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Abstract: Forests are the main body of carbon sequestration in terrestrial ecosystems and forest
aboveground biomass (AGB) is an important manifestation of forest carbon sequestration. Reasonable
and accurate quantification of the relationship between AGB and its driving factors is of great
importance for increasing the biomass and function of forests. Remote sensing observations and
field measurements can be used to estimate AGB in large areas. To explore the applicability of the
panel data models in AGB and its driving factors, we compared the results of panel data models
(spatial error model and spatial lag model) with those of geographically weighted regression (GWR)
and ordinary least squares (OLS) to quantify the relationship between AGB and its driving factors.
Furthermore, we estimated the tree height, diameter at breast height, canopy cover (CC) and species
diversity index (Shannon–Wiener index) of Robinia pseudoacacia plantations in Changwu on the
Loess Plateau using field data and remote sensing images by a random forest model and estimated
soil organic carbon (SOC) contents using laboratory data by ordinary kriging (OK) interpolation.
We estimated AGB using the already estimated tree height and diameter at breast height combined
with the allometric growth equation. In this study, we estimated SOC contents by OK interpolation,
and the accuracy R2 values for each soil layer were greater than 0.81. We estimated diameter at
breast height (DBH), CC, SW and tree height (TH) using the random forest, and the accuracy R2

values were 0.85, 0.82, 0.76 and 0.68, respectively. We estimated AGB with random forest and the
allometric growth equation and found that the average AGB was 55.80 t/ha. The OLS results showed
that the residuals of the OLS regression exhibited obvious spatial correlations and rejected OLS
applications. GWR, SEM and SLM were used for spatial regression analysis, and SEM was the best
model for explaining the relationship between AGB and its driving factors. We also found that
AGB was significantly positively correlated with CC, SW, and 0–60 cm SOC content (p < 0.05) and
significantly negatively correlated with slope aspect (p < 0.01). This study provides a new idea for
studying the relationship between AGB and its driving factors and provides a basis for practical
forest management, increasing biomass, and giving full play to the role of carbon sequestration.

Keywords: above-ground biomass (AGB); estimation; driving factors; spatial regression analysis;
Robinia pseudoacacia

1. Introduction

As the largest carbon stock in terrestrial ecosystems, forests play an important role in
tackling climate change and improving the ecological environment [1,2]. The aboveground
biomass (AGB) of forests is an important manifestation of forest growth through years
of accumulation and represents 70–90% of the total forest biomass [1,3,4]. Forest AGB
estimation is the basis of understanding the carbon storage of terrestrial ecosystems and
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ecological function. At present, there are various methods for estimating forest AGB, and
each method has its advantages and disadvantages. Field measurements are the most
accurate method used to estimate forests for small forest stands; however, this method
can be time-consuming, labor-intensive and costly, and is not suitable for estimating AGB
in large areas [2,5]. However, the combination of remote sensing observations and field
measurements can be used to estimate AGB in large areas [6,7]. Previous studies have
indicated that machine learning techniques can be applied to estimate AGB and have
exhibited excellent performance [8–12]. Zhao (2019) compared different machine learning
algorithms for estimating forest AGB on the Loess Plateau and showed that random forest
exhibited the highest accuracy [13]. We used random forest to estimate the forest AGB of
the study area.

One of the direct indicators reflecting the structure and function of the forest ecosystem,
AGB is the result of the joint effect of the forest stand and the surrounding environment.
Analyzing the driving factors of forest AGB can provide a theoretical basis for sustainable
forestry management. The driving factors of forest AGB have always been a popular topic
among researchers. Different perspectives have been used to analyze the driving factors
of forest AGB. For example, the climate usually affects forest AGB on larger temporal
and spatial scales. Chen (2015) studied climate change impacts on the net AGB of four
forest types in western Canada’s boreal forests and found that persistent warming and
reduction in water availability had deep negative impacts on forest biomass [14]. Bordin
(2021) thought that the annual temperature range had a negative effect on forest AGB in
subtropical forests in southern Brazil [15]. Sullivan (2020) found that maximum temper-
ature may reduce woody productivity and become the most important factor affecting
aboveground biomass in tropical forests [16]. Similarly, Li (2022) found that warming
and drying caused by deforestation lead to an additional 5.1 ± 3.7% loss of aboveground
biomass in the Amazon [17]. Longitude, latitude and altitude generally affect biomass on
larger spatial scales, but aspect, slope position and slope affect biomass on smaller spatial
scales. Xu (2018) found that moso bamboo biomass decreased with decreasing latitude in
the subtropical region of China [18]. Sheikha (2020) found that the AGB of Cedrus deodara
forests decreased with altitude in the Central Himalayas [19]. Shen (2018) studied the
distribution of AGB under different terrain conditions and found that AGB was positively
correlated with slope [20]. Pariyar (2019) found that stand AGB was greater on northern
aspects than on southern aspects [21]. The stand factor is another important driving factor
for forest AGB accumulation. Previous studies have shown that stand density and stand
age directly adjust forest AGB [22,23], and crown density and species diversity affect forest
AGB by adjusting stand structure [24,25]. Soil creates conditions for the growth of trees by
providing nutrients. Ali (2019b) demonstrated that soils indirectly affected AGB via stand
structural complexity in tropical forests [25].

The driving factors for forest AGB have always been a popular topic among re-
searchers, and traditional regression analysis methods (for example, principal component
analysis, redundancy analysis, correlation analysis and ordinary least squares) have been
widely used to establish the relationship between forest AGB and driving factors [26–29].
However, traditional regression analysis methods do not consider the spatial relationship
between AGB and its driving factors. To study the spatial relationship, some scholars used
geographically weighted regression (GWR) models to explain the effect of driving factors
on forest AGB, and provided a spatially explicit technique [30]. Panel data models, as
spatial regression models, reduce the effects of multiple nonlinearities among variables and
provide accurate estimations [31]. Yuan (2018) studied the impact of urban form on haze
pollution using spatial regression analysis in China and found that urban form can impact
the concentration of PM2.5 [32]. Sun (2020) analyzed the COVID-19 period prevalence in
US counties by spatial regression model and thought that spatial regression models could
better estimate the period prevalence for counties [33]. Panel data models have been widely
used in economics, sociology and the environment [34,35], but panel data models have not
been applied to assess the relationships between AGB and its driving factors. Gaofen-1
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(GF-1) images have high spatial resolution and abundant spatial structure and texture infor-
mation. GF-1 images have been applied to estimating biomass, leaf area index, chlorophyll
and vegetation coverage, and GF-1 images exhibited a good potential for application in
various fields [36–38]. We chose GF-1 as the data source. To explore the applicability of
the panel data models in AGB and driving factors, we put our plans into a technology
roadmap as shown in Figure 1: First, we estimated the AGB, canopy cover (CC), species
diversity index (Shannon–Wiener index) and soil organic carbon (SOC) contents of Robinia
pseudoacacia plantations in Changwu on the Loess Plateau. Second, to reflect combined with
the situation in the study area, AGB was used as the dependent variable, and slope, aspect,
SOC content, CC and Shannon–Wiener index (SW) were used as independent variables.
Third, we planned to compare the panel data models with the GWR model and ordinary
least squares (OLS) and applied the results to quantify the relationship between AGB and
its driving factors to obtain the results of the panel data model application. Finally, the
panel data models, GWR model and OLS were used to quantify the regression relationship
between AGB and its driving factors to choose the most suitable regression model. We hope
to provide a new idea for studying the relationship between biomass and driving factors.
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Figure 1. The technology roadmap for this paper. DBH, TH, SW, CC and SOC represent diameter at
breast height, tree height, Shannon–Wiener index, canopy cover and soil organic carbon, respectively.
DEM represents a digital elevation model, and AGB represents aboveground biomass. OLS, GWR,
SEM and SLM represent ordinary least squares, geographically weighted regression model, spatial
error model and spatial lag model.

2. Materials and Methods
2.1. Study Region

The study area covers 567.1 km2, and is situated in Changwu County, Shaanxi Province,
in the south of the Loess Plateau of China (34◦59′N—35◦18′N and 107◦38′E—107◦58′E)
(Figure 2). The elevation of the study area ranges from 847 to 1274 m above sea level. The
study area is located in the loess gully region of the Loess Plateau, and the dominant soil
types are dark loessial soil and loessial soil [39,40].

The study area is located in a warm temperate semihumid continental monsoon
climate zone. The annual precipitation is 587.8 mm (the annual precipitation concentration
period is in July–September, and precipitation can reach 321.4 mm, accounting for 54.9% of
the total annual precipitation), and the average annual temperature is 9.1 ◦C. Furthermore,
the frost-free period is 171 days [39]. The study area was dominated by planted forest, and
afforestation began in the 1950s. The main tree species are R. pseudoacacia, Pinus tabuliformis,
Platycladus orientalis and Populus spp. Among these, R. pseudoacacia makes up more than
90% of the forested area [40–42]. The main shrub species are Rubus mesogaeus, Ziziphus
jujuba var. spinose and Lespedeza bicolor, and the main herb species are Imperata cylindrical,
Elymus dahuricus and Humulus scandens.
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2.2. Field and Laboratory Data

The field sample plots were set from July to August 2019. We randomly selected
104 sample plots in the study area. The plots were set as evenly as possible in the accessible
area (Figure 2). Each plot was located in a pure R. pseudoacacia plantation, and the plot
size was 30 × 30 m. In each plot, we measured trees with a diameter at breast height
(DBH) greater than 5 cm. The DBH, tree height (TH), species and number of species were
documented. SW was calculated by species and number of species. The CC was surveyed
with a digital hemispherical photograph. Then, we used Gap Light Analyzer 2.0 to process
digital hemispherical photographs [43]. In each plot, the 0–80 cm soil layers were selected
and divided into the 0–20 cm, 20–40 cm, 40–60 cm, and 60–80 cm layers. We used a 5 cm
diameter stainless steel corer to select nine soil cores along an S-shaped pattern, and then
we mixed the nine soil samples into one composite soil sample [44]. We removed the stones,
litter and plant roots from the soil samples and divided them into three subsamples. Then,
we brought them back to the laboratory to air-dry. Finally, soil samples were treated by
lapping and screening a 2 mm sieve to measure the SOC content using the dichromate
oxidation method [44,45]. The analyses were performed using three subsamples, and the
three subsample values were averaged to generate a mean value that was used as the
calculated plot SOC content.

2.3. Estimation of SOC

We used ordinary kriging (OK) interpolation to estimate SOC based on four soil layers
(0–20 cm, 20–40 cm, 40–60 cm and 60–80 cm) in the study area by ArcGIS 10.7. We used
70% of the sample plot datasets for OK interpolation and 30% of the sample plot datasets
for accuracy assessment. OK interpolation calculates the weights based on the distances
between tested points and predicted points by the semivariogram model, which is the most
popular spatial analysis method and has been applied in SOC cartography [46]. We used
the root mean square error (RMSE), mean error (ME) and coefficient of determination (R2)
of the tested and predicted values to evaluate the results (Table S1). Smaller RMSE and ME
values represent a higher interpolation accuracy [47,48].

2.4. Spatial Data Collection

As the first satellite of China’s high-resolution earth observation system, the GF-1 im-
age is configured with multispectral (8 m spatial resolution) and panchromatic (2 m spatial
resolution) images [49]. We acquired a GF-1 image of the study area from 18 June 2020 from
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the China Center for Resources Satellite Data and Application (http://www.cresda.com/
CN/, accessed on 28 June 2020). Then, each image was radiometrically, atmospherically and
geometrically corrected and registered to the Xian_1980 datum and Xian_1980_3_Degree_
GK_CM_108E projections using ArcGIS 10.7(Copyright © 1992–1999 Tom Sawyer Soft-
ware, Published in the United States of America) and ENVI. 5.3 (source from Exelis Visual
Information Solutions in America) image processing software [50,51].

We extracted slope and aspect from the digital elevation model (DEM).We divided the
slope into six classes (1–6 represented 0–5◦, 6–15◦, 16–25◦, 26–35◦, 36–45◦, ≥46◦) (Figure 3a)
and divided the aspect into four classes (1–4 represented shade (315–45◦), semi-shady
(45–90◦, 270–315◦), semi-sunny (90–135◦, 225–270◦), and sunny (135–225◦)) (Figure 3b),
according to the technical regulations for inventory for forest management planning and
design (GB/T 26424—2010). The extraction and division of the slope and aspect were
completed in ArcGIS 10.7.
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Figure 3. (a) Slope classes, where 1–6 represent 0–5◦, 6–15◦, 16–25◦, 26–35◦, 36–45◦ and ≥46◦,
respectively. (b) Aspect classes, where 1–4 represent shaded (315–45◦), semi-shady (45–90◦, 270–315◦),
semi-sunny (90–135◦, 225–270◦) and sunny (135–225◦), respectively.

2.5. DBH, TH, SW, CC and AGB Estimation
2.5.1. Predictor Variables

We selected four multiple spectral bands (blue-b1, green-b2, red-b3 and near infrared-
b4) and one panchromatic band (P) from the Gaofen 1 multispectral image. Furthermore,
we calculated 18 vegetation indices from four multiple spectral bands that are widely used
in forest studies (Table S2) [13,52]. Then, we used eight gray level co-occurrence matrixes
(GLCMs) [53] to extract the texture variables (Table S3). Finally, we calculated the eight
GLCM measures with ten different window sizes (3 × 3, 5 × 5, 7 × 7, 9 × 9, 11 × 11,
13 × 13, 15 × 15, 17 × 17, 19 × 19, and 21 × 21) from the four multiple spectral bands, the
eighteen vegetation indices and one panchromatic band. All of the above data processing
and analysis steps were completed in ArcMap 10.7 software and ENVI 5.3 software.

2.5.2. Variable Selection

Variable selection is often an important step in the application of machine learning
methods. There are often too many variables for practical model building, but not all
variables are related to the response variable. Therefore, choosing the best set of variables is
essential for model building. The Boruta algorithm developed by Kursa and Rudnicki [54]
is an all-relevant feature selection wrapper algorithm around the random forest algorithm.

http://www.cresda.com/CN/
http://www.cresda.com/CN/
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The important variables are selected by comparing the Z scores obtained by the original
features to the Z scores obtained by the randomly generated shadow attributes. The Boruta
algorithm is a powerful algorithm for variable selection [55].

In this study, we implemented the Boruta algorithm using the “Boruta” package (Kursa
and Rudnicki, 2010) in R software (version 4.1.0, source from a GNU project) to screen the
full set of variables from the Gaofen 1 images, which included 20 spectral variables and
3528 texture variables.

2.5.3. Random Forest and Accuracy Assessment

Random forest was developed by Breiman by constructing many regression trees
that can correct model overfitting [56]. Random forest has the advantage of high accuracy
and few generalization errors, making the method appropriate for solving problems with
nonlinear multivariable constraints or without prior knowledge and incomplete data. The
random forest algorithm requires the input parameters mtry and ntree. The mtry parameter
is the number of independent variables supplied to each predictor tree, and the ntree
parameter is the number of regression trees grown based on a bootstrap sample of the
measures [57]. Through tuning parameters, random forest attempts to maintain prediction
strength while inducing diversity among the trees [13,56].

In each plot, the mean value was used for model testing and training. The mean value
from each plot investigation indicator dataset was randomly divided into testing samples
(30%) and training samples (70%). We established the regression models by the training
data and selected variables and used the testing data to validate the model accuracy. We
randomly repeated the training samples 100 times to lessen the change and obtained the
mean value of the 100 accuracy values [13]. We calculated the RMSE, the R2 and the relative
RMSE (rRMSE) to evaluate the model performances using the “randomForest” package in R
software (version 4.1.0) (Table S1) [58]. We used the estimated DBH and TH to calculate the
AGB of the R. pseudoacacia forest in the study area using the allometric growth equation
(Table S4) [59]. The AGB calculation was completed in ArcGIS 10.7.

2.6. Regression Analysis
2.6.1. Ordinary Least Squares (OLS)

OLS is widely used in linear regression parameter estimation. It takes the minimum
value of the sum of the squares of the difference between the actual value and the model
estimate, and the minimum value is selected as the parameter estimate. In this study, we
used OLS as the reference for the spatial regression models. The formula is as follows:

Yi = α + β1X1 + · · ·+ βnXn + ε (1)

where Yi is the dependent variable, X1 to Xn are independent variables, α is the intercept,
β1 to βn are estimated regression coefficients, and ε is the error term.

2.6.2. Spatial Regression Model
Geographically Weighted Regression Model (GWR)

The GWR model was proposed by Fotheringham and Brunsdon [60,61] and allows
the adjustment of sets of spatially limited models based on global regression models, thus
yielding local regression outputs. The GWR model not only expresses the relationship
between dependent and independent variables but also accounts for spatial heterogeneity.
The spatial position of the data is introduced into the model as the regression coefficient,
and the spatial regression coefficient of each spatial position is given by the nonparametric
estimation method. According to the estimated values of the regression coefficients at each
spatial location, the spatial nonstationarity of the parameters and the heterogeneity of the
location are explored and analyzed.

The formula is as follows:

Yi = β0(ui, vi) + ∑m
n=1 βn(ui, vi)Xin + εi (2)
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where Yi is the dependent variable at position i, Xin (n = 1, . . . , m) are independent variables
at position i, and β0(µi, νi) is the intercept. µi and νi represent the coordinates of the sample
i in space, βn are estimated regression coefficients and ε is the error term.

β(ui, vi) =
(

ATW(ui, vi)A
)−1

ATW(ui, vi)C (3)

where β (µi, νi) is the regression parameter vector in location (µi, νi), X is a sampling matrix
of the independent variable, C is a sampling vector of the dependent variable, and W(µi, νi)
is a diagonal matrix, whose diagonal elements represent the geographical weightings of
each observation around point i.

Wi =


wi1 0 · · · 0

0 wi2
...

...

. . .
0
...

0 0 · · · win

 (4)

where win is the weight assigned to the observation at location i.

Spatial Lag Model (SLM)

The SLM is a panel data model that mainly tests whether there are any spillover effects
of the variables or whether there is spatial diffusion. The SLM assumes a close association
between the dependent variable and explanatory variables and incorporates spatial depen-
dence into the regression model with a “spatially lagged dependent variable” [62]. The
formula is as follows:

Yit = δ ∑N
j=1 Wijyjt + βXit + µi + εit (5)

where t is an indicator for time, with t = 1, 2, 3 . . . , T. i is an individual in cross section,
with I = 1, 2, 3 . . . , N. δ represents the coefficient of spatial autoregressive, Wij is the spatial
weight matrix, Yit is the dependent variable at i and t, Xit is the vector of the independent
variables at i and t, β represents the coefficient of the vector, and µi is the spatial-specific
effect for i, while εit represents an error term for i and t.

Wij =


W11
W21

W12
W22

· · ·
· · ·

W1j
W2j

...
Wi1

...
Wi2

...
· · ·

...
Wij

 (6)

where Wij is the spatial weight matrix, if i is adjacent to j, Wij = 1; else, Wij = 0.

Spatial Error Model (SEM)

The SEM is a panel data model that considers that the dependent variable depends on
a set of observed local characteristics and assumes that the error terms have an impact on
spatial dependence [62]. The formula is as follows:

Yit = βXit + µi + ϕit (7)

ϕit = ρ ∑N
j=1 Wij ϕjt + εit (8)

where ϕit is the spatially auto-correlated error term and ρ is the spatial autocorrelated
coefficient. ∑N

j=1 Wij ϕjt denotes the interaction effects among the disturbance terms of the
different units and λ is the coefficient of spatial autocorrelation.

In this study, we used AGB as the dependent variable and CC, SW, SOC content
(0–20 cm, 20–40 cm, 40–60 cm, 60–80 cm), aspect and slope as the independent variables
to complete regression analysis. The OLS model, SLM and SEM were run in GeoDa 1.18
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software (Developed by Dr. Luc Anselin and his team, http://geodacenter.github.io/
formats.html, accessed on 15 October 2020). The GWR model was run in GWR4 software
(Developed at NCG (National Centre for Geocomputation, National University of lreland
Maynooth) and Department of Geography, Ritsumeikan University, Japan Development
Team, https://sgsup.asu.edu/sparc/gwr4, accessed on 15 October 2020).

2.6.3. Model Selection and Evaluation

Moran’s I value is widely used to test spatial autocorrelation [63]. Moran’s I value ranges
from −1 to 1. If the value is greater than 0, it represents positive spatial dependence; if
the value is less than 0, it represents negative spatial dependence; if the value is equal to
0, it represents spatial randomness of the target variables [64]. Robust LM and Lagrange
multiplier (LM) tests were used to evaluate the SEM and SLM and determine which spatial
regression model should be used. The R2, log likelihood (LIK) and Akaike information
criterion (AIC) were used to evaluate model performance. Therefore, a regression model is
well fitted if it has high values of LIK and R2 and low values of AIC [64,65].

3. Results
3.1. SOC Estimation

The best model was selected for each soil layer SOC by comparing the semivariogram
models, and the estimation accuracy results are shown in Table 1. The R2 values for all soil
layers were greater than 0.81, and RMSE and ME values for all soil layers were smaller.
The RMSE, ME and R2 values met the accuracy requirements. The spatial distribution of
the SOC content in different soil layers in the study area is shown in Figure 4. The mean
(min–max) SOC contents from the 0–20 cm, 0–40 cm, 40–60 cm, and 60–80 cm soil layers in
the study area were 10.15 (6.23–21.02) g/kg, 5.34 (3.95–10.50) g/kg, 4.35 (2.90–7.37) g/kg
and 3.67 (2.78–5.39) g/kg, respectively. As the soil depth increased, the SOC contents
decreased. The SOC contents in the study area were mostly aggregated according to similar
values. In the study area, the SOC contents were higher in the midland and lower in the
northwest and southeast.

Table 1. The estimation accuracy results for SOC in different soil layers by ordinary kriging.

Accuracy 0–20 cm 20–40 cm 40–60 cm 60–80 cm

RMSE 0.79 1.33 1.06 0.86
ME −0.017 0.002 −0.016 0.001
R2 0.88 0.81 0.84 0.85

3.2. DBH, TH, SW, CC and AGB Estimation

We obtained explanatory variables related to the dependent variables by the Boruta
algorithm, as shown in Figure 5. The number of texture variables was more than that of
spectral variables among the variables we obtained. The spectral variables b2 and b4 had
the highest importance values relevant to TH and SW, respectively. The texture variables
MSAVIMEA3×3 and DVICOR5×5 had the highest importance values relevant to CC and
DBH, respectively.

The random forest regression models were used to estimate the DBH, TH, SW and CC
and compare the results with the measured values in the field, as shown in Figure 6. The
DBH exhibited the highest accuracy, with an R2 value of 0.85 (rRMSE = 0.09). The DBH
was followed by CC and SW, with R2 values of 0.82 and 0.76 and rRMSE values of 0.11 and
0.21, respectively. The TH exhibited lower accuracy, with an R2 value of 0.68 and an rRMSE
value of 0.10.

Figure 7a–d display the spatial distributions of the DBH, TH, SW and CC values in
the study area estimated by random forest, respectively. The results show that the values
of DBH, TH, SW and CC were unevenly distributed in the study area. The higher values
of DBH and TH were mainly distributed in the middle and south of the study area. The

http://geodacenter.github.io/formats.html
http://geodacenter.github.io/formats.html
https://sgsup.asu.edu/sparc/gwr4
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values of SW and CC had a similar distribution trend, and the values increased from the
edge to the inside of the study area.
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Figure 7e shows the spatial distribution of AGB estimated by the random forest model
and the allometric growth equation in the study area. The distribution of AGB values had
obvious differences. The average AGB was 55.80 t/ha, and the higher values were mainly
distributed in the middle and south of the study area.

3.3. Regression Analysis

Moran’s I tests were implemented to test spatial correlation. As shown in Table 2,
Moran’s I value was 0.5047, and p < 0.01, meaning that the original hypothesis of “the
residuals do not have spatial correlation” was strongly rejected at the significance level
of 1%, indicating that the residuals of the OLS model regression exhibited obvious spatial
correlations. Moreover, the LM and robust LM test results were significant at the 1%
level, indicating that the regression results of the OLS model were unreliable, and spatial
regression models needed to be established. The AIC, log-likelihood and R2 values were
used to select appropriate panel data models. Our research indicated that the AIC value
of SEM was 1,461,430, which was lower than that of SLM, and the log-likelihood and R2

values of SEM were −730,704.64 and 0.87, respectively, which were higher than those of
SLM (Table 3). Thus, SEM was more suitable than SLM as an explanatory model. The GWR
model results showed that the AIC and R2 values were 1,861,513 and 0.74, respectively. The
results indicate that the GWR model was worse than the SEM. Thus, SEM was the best
model for explaining the relationship between AGB and its driving factors in this study.
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Table 2. Results of OLS regression and results evaluation.

Index Value

Moran’s I 0.5047 **
Robust LM-lag 393.8851 **
Robust LM-error 288,840.2266 **
LM-lag 249,662.4473 **
L M-error 538,108.7888 **
R2 0.74
LIK −930,747
AIC 1,861,510

** denotes p < 0.01, extremely significant.

Table 3. Evaluation of SEM, SLM and GWR regression results.

Index SEM SLM GWR

R2 0.87 0.82 0.74
LIK −730,704.64 −827,284 −1,861,493.15
AIC 1,461,430 1,654,590 1,861,513.15

AGB was extremely significantly positively correlated with SW and CC (Table 4). AGB
was extremely significantly positively correlated with the SOC at the 0–20 cm level and the
SOC at the 40–60 cm level (p < 0.01), and AGB was significantly positively correlated with
the SOC at the 20–40 cm level (p < 0.05); however, the relationship between AGB and the
SOC at the 60–80 cm level was not significant. This result shows that AGB was extremely
significantly negatively correlated with aspect (p < 0.01), which indicated that shady slopes
and semi-shady slopes were more conducive to AGB accumulation than semi-sunny slopes
and sunny slopes were. The relationship between AGB and slope was not significant.

Table 4. Results of SEM regression.

Independent Variable Regression Coefficient

SW 23.109 **
CC 4.97327 **
SOC 0–20 cm level 0.00989803 **
SOC 20–40 cm level 0.0137214 *
SOC 40–60 cm level 0.13154 **
SOC 60–80 cm level −0.0115614
Aspect −0.0106707 **
Slope −0.00145979

* denotes p < 0.05, significant. ** denotes p < 0.01, extremely significant.

4. Discussion

Traditional survey methods are time-consuming and laborious and obtain only limited
point data. However, estimation by modeling allows us to quickly determine the status of
an indicator in an area and provides a broad perspective for research. OK interpolation
has been widely used to estimate the distribution of SOC. Gouri (2017) estimated the
spatial variation in SOC in the Medinipur Block, West Bengal, India, and found that OK
was a superior method for the interpolation of SOC spatial distribution by comparing
different interpolation techniques [46]. This research provides support for our choice of OK
interpolation for estimating the distribution of SOC. Zhao (2017) used OK to estimate the
spatial distribution of SOC in a hilly gully watershed of the Loess Plateau, China [66]. This
result further showed that OK interpolation could be applied to determine the distribution
of SOC on the Loess Plateau. Similarly, our research found that the accuracy of OK
interpolation met the accuracy requirements and was consistent with the results of previous
studies. Our research found that the similar SOC values in the study area were mostly
concentrated, indicating that SOC was spatially related.
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Zhao (2019) found that random forest was most suitable for forest parameter esti-
mations on the Loess Plateau [13]. We used random forest to estimate the DBH, TH, SW
and CC and obtained satisfactory results. The estimation accuracies (R2) of the DBH, CC
and SW were all greater than 0.75, but TH had a lower accuracy, with an R2 of 0.68. High
estimation accuracy was closely related to variable selection using the Boruta algorithm.
Shu (2021) estimated soil and plant analyzer development values for maize leaves and
used the Borura algorithm to filter variables to improve evaluation accuracy [67]. High
estimation accuracy was also related to high spatial resolution remote sensing images,
which could provide more detailed spatial information [68]. We used Gaofen-1 satellite
data with a high spatial resolution, which were successfully applied in our study. Han
(2022) estimated forest AGB using GF-1 satellite data and Sentinel-1 satellite data in the
Dabie Mountain Region in China, and found that GF-1 satellite data were better than
Sentinel-1 satellite data [38]. This result may support our use of GF-1 as being correct.
The low estimation accuracy of TH may be related to the optical remote sensing that was
used because optical remote sensing has weak recognition of the vertical structure of a
forest. Furthermore, the correlation between TH and canopy size in the study area was
low, resulting in a slightly lower estimation accuracy. To solve this problem, some scholars
have used radar remote sensing and believe that radar remote sensing can better recognize
the vertical structure of forest stands [69,70]. This approach could be applied in our future
research; however, the estimation accuracy still met our needs. We used the allometric
growth equation to calculate the forest AGB. The allometric growth equation was used
to estimate the AGB of stumpage by easily measuring stumpage factors. Compared with
using direct logging to measure AGB, the allometric growth equation has the advantages
of protecting trees, avoiding damage to the ecological environment in the study area, and
conserving manpower, material resources and financial resources.

We found that the explanatory variable and the dependent variable were spatially
correlated through the spatial correlation test and analysis and judged that the least squares
method was not suitable for analyzing the relationship between AGB and its driving factors.
Therefore, we chose spatial regression models (GWR, SEM, SLM) to explain the relationship
between AGB and driving factors. The research results showed that the SEM was most
suitable to explain the spatial relationship between AGB and its driving factors compared
to the SLM and GWR. Wu (2020) used spatial regression models to research the affecting
factors leading to the spatial variation in heavy metals in suburban soil and found that the
SLM had the best applicability [64]. This result shows that the performance of the spatial
regression model differs depending on the research objects. Our research results may
provide a new idea for understanding the relationship between biomass and its driving
factors. In this study, AGB was significantly positively correlated with SOC at depths of
0–20 cm, 20–40 cm and 40–60 cm (p < 0.05) and had no significant relationship with SOC at
depths of 60–80 cm, which may be related to the distribution of R. pseudoacacia roots. Zhang
(2011) studied the root distribution characteristics of R. pseudoacacia in Yan’an Yangou on
the Loess Plateau and found that the fine roots of R. pseudoacacia were concentrated in the
0–60 cm soil layer [71]. This result explains our research results well. A large number of
studies have shown that biodiversity promotes the accumulation of biomass [72,73]. This
may be due to positive relationships among species that make full use of natural resources.
The niche complementarity hypothesis supports this result [74]. With the continuous
growth of the forest stand, the AGB continues to accumulate, and the stand CC continues to
increase. Therefore, there was a significantly positive correlation between the AGB and CC
before the stand was completely closed. AGB was significantly related to the slope aspect,
and AGB was better on shady slopes and semi-shaded slopes than on semi-sunny slopes
and sunny slopes. This result may be because water is the dominant factor for plant growth
in the Loess Plateau. Shady slopes and semi-shady slopes have better water conditions
than do semi-sunny slopes and sunny slopes, which is conducive to the accumulation of
AGB in the R. pseudoacacia forest.
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5. Conclusions

In this study, we estimated the DBH, TH, SW, CC and SOC. We used different regres-
sion models to fit the relationships between AGB and SW, CC, SOC, slope and aspect, and
we found that AGB was obviously spatially correlated with driving factors. Therefore,
the OLS model was not suitable for constructing the relationship between AGB and its
driving factors, and a suitable spatial regression model needed to be selected. After further
comparison, we found that SEM was most suitable for constructing the spatial relationship
between AGB and its driving factors. The study also found that AGB was significantly pos-
itively correlated with CC, SW and the 0–60 cm SOC contents, and significantly negatively
correlated with slope aspect. This study provides a reference for studying the relationship
between biomass and driving factors and provides a basis for rational forest management,
increasing biomass, and giving full play to the role of carbon sequestration.

The SEM model had the best application effect in this study, but the application of the
model has limitations. It is uncertain whether it can have the same effect in other regions,
and further research needs to explore this further.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14122842/s1, Table S1: Accuracy assessment indices were selected
to use for OK and random forest model accuracy verification; Table S2: Vegetation indices were
selected to use for forest parameter estimation; Table S3: Formula for extracting the texture variables
in this study; Table S4: Regression equation for biomass of each organ of Robinia pseudoacacia.
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