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Abstract: For skywave over-the-horizon radar, beamforming techniques are often used to suppress
airspace radio frequency interference because the high-frequency band is shared by many devices.
To address the problems that the traditional beamforming method is not capable of recognizing the
electromagnetic environment and that its performance is greatly affected by the accuracy of signal
feature estimation, a cognitive beamforming method using range-Doppler (RD) map features for
skywave radar is proposed. First, the RD map is weighted by a local attention model, and then, texture
features are extracted as the inputs to a support vector machine. Finally, the support vector machine
is used to predict the optimal diagonal loading factor. Simulation results show that the output
signal-to-interference-plus-noise ratio is improved compared with previous methods. The proposed
method is suitable for many kinds of common unsatisfactory scenarios, making it beneficial for
engineering implementation.

Keywords: cognitive beamforming; skywave over-the-horizon radar (OTHR); range-Doppler (RD)
map; attention model; support vector machine

1. Introduction

Skywave over-the-horizon radar (OTHR) works in the high-frequency (HF) band
(3–30 MHz) [1,2], where ionospheric reflection is most significant, and can overcome
the influence of the curvature of the earth to enable the detection of targets beyond the
horizon [3–5]. However, due to the large amount of civil equipment operating at similar
frequencies and the complex electromagnetic environment in its working frequency band,
OTHR is highly susceptible to all kinds of radio frequency interference (RFI) [6]. The exis-
tence of interference seriously affects the detection ability of radar; therefore, it is necessary
to suppress interference as part of front-end signal processing. Beamforming, a conven-
tional interference suppression method, can reduce the receiving gain of the signal in the
direction of the interference by weighting the signal from the receiving array. This is widely
considered useful because it can suppress RFI in nontarget directions in the airspace [7].
In skywave OTHR application scenarios, diagonal loading (DL) beamformers [8] are often
used as a simple and effective means of improving the RFI suppression effect under non-
ideal conditions. The DL technique can not only suppress the influence of small eigenvalues
on the adaptive weight vector to accelerate the convergence of an adaptive beamformer,
but also suppress the influence of direction-of-arrival (DOA) mismatches to avoid signal
cancellation. Therefore, this technique is often used in robust beamforming algorithms.
However, the difficulty in determining the DL factor (DLF) limits the practical capabilities
of such a beamformer [9]. More seriously, DL beamformers without cognitive ability face
great challenges from new interference technologies, flexible interference strategies and
combinations of various interference methods.
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In recent years, many methods for automatic DLF selection were proposed. Yu et al. [10]
calculated the DL level automatically using the spatial matching method. Ideally, the DLF
obtained via this method should make the noise eigenvalues approximately equal while
ensuring that the interference eigenvalues are less affected. However, when the desired
signal power is equal to or greater than the interference power, the interference eigenvalues
would be more strongly affected, leading to a decrease in the zero depth of the beam pattern
and thus a weakening of the interference suppression effect. The variable DL method was
proposed in reference [11]. Under the constraints of suppressing small eigenvalue distur-
bances and effectively reducing the expected signal proportion in the covariance matrix,
the minimum DLF is taken to improve beamforming robustness. However, in this method,
the minimum DLF was set based on the noise power. Consequently, the results depended
on estimating the statistical signal characteristics, which is a limitation. In reference [12],
the loading values were calculated according to the characteristic structure of the covari-
ance matrix. The idea was to use DL technology at a low signal-to-noise ratio (SNR) but
not at a high SNR. The resulting beamforming effect was good under high- and low-SNR
conditions, and was improved under small quick beat conditions. However, the method
was greatly affected by the number of sensor elements, and its performance was poor
when the dimensions of the target source and interference source were much smaller than
the number of elements. Song et al. [13] proposed an automatic DL method based on
the minimum mean square error (MMSE) criterion. By estimating the covariance matrix
more accurately, the problem of performance degradation when the number of fast beats
is large was solved. However, the effect of the number of elements on the DL quantity
is not considered in this method, similar to the method in [12]. The method proposed by
Xiao et al. [14] could be used to deduce the value range of the optimal diagonal load with
a change in the input signal, thereby achieving an adaptive effect while increasing the
optimization efficiency. However, this method determines only the optimal interval and
does not accurately calculate the final value, so there is still a need to traverse the possible
values or rely on human experience for selection.

Although promising studies on automatic calculation methods for DL have been re-
ported in recent years, most of them depend on prior knowledge of the signal characteristics
or require a specific application environment. This kind of anti-interference thinking that
does not consider environmental perception ability does not agree with the development
trend in electronic warfare. As the concept of cognitive electronic warfare advances, future
radar should be able to actively recognize and accurately understand the interference of
different degrees in an actual battlefield environment and then adjust the means or specific
parameters of anti-interference. To address these shortcomings, Luo et al. [15] proposed
that range-Doppler (RD) image features could be used to perceive the current electromag-
netic environment. Roughness was used as an index to evaluate the RD maps in an OTHR
system. A feedback system was established, and the optimal DLF was obtained through
traversal search. The experimental results show that there was a close relationship between
RD image features and the electromagnetic environment, which provides a new method for
solving the OTHR interference suppression problem. However, the discriminative effect
of roughness as a single index is limited, and there are no good value rules for the step
size or the optimization range to be traversed, which are important factors affecting the
performance of the method.

Inspired by reference [15], we considered using a machine learning method to build
the mapping relationship between the RD map features and the optimal DLF, with the aim
of enabling the radar system to acquire the cognitive ability to better suppress complex and
changeable RFI. At the same time, Tamura texture features were introduced to analyze the
gray distribution characteristics of the pixels and their surrounding spatial neighborhood
in six dimensions, namely, coarseness, contrast, directionality, linearity, regularity and
roughness, to further improve the ability to analyze visual clues. The goals of this study
include the following.
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(1) We propose a cognitive beamforming method via RD map features (RDF-CB) for
skywave radar. Unlike traditional OTHR signal processing methods [10–14], the prior
knowledge used in the proposed method is not limited to the current electromagnetic
environment. Therefore, this method does not completely rely on accurately estimating
the a priori information of the current signal characteristics or require the uncertainty of
the current target orientation to satisfy certain assumptions; that is, it can adjust itself by
sensing the current electromagnetic environment.

(2) This paper uses machine learning to predict the DLF through regression and solves
the regression function in Hilbert space to avoid the influence of subjective factors on
optimal DLF selection. In contrast, the purpose of Tamura texture feature extraction in
reference [15] was to conduct DLF traversal optimization based on the strong correlation
between the monotonicity of the roughness and the monotonicity of the output signal-to-
interference-plus-noise ratio (SINR). Although this solves the problem of the difficulty in
determining the DLF to a certain extent, the selection criteria for the search interval and the
search step length were not further explained, meaning that DLF selection still ultimately
relies on human experience. A larger search interval and a smaller search step length reduce
the processing speed, while a smaller interval and a larger step length adversely affect the
accuracy. Therefore, the method presented in this paper can better meet the requirements
for cognitive electronic warfare.

(3) In the method proposed here, multidimensional texture features can be effectively
used to describe RD maps more completely. In contrast, in the method from reference [15],
other texture features were not applicable because of the weak correlation between their
monotonicity and the monotonicity of the output SINR. This method of extracting only
one-dimensional features tends to result in a loss in detail from the RD map, leading to
reduced input information. Moreover, an attention model based on information entropy
is introduced in this paper based on the characteristics of the OTHR RD map, thereby
suppressing feature weights in areas with high similarity between classes while highlighting
key information.

The rest of this article is organized as follows. In Section 2, considering the particulari-
ties of skywave OTHRs, an RD map feature extraction method is introduced. And then,
we describes how to construct a cognitive DL beamformer using a trained support vector
machine (SVM). Section 3 introduces the experimental results and analyses. Discussion are
presented in Section 4, and conclusions are drawn in Section 5.

2. Materials and Methods
2.1. Skywave OTHR RD Map

When analyzing the signal processing results of skywave OTHRs, the elements in
the RD matrix are usually modulated and visualized based on relative amplitude to form
the RD map. The main components of the echo signal, such as the target, sea clutter,
interference and noise, can be found in the corresponding regions in the RD map, as shown
in Figure 1. In this paper, the RD map shows OTHR measurements before coordinate
registration (CR) processing rather than the real location of the target.
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An important prerequisite for obtaining a good beamforming effect is accurate percep-
tion of the current electromagnetic environment. The selection of key parameters and the
application of specific technologies need to match the current electromagnetic environment.
This can be done by analyzing RD maps’ information. Taking the DL beamformer as an
example, the selection of the DLF depends on the accuracy of the estimation of the sample
covariance matrix. By observing the RD map after conventional signal processing, we
can distinguish whether the current estimate of the covariance matrix is accurate, how
accurate it is, and whether the cause is too few snapshots or a mismatch with the desired
signal steering vector. For example, in Figure 2, Figure 2a shows the ideal case, in which
the target is clearly visible and the interference noise is effectively suppressed. In con-
trast, in Figure 2b,c, the target echo is weak and the interference noise suppression is poor,
with more residue. It can be said that the observation and analysis of the RD map is an
important link in the OTHR signal processing chain, and can provide information feedback
for optimizing the signal processing algorithm. Therefore, it is theoretically feasible for
skywave OTHRs to acquire cognitive anti-interference capability by analyzing RD map
features. However, there are two difficulties in the analysis of RD maps.
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First, by observing a typical RD map for skywave OTHRs, we find that when the
detection area and the target behavior are relatively fixed, an image of this kind can be
divided into four regions: the sea-clutter region, located near the center of the Doppler
coordinate axis; the interference region, where RFI often occurs; the target region, where
target points often occur; and the noise base region, which covers the whole image, as shown
in Figure 1. To better characterize the electromagnetic environment in which the current
signal is located, it is necessary to distinguish the value of the information provided by
different regions and focus on information from high-value regions. For example, in the
RFI suppression process, the DLF is closely related to the noise base region and the RFI
region, which exhibit sharp changes, whereas it is less related to the sea-clutter region,
which exhibits relatively small changes, and the target region, which is often covered by
interference or noise.

Second, although the RD map contains a large amount of data, due to its excessive
number of pixels and large amount of miscellaneous information, direct use of the RD map
itself will not only slow down subsequent processing but also obscure key information.

2.2. RD Map Feature Extraction for Skywave OTHR

To solve the two difficulties in applying RD maps to perception of the electromagnetic
environment, this section proposes an RD map feature extraction method for skywave
OTHRs. The feature extraction process is divided into two steps. In the first step, the RD
map is converted into a grayscale image, and an information entropy attention model
is introduced to weight the pixels of the grayscale RD image to give more attention to
important areas in the RD map. The second step is to extract Tamura texture features of the
weighted grayscale RD image and combine them into feature vectors. By simulating the
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process of observing RD maps with the human eye to obtain intuitive reference information,
the information contained in the RD maps can be quantified.

2.2.1. Attention Model Based on Information Entropy

To measure the importance of information in different regions of RD maps, a local at-
tention model from the computer’s vision field is proposed. This model can assign different
weights to the pixels contained in each region according to their importance; that is, it can
give more attention to features originating from regions with significant category differen-
tiability. In this way, regional features with high similarity among classes can be suppressed
to some extent to improve the cognitive ability to detect the electromagnetic environment.

Since the area of focus may change dramatically across the entire sample base, the in-
formation entropy, which represents the complexity and disorder of a system, is used to
design the attention weight for each pixel [16]. The larger the information entropy value of
the pixels is, the more drastic the variations in the pixels in the RD map sample base are.
More attention should be given to key areas with drastic pixel changes, which is beneficial
for increasing subsequent DLF prediction accuracy. The proposed local attention model
based on information entropy is shown in Figure 3.
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To enhance details in the low-power area of the RD map, it is necessary to avoid the
high-intensity clutter occupying a high proportion of the grayscale range. Here, a loga-
rithmic transformation method is used to transform the RD map into a grayscale graph,
expand the low-amplitude part and compress the high-gray-value part. All elements in the
RD map are denoted Zm,n after the modulo operation, and the RD gray image obtained
after logarithmic transformation is expressed as

Mv,n = e× logd+1(1 + d|Zv,n|) (1)

where d and e are constants used to control the degree of gray value transformation,
v = 1, L, V is the number of sensor elements, and n = 1, · · · , N is the number of snapshots.

Let a finite number of random variables {A(r)}(r = 1, 2, · · · , R) represent the random
states of an uncertain system, where R is the number of RD map samples. Consider each
pixel in the RD diagram to be an uncertain system. The information entropy of a pixel
point (i, j) is expressed as

He(i, j) = −
R

∑
r=1

Pr(i,j) log2 Pr(i,j) (2)
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where Pr is the probability of A(r) occurring.
Information entropy is used to weight the gray values of the pixel points to focus

attention on the key areas of the RD map, which is expressed as

fH(i, j) = [1 + ηHe(i, j)we(i, j)] f (i, j) (3)

where η is a constant used to control the degree of attention weighting, which takes a value
of 0.1 in this paper. In the context of this paper, the reasonable value range of η nan be set
to 0–0.5. When η is 0, the method degrades and the attentional mechanism does not affect
the result. When η is higher than 0.5, the attention weighting model has a negative effect on
real-time feature analysis ability. In other scenarios, the Pearson correlation coefficient can
be introduced to analyze the specific situation. we(i, j) is the attention weighting threshold,
and f (i, j) is the original gray value of pixel (i, j). If the information entropy of a pixel
is larger than the upper quartile of the information entropy of all pixels in the RD map,
the attention weighting threshold is set to 1; otherwise, it is set to 0. In other words, only
the pixels with the highest information entropy are compensated, while pixels with lower
information entropy are kept at their original values.

2.2.2. Tamura Texture Features

Tamura texture features [17] form the basis of a digital image texture expression
method proposed by Tamura et al. They quantify the human visual perception of textures
from the perspective of psychology and are widely used in pattern recognition and com-
puter vision [18,19]. These texture features are divided into six types: coarseness, contrast,
directionality, linearity, regularity and roughness. The texture features of the RD map can
reflect the current electromagnetic environment, which is difficult to measure directly. Since
the selection of key parameters and the application of specific technologies in beamforming
are closely related to the perception of the electromagnetic environment, this inspired us
to break away from the constraints of the traditional radar signal processing framework
and seek a better suppression effect for OTHR RFI in the airspace from the perspective of
image processing.

(1) Coarseness. Coarseness, which is the most basic texture feature, reflects the gran-
ularity of the image texture. Images with high coarseness exhibit obvious graininess.
The specific calculation steps are as follows. First, the average intensity of the pixels near
point (v′, n′) in the image is calculated with a movable window of 2k × 2k pixels in size;
this calculation is expressed as

Ak(v′, n′) =
v′+2k−1−1

∑
i=v′−2k−1

n′+2k−1−1

∑
j=n′−2k−1

fH(i, j)/22k (4)

where k controls the size of the movable window and generally ranges from 2 to 6.
Then, the average intensity differences between nonoverlapping windows in the

horizontal and vertical directions from each pixel point are calculated as follows:

Ek,h(v′, n′) =
∣∣∣Ak(v′ + 2k−1, n′)− Ak(v′ − 2k−1, n′)

∣∣∣ (5)

Ek,g(v′, n′) =
∣∣∣Ak(v′, n′ + 2k−1)− Ak(v′, n′ − 2k−1)

∣∣∣ (6)

where Ek,h(v′, n′) is the difference in the horizontal direction and Ek,g(v′, n′) is the difference
in the vertical direction. For each pixel, let kbest be the value that maximizes the larger of
Ek,h(v′, n′) and Ek,g(v′, n′); then, the corresponding optimal size can be expressed as

Sbest(v′, n′) = 2kbest (7)
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Finally, the coarseness is calculated as the average value of the optimal size for the
whole image, which can be expressed as

Fcrs =
1

V′ × N′
V′

∑
v′=1

N′

∑
n′=1

Sbest(v′, n′) (8)

where V′ is the image width and N′ is the image height.
(2) Contrast. Contrast reflects the local variation in the gray values of the image.

The more obvious the difference among the gray values, the greater the contrast. The main
influencing factors are the dynamic range of the gray values, the degree of polarization
between black and white in the histogram, the sharpness of the edges and the cycle of
repeating patterns. The contrast is calculated as

Fcon =
σ2

gray

u1/4
4

(9)

where µ4 is the fourth moment of the gray values and σgray is the standard deviation of the
gray values.

(3) Directionality. Directionality describes how textures are distributed or concentrated
in certain directions. The calculation steps are as follows. First, the gradient vector at each
pixel is calculated. The modulus and direction of this vector are expressed as

|∆E| = (|∆H |+|∆G|)/2 (10)

θ = tan−1(∆G/∆H)+π/2 (11)

where ∆H and ∆G are the changes in the horizontal and vertical directions obtained by
convolving the image with the following two 3 × 3 operators, respectively.−1 0 1

−1 0 1
−1 0 1

 1 1 1
0 0 0
−1 −1 −1


After the gradient vectors of all pixel points have been calculated, the value of θ can be

expressed based on the histogram HD. This histogram is constructed by first discretizing
the range of θ and then counting the number of pixels of each magnitude |∆E| greater than
a given threshold. The histogram forms peaks for strongly oriented images and is flat for
nonoriented images. Finally, the overall directionality of the image can be obtained by
calculating the sharpness of the peak values in the histogram; it is expressed as

Fdir =
np

∑
p

∑
Φ∈Wp

(Φ−Φp)
2HD(Φ) (12)

where p is the index of a peak in the histogram and np is the number of peaks in the
histogram. For peak p, Wp represents all quantization regions contained in the peak,
and Φp is the quantization region with the highest value.

(4) Linearity. Linearity refers to whether the image texture has a linear structure and is
expressed as

Flin =

r
∑
i

r
∑
j

PDd(i, j) cos[(i− j) 2π
r′ ]

r
∑
i

r
∑
j

PDd(i, j)
(13)
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where PDd is the n′ × n′ local direction co-occurrence matrix of points within a certain
distance and r′ is the number of dividing angles defining distinct directions, which is eight
in this paper, specifically, up, down, left, right, left up, right up, left down and right down.

(5) Regularity. If the local texture of an image differs greatly from the overall texture,
the image regularity is considered poor. The whole image is divided into several parts, and
the variance in each subimage is calculated to obtain the regularity, which is expressed as

Freg = 1− η(σcrs + σcon + σdir + σlin) (14)

where σcrs, σcon, σdir and σlin are the standard deviations of Fcrs, Fcon, Fdir and Flin, respec-
tively, and ηreg is a normalization factor. The value of ηreg in this paper is 0.0025. In different
application scenarios, ηreg can be set according to the magnitude of standard deviation of
different features. The ultimate goal is to get the standard deviation to the same order of
magnitude as 1.

(6) Roughness. Roughness is the combination of coarseness and contrast. The rough-
ness is expressed as

Frgh = Fcrs + Fcon (15)

The improvement effect of conventional beamforming on the quality of the RD map
determines the value range of the corresponding DLF to a certain extent. Therefore,
when constructing RD image feature vectors, not only are the six-dimensional Tamura
texture features of the RD map after conventional beamforming calculated but also the
difference values of the six-dimensional Tamura texture features of the RD maps before
and after conventional beamforming. That is, the original RD map is transformed into a
12-dimensional feature vector.

2.3. Application of RD Map Features in DL Beamforming

RD map features can be used to perceive the current electromagnetic environment
of the OTHR. This section presents an application example in which RD map features are
used to construct a cognitive beamformer. DL is an effective and widely used adaptive
beamforming technique. When RD map features and machine learning methods are applied
to a DL beamformer, it becomes cognitively capable. That is, through the understanding
of the current electromagnetic environment, the most appropriate DLF is determined to
improve the ability of OTHR to perform airspace suppression of RFI and then improve the
output SINR.

2.3.1. DL Beamformer

Most of the RFI encountered by skywave radars exhibits spatial directivity; therefore,
we first considered suppressing such interference in the spatial domain. Specifically, a set
of weight vectors was designed to beamform the received data of the array to ensure
that the echo signal in the direction of the target could be received without loss while
simultaneously suppressing the echo signal in the direction of interference.

Let the receiving array be a phased array with V sensor elements at half-wavelength
spacing. The expression for the received data is

X(n) = [x1(n), x2(n), · · · , xV(n)]
T (16)

where n = 1, 2, . . . , N is the number of snapshots and x(n) is the received signal of the nth
snapshot. When the skywave OTHR detects maritime targets, the received signal x(n) is
expressed as

x(n) = s(n) + c(n) + i′(n) + σ(n) (17)

where s(n) is the potential target echo, c(n) is ocean clutter, i′(n) is interference, and σ(n)
is noise.
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Let the weight vector for beamforming be w ∈ CV×1. For the received signal X,
the output after beamforming is y = wHX. The output corresponding to the nth snapshot
is expressed as

y(n) = wHx(n) (18)

where (·)H is the conjugate transposition of the matrix. If the true signal steering vector
a is known, then the optimal weight vector obtained based on the minimum variance
distortionless response (MVDR) criterion can be expressed as

wopt = µ · R−1
i+σa (19)

where µ = (aH R−1
i′+σa)

−1
is a normalization coefficient and Ri′+σ = E[(i′n + σn)(i′n + σn)

H ]
is the interference-plus-noise covariance matrix. In practical applications, however, the ac-
curate signal steering vector a and covariance matrix Ri′+σ are typically unavailable, and the
observed signal steering vector ã and sample covariance matrix R̃ are adopted as approxi-
mations. With these substitutions, the optimal weight vector is replaced with wSMI :

wSMI = (ãH R−1 ã)
−1

R̃−1 ã (20)

where the resulting beamformer is known as a sample matrix inverse (SMI) beamformer.
When the estimate of R̃ is not accurate, the interference rejection performance of wSMI will
sharply decrease. In addition, when there is a matching deviation between ã and a, wSMI
shows poor robustness.

To improve the interference suppression performance and robustness of SMI methods,
DL beamformers are often used. The corresponding weight vector is expressed as

wDL = (ãH R̃−1 ã)
−1

(R̃ + βI)
−1

ã (21)

where I is the identity matrix and β is the DLF. Under the premise of proper DLF selec-
tion, wDL can yield better interference suppression performance than wSMI and shows
better robustness.

Initially, the selection of the DLF depended on human subjective experience. On this
basis, researchers proposed several improved automatic selection methods [10–14]. How-
ever, these methods need to rely on a priori information concerning the statistical signal
properties, or require the uncertainty of the steering vector to satisfy certain assumptions.
Unfortunately, these assumptions are difficult to satisfy in OTHR systems. Therefore,
for skywave OTHR applications, this paper proposes a new DLF calculation approach
based on RD map features to improve the actual interference suppression performance of
the weight vector wDL.

2.3.2. SVM Prediction

After the RD map features have been extracted, a cognitive beamformer based on
OTHR image features can be realized by incorporating a DLF prediction method. Machine
learning is an effective method for numerical regression prediction. SVMs are commonly
used machine learning models with a good learning effect on small samples and excellent
generalization capabilities. Thus, for DLF regression prediction, the extracted RD map
texture features weighted by local attention are used as the input to an SVM. The SVM
is trained using known RD maps and the corresponding optimal DLFs to construct a
knowledge base. In this way, the mapping relationship between the texture features of
the RD map and the optimal DLF can be obtained, and the prediction of the optimal DLF
corresponding to an unknown RD map can be realized.

The working principle of an SVM is to map sample data to a Hilbert space through a
kernel function. It thus transforms a low-dimensional nonseparable problem into a high-
dimensional problem in which the samples are linearly separable through the construction
of a hyperplane. When determining the hyperplane, it should be ensured that the distance
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between each sample and the hyperplane is as large as possible and that the classification
error is as small as possible. For a regression prediction problem, an SVM can also construct
a regression model in the Hilbert space and transform the problem of determining the
optimal classification hyperplane into a dual problem, which is expressed as

maxw(a)= −1
2

q

∑
k,l

(a∗k − ak)(a∗l − al)K(Fk, Fl)

+
q

∑
k=1

βk(a∗k − ak)− ε
q

∑
k=1

βk(a∗k + ak)

s.t.
q

∑
k=1

(a∗k − ak) = 0

(22)

where F denotes the input variables, which, in this paper, are the texture features weighted
by local attention, and β denotes the output variables, which, in this paper, are the optimal
DLFs. wsvm is an adjustable weight vector, and ε is a relaxation variable. 0 ≤ ak, a∗k , al , a∗l ≤ c
are the Lagrange multipliers, with c being a penalty coefficient. KSVM is the kernel function;
in this paper, a linear kernel function is selected. k, l = 1, 2, · · · , q(k 6= l). The optimal La-
grange multipliers are obtained through a quadratic programming optimization algorithm,
and the final regression function is expressed as

fSVM(F) =
q

∑
k=1

(ak − a∗k )KSVM(Fk, F) + b (23)

where b is the intercept threshold.
In summary, the processing scheme of the RDF-CB for skywave radar is shown in

Figure 4 and the optimal DLFs prediction process is shown in Algorithm 1.
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Algorithm 1. Optimal DFLs prediction

Input: RD maps MO for which the optimal DLFs are unknown, RD maps MT for which the
optimal DLFs are known, and labels (optimal DLFs) βT corresponding to GT .

Output: labels (optimal DLFs) βO corresponding to MO.
Step 1: Weight MO and MT (before and after conventional beamforming) with the local

attention model.
Step 2: Calculate the 12-dimensional Tamura texture features of the weighted MO and MT to

generate feature vectors FO and FT .
Step 3: Obtain the optimal DLFs βT corresponding to FT through the traversal method and

use them as the training set labels for SVM training.
Step 4: Input FO into the trained SVM.
Step 5: Obtain labels (optimal DLFs) βO corresponding to FO.

It should be noted that the knowledge base for the method presented in this paper is
constructed based on accumulated historical data, and the optimal DLFs in the knowledge
base can be obtained via the traversal method. Since model training is completed in
the early preparation stage, it is not included in the specific steps of model application.
Therefore, the selection of the search interval and search step length do not affect the
real-time performance of the method.

3. Results

In this section, a measured radar echo signal mixed with a simulated interference
signal was used as experimental data to verify the actual interference suppression effect
of the proposed method. The target signal was a linear frequency modulation (LFM)
signal coming from 0◦. The interference components were narrowband RFI and broadband
RFI coming from 10◦ and −5◦, respectively. The noise was white noise. Each coherent
integration time window contained 128 pulses. The penalty coefficient c and relaxation
variable ε of SVM were optimized via particle swarm optimization. The sample library
contained 100 samples with narrowband RFI, 100 samples with broadband RFI, 100 samples
with both narrowband and broadband RFI, and 100 samples without RFI. Among them,
70% were randomly selected as the SVM training set, and the other 30% were selected as
the SVM test set. To better demonstrate the effect of the proposed method, samples with
both narrowband and broadband RFI are analyzed below. For all simulation examples,
200 Monte Carlo runs were performed to obtain the average results.

The RDF-CB proposed in this paper was compared with the beamforming method
based on conjugate gradient algorithms (CG) [10], the beamforming method combined
with the covariance matrix taper (CMT) [11], the beamforming method based on the
characteristic structure of the covariance matrix (CS) [12], the general linear combination
method (GLC) [13], and the beamforming method solved by the Lagrange multiplier
(LM) [14]. Four examples are used to verify the performance of the RDF-CB approach.

Each of these methods has its own advantages. By estimating the steering vector and
covariance matrix, CR causes the DLF to satisfy the following two conditions to the greatest
possible extent in the ideal case: (1) the loaded noise eigenvalues should be approximately
equal, and (2) the loaded interference eigenvalues should be minimally affected. The CMT
method sets a lower bound on the DLF in accordance with the power of the noise. The estab-
lishment of this range, which relies on experience, helps the method achieve performance
balanced between suppressing the interference of small eigenvalues and effectively reduc-
ing the expected signal in the covariance matrix. The CS method adopts the concept of a
low SNR with no load and a high SNR with load. This method considers that DL should be
carried out only when the interference value is much greater than the noise; in this way,
the suppression of interference would not be affected. The principle of GLC is to obtain a
more accurate estimated covariance matrix than the sample covariance matrix according
to the MMSE criterion. In the LM method, an MVDR optimization model based on DL
compensation is established, and the interval of the DLF is deduced on the basis of matrix
theory. The aim is to achieve an adaptive effect while improving the optimization efficiency.
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3.1. Comparison of Beam Patterns and RD Maps

In this section, the influence of DLF obtained by different methods on the signal
processing results of skywave OTHRs was visually demonstrated using beam patterns and
RD maps. The number of sensor elements was set to 32, the input SNR to 5 dB, the input
interference to noise ratio to 20 dB and the DOA mismatch to 2◦.

When the number of snapshots is 200, the beam patterns of the six approaches are
shown in Figure 5. Figure 5a shows the beam patterns obtained after DL using the method
in this paper. It can be seen that it had good performance improvement in both the beam
sidelobe and interference nulls. The price is that the interference nulls became slightly
shallower. However, since the nulls of the direction graph were deep enough, this would
not have a great influence on interference suppression, which is also demonstrated by
subsequent analysis combined with the output SINR. Figure 5b is the direction diagram ob-
tained by CG. It had a low side lobe and nulls at the interference positions. However, when
the nulls become shallow, the suppression ability of the strong interference signal would
be greatly weakened, and the output SINR would be reduced. Similarly, Figure 5c shows
that CMT possessed a weak ability to suppress interference. Its performance degradation
was more serious and even produced deeper nulls in other directions. This is because
DLF was too large, resulting in noise level “interference”, so that the beam patterns in
some directions formed “false alarm interference”. Figure 5d shows the beam patterns
corresponding to LM. Although the sidelobe was improved, it was still approximately
5 dB higher than Figure 5a. This is because the DLF was too small to effectively suppress
the characteristic value disturbance of the noise. The performance of GLC, in Figure 5e,
is similar to that of Figure 5a, and a better effect was obtained. However, performance
degradation occurs when this method is applied to large arrays, which will be analyzed in
the following sections. Figure 5f shows that, for LM, although the beam patterns obtained
with a small DLF formed nulls aligned in the directions of interference, its sidelobe per-
formance was poor. If main beam interference exists, the sidelobe level would be higher,
and even the main beam would be distorted.
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RD maps obtained by the six methods are shown in Figure 6. It can be seen that the
method in this paper and GLC had good performance. After processing by other methods,
the residual interference and strong noise in the RD maps affected target recognition.
In Figure 6c, there were narrowband and wideband interferences that were not completely
suppressed. In Figure 6b, there was weak narrowband interference near the−42nd Doppler
channel. Compared with Figure 6a, this Doppler interference energy in Figure 6b was
3 dB higher on average. In Figure 6d,f, there were bright spots at the base that were easily
mistaken for targets. For example, there was a bright spot located in the −61st Doppler
channel, 83nd range channel. There was only a 5 dB energy gap between this bright spot
and the target in Figure 6d, which was reduced to 3 dB in Figure 6f, but increased to 15 dB
in Figure 6a.
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3.2. Impact of the Number of Snapshots and DOA Mismatches

A small number of snapshots and DOA mismatches are common nonideal conditions
that influence the beamforming effect. The number of sensor elements was set to 32,
the input SNR to 5 dB and the input interference to noise ratio to 20 dB.

On the premise that the DOA mismatch is 0◦, we studied the changes in the DLF of
each method as the number of snapshots increased, as shown in Figure 7. Theoretically,
as the number of snapshots increases, the estimation of the covariance matrix should be
more accurate, so the required DLF should be increasingly smaller until reaching a fixed
value. All six methods showed correct variation trends, and their performance difference
was mainly affected by whether the DLF was appropriate. When the DOA was mismatched,
the DLF value could be reasonably adjusted by RDF-CB. The other five comparison methods
all had poor perception ability in the mismatched situation and the corresponding DLF
had almost no change.
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Figure 8 shows the variation trend in the output SINR with a number of snapshots
ranging from 50 to 300 under two conditions: when the DOA is accurate and when the
DOA mismatch is 2◦.
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Figure 8a,b are analyzed separately to summarize the influence of the number of
snapshots on the output SINR of each compared method. RDF-CB had the best perfor-
mance among the six methods. In the absence of DOA mismatch, CS and GLC showed
performance close to that of RDF-CB. When the DOA mismatch was 2◦, the performances
of GLC and LM were close to those in this paper. In contrast, the performance of CG was
poor because of the slow DLF adjustment speed. When the number of snapshots was large,
the DLF of this method was too large, which affected the interference eigenvalues and led to
a decrease in the null depth of the beam pattern. When the number of snapshots was close
to the number of sensor elements, the DLF was not large enough to effectively suppress
small eigenvalue disturbances. The DLF of CMT is dynamically adjusted based on the ratio
between the square of the signal power and the square of the noise power, which made the
DLF larger than in other methods in the case of few snapshots. An excessively large DLF
would lead to overloading of the covariance matrix and reduce the output SINR. For LM,
the optimal value range of the DLF is first calculated, and the final value of the DLF is then
obtained through traversal. The performance was greatly affected by the search interval
and the search step length, and the process of repeatedly traversing the values within the
value range reduced the timeliness of this method.

By comparing Figure 8a,b, the influence of DOA mismatch on the output SINR of each
method can be summarized. In the case of few snapshots, all methods were insensitive to
DOA mismatch, and the output SINR changed little. When the number of snapshots was
large, the performance of RDF-CB still did not change significantly with DOA mismatch;
its output SINR decreased the least, by an average of 0.9 dB. This shows that RDF-CB
exhibits good robustness and adaptability to DOA mismatch. In contrast, the other methods
were limited by their traditional signal processing architecture, resulting in a significant
drop in the output SINR.

The reason for the difference in performance is that the method in this paper can
distinguish among different cases, including the number of snapshots and whether the
DOA is mismatched, based on RD map features. Specifically, as the number of snapshots
decreases, the resolution of the RD map decreases, the contrast significantly increases, and
the directionality significantly decreases. In the presence of DOA mismatch, the difference
values of the six-dimensional Tamura texture features of the RD maps before and after
conventional beamforming are greatly different. Therefore, compared with the other meth-
ods, RDF-CB can achieve stable anti-interference performance under different conditions.
Additionally, DLF prediction is performed in a data-driven manner based on a knowledge
base for pretraining. Thus, it is possible to avoid the phenomenon of pursuing a high
output SINR in one scenario at the expense of the method’s performance in other scenarios.
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3.3. Impact of the Input SNR

In practical beamforming applications, a low-input SNR is usually regarded as an
undesirable condition. Here, the number of sensor elements was set to 32, and the number
of snapshots was set to 150. Under the two conditions in which the DOA is accurate and the
DOA mismatch is 2◦, the variation trends in the output SINR with input SNR ranging from
−10 dB to 10 dB are shown in Figure 9. Since DLF is used to suppress noise eigenvalue
disturbance, when the input noise was fixed, the input power of the expected signal and
the interfering signal had no obvious effect on DLF.
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It can be seen from this figure that the antijamming effects of each method were
different; in particular, the method in this paper achieved better effects than the others.
The reasons are as follows. CMT considers high- and low-input SNRs two distinct cases and
defines two different DLF calculation methods accordingly. As a result, the performance of
this method obviously degraded near the boundary between high- and low-input SNRs.
CG still showed poor performance due to its slow DLF adjustment speed. Similarly, CS,
which takes the average value of the eigenvalues as the basis for selecting the DLF, and
GLC, which is limited by the MMSE criterion, also showed slight performance degradation
due to their insufficient DLF adjustment range.

In this paper, an attention model based on information entropy was constructed to
focus attention on texture features extracted from the noise base and RFI areas of the
RD map, thus endowing the model with some cognitive ability regarding the current
electromagnetic environment. After preliminary training, the model could select a suitable
DLF that matches the current input SNR to improve the output SINR.

3.4. Impact of the Number of Sensor Elements

To analyze the robustness of each method in the case of a large array, the input SNR
was set to 5 dB, the input interference to noise ratio to 20 dB, and the number of snapshots
to 150. The relationship between the DLF and the number of elements is shown in Figure 10.
The purpose of setting the number of elements in the range from 16 to 80 is to explore the
possibility of using subarrays for detection in multiple areas simultaneously [20]. As the
number of elements increased, the DLFs of CMT and CS decreased, while the DLFs of the
other methods had the same change trend as the number of elements.

Under the two conditions in which the DOA is accurate and the DOA mismatch is 2◦,
the variation trends in the output SINR with the number of sensor elements ranging from
16 to 80 are shown in Figure 11.
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In the absence of DOA mismatch, the performance of each method was similar. Among
them, LM and CG still had a performance gap relative to RDF-CB due to the slow DLF
adjustment speed. In the presence of DOA mismatch, the performance of each method
was obviously different, especially in the case of a large number of sensor elements. The-
oretically, the deviation between the sample covariance matrix and the true covariance
matrix increases as the number of sensor elements increases. Therefore, the DLF should
show an increasing trend to effectively compensate for the deviation in the covariance
matrix. GLC does not consider the influence of the number of sensor elements on the
DLF. In this method, restricted by the MMSE criterion, the DLF decreased as the number
of sensor elements increased, resulting in degradation of the method’s performance. CS
uses the average value of the eigenvalues, which is greatly influenced by the number of
elements, as a reference for DLF calculation. When the dimensions of the target source
and interference source were much smaller than the number of sensor elements, the noise
eigenvalue could not be corrected effectively, and the performance of the method was poor.
In contrast, RDF-CB still showed high robustness as the number of sensor elements varied.
The reason is that the increase in the sample covariance matrix deviation is reflected in the
RD map, which leads to a change in texture features such as coarseness. Therefore, RDF-CB
couldreasonably adjust the DLF according to this phenomenon.

In conclusion, under various common RFI environments, the RD map texture features
weighted using an attention model can be used to predict the optimal DLF, thus improving
the interference suppression effect of the DL beamforming algorithm. Image features are
easy to calculate, meaning that they have good ease of use in engineering applications.
Because RDF-CB does not operate completely within the framework of traditional signal
processing, it not only has a good interference suppression effect in nonideal situations,
such as a small number of snapshots or DOA mismatch, but it also achieves improve-
ment in interference suppression effect in special situations, such as a large number of
sensor elements.

4. Discussion
4.1. The Advantages of RDF-CB

RDF-CB is capable of sensing the electromagnetic environment. The closed-loop struc-
ture from reception to perception to transmission is designed to emphasize the dynamic
relationship between the external environment and the radar system. Unlike the existing
beamforming methods based on variable DL, the RDF-CB method does not specify value
rules for the DLF in the system beforehand. In fact, without prior knowledge of the RFI, it is
difficult to determine a globally optimal DLF value rule. Taking the experimental results
in Section 3.4 as an example, radical value rules will lead to the system falling into a local
optimum. For example, the CS, GLC and LM methods underestimated the influence of the
number of sensor elements, resulting in a generally small DLF. This made the covariance
matrix load insufficient as the number of sensors increased and reduced the output SINR.
Meanwhile, conservative value rules may limit the overall system performance. For ex-
ample, the variation range of the DLF obtained via the CG method was relatively small.
Although interference was suppressed under various conditions, the effect still had room
for improvement. In contrast, RDF-CB used machine learning to pretrain the model and
made better policy decisions with the help of a knowledge base.

RDF-CB can accurately describe the ionization environment from the perspective of im-
age processing. By observing the RD maps, it can be found that the RFI had obvious image
characteristics. The intensity of the interference and the effect of interference suppression
could be intuitively perceived, which was the basis for our use of visual and image tools to
process RD maps. However, the relationship between the image features and interference
intensity was not simply linear. Reference [15] simplifies the corresponding relationship to
monotonicity, thereby limiting the use of multidimensional image features and abandoning
some valuable information. In general, inadequate image feature extraction will cause
valuable information to be discarded. In RDF-CB, the mapping relationship between the
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RD map and the DLF value is built by using an SVM and six-dimensional Tamura texture
features. Rich RD map details can better distinguish the differences between different
electromagnetic environments, including detailed features that are difficult to describe
based on human experience.

An attention model is built into RDF-CB to screen for important information that is
highly relevant to the DLF calculation. In the preliminary extraction of the Tamura texture
features, each region of the RD map is treated as equally important, which is not fully
consistent with the objective of the RFI suppression task. For OTHR application scenarios,
RDF-CB weights the whole RD map with an attention model and gives more attention
to the areas where RFI is prone to occur because these areas have the most influence on
DLF selection.

4.2. Prospects and Limitations

The electromagnetic environment sensing system is one of the important components
of a cognitive OTHR system [21]. Compared with traditional OTHR, the greatest difference
in cognitive OTHR system architecture lies in the knowledge application function. In tradi-
tional OTHR, some key parameters of the transmitted signals are obtained through a series
of external environmental sensing means, such as electromagnetic spectrum monitoring
and ionospheric environment diagnosis. A very important gap between this and cognitive
OTHR is the lack of feedback from receiver to transmitter. If environmental information
can be extracted in the process of target detection, this can not only improve the efficiency
of environmental perception but also allow environmental information to be introduced
into the process of target detection, thus helping to improve the OTHR’s target detection
capability. Therefore, the above idea of designing transmitted signal parameters based on
RD image feedback information has broad application prospects.

The RDF-CB method assumes that interference is suppressed in the ionospheric station-
ary state. The method focuses on the introduction of a cognitive interference suppression
system, feature extraction methods, and machine learning prediction. However, the analy-
sis and design of OTHR and the proposal of cognitive techniques depend on the monitoring
and modeling of ionospheric conditions [20]. It is necessary to define the OTHR perfor-
mance parameters in the actual ionospheric environment in order to control the feedback
channel. Considering the influence of ionospheric phase contamination and multipath
effects, the next step will be the fine modeling and actual testing of radar working scenarios.
The influence of ionospheric conditions, the changes in the illuminated area and the clutter
returns will be analyzed.

5. Conclusions

To address the problems that the traditional beamforming method is not capable of
recognizing the electromagnetic environment and that its performance is greatly affected by
the accuracy of signal feature estimation, RDF-CB for skywave radar was proposed. First,
the RD map was weighted by local attention, and then, texture features were extracted
for use as the input to an SVM. Finally, DLF prediction was performed using the SVM.
Simulation results showed that this method had a good suppression effect for RFI and
strong robustness, which is beneficial for engineering implementation. This combination
of computer vision and machine learning also has the potential to be extended to other
aspects of OTHR signal processing.
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