWIR-1 | 380.2 | 906.1 | 845.7 | 1272.7 |
SWIR-2 | 350.9 | 795.6 | 1083.0 | 1401.8 |
PAN | 378.1 | 378.6 | 552.8 | 497.1 |
TIRS-1 | 624.0 | 423.6 | 701.9 | 843.9 |
TIRS-2 | 607.1 | 355.3 | 604.2 | 458.3 |
Arabian Desert Scenes | ||||
Band | CPF Streaking Average (µDN) | SS Streaking Average (µDN) | ||
C/A | 495.0 | 405.8 | ||
Blue | 796.1 | 652.1 | ||
Green | 391.4 | 329.3 | ||
Red | 190.4 | 189.2 | ||
NIR | 199.1 | 202.3 | ||
SWIR-1 | 379.8 | 966.4 | ||
SWIR-2 | 355.5 | 857.5 | ||
PAN | 191.2 | 185.0 | ||
TIRS-1 | 604.2 | 435.5 | ||
TIRS-2 | 593.4 | 345.2 |
Greenland Snow Scenes | Mediterranean Sea Scenes | |||||
Band | CPF | Periodic Model | Nearest SS | CPF | Periodic Model | Nearest SS |
C/A | 1.81 | 0.998 | 1.37 | 3.69 | 3.32 | 3.46 |
Blue | 1.16 | 1.09 | 1.02 | 2.58 | 3.35 | 3.48 |
Green | 1.25 | 0.809 | 0.817 | 11.52 | 11.45 | 12.52 |
Red | 1.12 | 0.724 | 0.937 | 16.24 | 16.53 | 17.78 |
NIR | 0.882 | 0.845 | 1.47 | 23.90 | 24.22 | 25.69 |
SWIR-1 | 14.43 | 14.41 | 7.92 | 65.86 | 65.80 | 59.33 |
SWIR-2 | 8.69 | 7.30 | 4.17 | 64.07 | 62.64 | 60.76 |
PAN | 1.09 | 0.610 | 1.59 | 3.98 | 4.22 | 5.33 |
TIRS-1 | 15.03 | 10.52 | 16.41 | 8.07 | 3.69 | 15.00 |
TIRS-2 | 28.02 | 14.70 | 12.78 | 29.61 | 5.27 | 13.11 |
Australian Desert Scenes | Arabian Desert Scenes | |||||
Band | CPF | Periodic Model | Nearest SS | CPF | Periodic Model | Nearest SS |
C/A | 3.09 | 4.49 | 3.90 | 2.78 | 0.778 | 1.90 |
Blue | 2.63 | 3.93 | 3.81 | 2.25 | 0.826 | 1.47 |
Green | 4.83 | 5.91 | 6.33 | 1.89 | 0.549 | 1.89 |
Red | 2.90 | 3.80 | 4.81 | 1.42 | 0.389 | 1.73 |
NIR | 2.12 | 2.84 | 4.06 | 1.14 | 0.325 | 1.59 |
SWIR-1 | 3.11 | 3.59 | 4.05 | 2.02 | 0.805 | 7.55 |
SWIR-2 | 4.16 | 3.25 | 4.20 | 1.73 | 0.807 | 4.08 |
PAN | 1.36 | 2.22 | 2.17 | 1.18 | 0.323 | 2.59 |
TIRS-1 | 7.29 | 2.81 | 16.90 | 6.51 | 1.70 | 18.83 |
TIRS-2 | 29.62 | 3.31 | 18.22 | 29.50 | 2.37 | 20.72 |
Amazon Forest Scenes | Antarctica Snow Scenes | |||||
Band | CPF | Periodic Model | Nearest SS | CPF | Periodic Model | Nearest SS |
C/A | 8.63 | 8.59 | 8.71 | 1.84 | 2.69 | 1.63 |
Blue | 12.47 | 12.55 | 12.62 | 1.79 | 1.39 | 1.56 |
Green | 13.58 | 13.49 | 14.12 | 1.19 | 1.77 | 1.43 |
Red | 17.28 | 17.16 | 17.83 | 1.15 | 1.10 | 1.24 |
NIR | 4.94 | 4.96 | 5.80 | 1.26 | 0.896 | 1.16 |
SWIR-1 | 33.23 | 33.26 | 32.94 | 4.60 | 4.02 | 9.90 |
SWIR-2 | 55.20 | 55.16 | 55.45 | 6.49 | 6.73 | 9.89 |
PAN | 10.17 | 9.86 | 10.24 | 1.56 | 0.966 | 1.09 |
TIRS-1 | 9.70 | 5.35 | 14.80 | 20.02 | 13.43 | 14.77 |
TIRS-2 | 29.45 | 7.79 | 15.29 | 30.30 | 20.77 | 9.55 |
N. African Desert Scenes | ||||||
Band | CPF | Periodic Model | Nearest SS | |||
C/A | 2.38 | 0.866 | 1.45 | |||
Blue | 2.01 | 0.72 | 1.08 | |||
Green | 1.66 | 0.775 | 1.34 | |||
Red | 1.37 | 0.644 | 1.19 | |||
NIR | 0.978 | 0.430 | 1.43 | |||
SWIR-1 | 1.80 | 1.00 | 7.69 | |||
SWIR-2 | 0.835 | 1.07 | 4.41 | |||
PAN | 1.07 | 0.513 | 2.74 | |||
TIRS-1 | 5.99 | 2.02 | 18.57 | |||
TIRS-2 | 30.42 | 2.61 | 18.28 |
References
- NASA. The Worldwide Reference System. Available online: https://landsat.gsfc.nasa.gov/about/the-worldwide-reference-system/ (accessed on 21 January 2022).
- United States Geological Survey. Landsat 7 (L7) Data Users Handbook. Available online: https://prd-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-1927_L7_Data_Users_Handbook-v2.pdf (accessed on 21 January 2022).
- United States Geological Survey. Landsat 8 (L8) Data Users Handbook. Available online: https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1574_L8_Data_Users_Handbook-v5.0.pdf (accessed on 21 January 2022).
- Hillen, F. IGF Studenprojekt. Available online: http://www.florianhillen.de/studium/projekt/index.php?id=grundlagen&uid=sensoren (accessed on 21 January 2022).
- Pesta, F. Relative Radiometic Characterization and Correction of the Landsat 8 OLI Using the OnOrbit Side-Slither Maneuver. Master’s Thesis, South Dakota State University, Brookings, SD, USA, 2015; p. 1773. [Google Scholar]
- Knight, E.J.; Kvaran, G. Landsat-8 Operational Land Imager Design, Characterization and Performance. Remote Sens. 2014, 6, 10286–10305. [Google Scholar] [CrossRef]
- Markham, B.; Barsi, J.; Kvaran, G.; Ong, L.; Kaita, E.; Biggar, S.; Czapla-Myers, J.; Mishra, N.; Helder, D. Landsat-8 Operational Land Imager Radiometric Calibration and Stability. Remote Sens. 2014, 6, 12275–12308. [Google Scholar] [CrossRef]
- Shrestha, A.K. Relative Gain Characterization and Correction for Pushbroom Sensors Based on Lifetime Image Statistics and Wavelet Filtering. Ph.D. Thesis, Electrical Engineering and Computer Science Department, South Dakota State University, Brookings, SD, USA, 2010. [Google Scholar]
- Wegener, M. Destriping multiple sensor imagery by improved histogram matching. Int. J. Remote Sens. 1990, 11, 859–875. [Google Scholar] [CrossRef]
- Cook, M.; Peterson, B.; Dial, G.; Gibson, L.; Gerlach, F.; Hutchins, K.; Kudola, R.; Bowen, H. IKONOS technical performance assessment. In Proceedings of the SPIE 4381, Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII, Orlando, FL, USA, 16–20 August 2001. [Google Scholar] [CrossRef]
- Anderson, C.; Naughton, D.; Brunn, A.; Thiele, M. Radiometric correction of RapidEye imagery using the on-orbit side-slither method. In Proceedings of the SPIE 8180—Image and Signal Processing for Remote Sensing XVII, Prague, Czech Republic, 19–22 September 2011. [Google Scholar]
- Pesta, F.; Bhatta, S.; Helder, D.; Mishra, N. Radiometric Non-Uniformity Characterization and Correction of Landsat 8 OLI Using Earth Imagery-Based Techniques. Remote Sens. 2015, 7, 430–446. [Google Scholar] [CrossRef]
- United States Geological Survey. Landsat 8–9 Calibration and Validation (Cal/Val) Algorithm Description Document (ADD). Available online: https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1747_Landsat8-9_CalVal_ADD-v4.pdf (accessed on 21 January 2022).
- United States Geological Survey. Landsat 1–9 Calibration Parameter Files (CPF). Available online: https://landsat.usgs.gov/calibration-parameter-files-search (accessed on 21 January 2022).
- United States Geological Survey. Response Linearization Look Up Tables (RLUT). Available online: https://landsat.usgs.gov/rlut (accessed on 21 January 2022).
- Blanter, M.; Büttiker, M. Shot noise in mesoscopic conductors. Phys. Rep. 2000, 336, 1–166. Available online: https://www.sciencedirect.com/science/article/pii/S0370157399001234 (accessed on 21 January 2022). [CrossRef]
- Niveos.cnr.it. SISpec|Snow & Ice Spectral Library. 2022. Available online: https://niveos.cnr.it/SISpec/ (accessed on 21 January 2022).
- Shepherd, K.D.; Palm, C.A.; Gachengo, C.N.; Vanlauwe, B. Rapid characterization of organic resource quality for soil and livestock management in tropical agroecosystems using near-infrared spectroscopy. Agron. J. 2003, 95, 1314–1322. [Google Scholar] [CrossRef]
- Bourke, P. Cross Correlation, Autocorrelation, 2D Pattern Identification; Research Gate 2019. Available online: http://paulbourke.net/miscellaneous/correlate/ (accessed on 21 January 2022).
- Pearson, R.K.; Neuvo, Y.; Astola, J.; Gabbouj, M. Generalized Hampel Filters. EURASIP J. Adv. Signal Process. 2016, 2016, 87. [Google Scholar] [CrossRef]
Band Number | Band Name | Bandwidth (nm) | Resolution (m) | Detector Count (per FPM) |
---|---|---|---|---|
1 | Coastal/Aerosol | 435–451 | 30 | 494 |
2 | Blue | 452–512 | 30 | 494 |
3 | Green | 533–590 | 30 | 494 |
4 | Red | 636–673 | 30 | 494 |
5 | NIR | 851–879 | 30 | 494 |
6 | SWIR-1 | 1566–1651 | 30 | 494 |
7 | SWIR-2 | 2107–2294 | 30 | 494 |
8 | Panchromatic | 503–676 | 15 | 988 |
9 | Cirrus | 1363–1384 | 30 | 494 |
Band Number | Band Name | Bandwidth (nm) | Resolution (m) | Detector Count (per FPM) |
---|---|---|---|---|
10 | TIRS-1 | 10,600–11,190 | 100 | 640 |
11 | TIRS-2 | 11,500–12,510 | 100 | 640 |
Location | Path | Row |
---|---|---|
Greenland | 4 | 5–21 |
Antarctica | 88 | 107–117 |
North Africa | 187 | 41–46 |
Location | Number of Scenes | Path/Row Range | L8 Bands of Interest |
---|---|---|---|
Greenland | 114 | P7–P32; R2–R5 | 1–5; 8; 10–11 |
Mediterranean Sea | 32 | P185–P188; R34-R37 | 1–3; 10–11 |
Arabian Desert | 179 | P162; R46 | 1–8; 10–11 |
Australian Outback | 41 | P100; R77 | 1–8; 10–11 |
North African Desert | 46 | P181; R40 | 1–8; 10–11 |
Amazon Rain Forest | 173 | P1; R65 | 1–8; 10–11 |
Antarctica | 120 | P106–P174; R115–R121 | 1–5; 8; 10–11 |
Band | Antarctic SS Y2019 D015 (µDN) | Greenland SS Y2019 D195 (µDN) | N. Africa SS Y2018 D290 (µDN) |
---|---|---|---|
C/A | 396 | 347 | 408 |
Blue | 363 | 341 | 500 |
Green | 356 | 333 | 401 |
Red | 445 | 381 | 403 |
NIR | 387 | 389 | 452 |
SWIR-1 | 1509 | 1292 | 976 |
SWIR-2 | 979 | 1191 | 957 |
PAN | 383 | 344 | 463 |
TIRS-1 | 3551 | 2628 | 2792 |
TIRS-2 | 6008 | 5032 | 6369 |
Band | CPF Streaking Average (µDN) | SS Streaking Average (µDN) |
---|---|---|
C/A | 575.7 | 488.9 |
Blue | 721.0 | 571.0 |
Green | 493.6 | 434.2 |
Red | 406.5 | 406.8 |
NIR | 360.8 | 366.1 |
SWIR-1 | 845.4 | 1268 |
SWIR-2 | 822.6 | 1164 |
PAN | 387.6 | 350.0 |
TIRS-1 | 1058 | 764.5 |
TIRS-2 | 639.1 | 409.2 |
Band | CPF | Periodic Model | Nearest SS |
---|---|---|---|
C/A | 3.93 | 3.39 | 3.60 |
Blue | 4.52 | 4.13 | 4.35 |
Green | 5.13 | 4.79 | 5.34 |
Red | 5.97 | 5.63 | 6.34 |
NIR | 3.13 | 2.88 | 3.76 |
SWIR-1 | 15.1 | 14.6 | 16.4 |
SWIR-2 | 19.7 | 19.2 | 20.3 |
PAN | 3.57 | 3.12 | 4.16 |
TIRS-1 | 11.1 | 6.19 | 16.5 |
TIRS-2 | 29.4 | 9.03 | 15.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Begeman, C.; Helder, D.; Leigh, L.; Pinkert, C. Relative Radiometric Correction of Pushbroom Satellites Using the Yaw Maneuver. Remote Sens. 2022, 14, 2820. https://doi.org/10.3390/rs14122820
Begeman C, Helder D, Leigh L, Pinkert C. Relative Radiometric Correction of Pushbroom Satellites Using the Yaw Maneuver. Remote Sensing. 2022; 14(12):2820. https://doi.org/10.3390/rs14122820
Chicago/Turabian StyleBegeman, Christopher, Dennis Helder, Larry Leigh, and Chase Pinkert. 2022. "Relative Radiometric Correction of Pushbroom Satellites Using the Yaw Maneuver" Remote Sensing 14, no. 12: 2820. https://doi.org/10.3390/rs14122820
APA StyleBegeman, C., Helder, D., Leigh, L., & Pinkert, C. (2022). Relative Radiometric Correction of Pushbroom Satellites Using the Yaw Maneuver. Remote Sensing, 14(12), 2820. https://doi.org/10.3390/rs14122820