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Abstract: The detection of ships on the open sea is an important issue for both military and civilian
fields. As an active microwave imaging sensor, synthetic aperture radar (SAR) is a useful device
in marine supervision. To extract small and weak ships precisely in the marine areas, polarimetric
synthetic aperture radar (PolSAR) data have been used more and more widely. We propose a new
PolSAR ship detection method which is based on a keypoint detector, referred to as a PolSAR-SIFT
keypoint detector, and a patch variation indicator in this paper. The PolSAR-SIFT keypoint detector
proposed in this paper is inspired by the SAR-SIFT keypoint detector. We improve the gradient
definition in the SAR-SIFT keypoint detector to adapt to the properties of PolSAR data by defining a
new gradient based on the distance measurement of polarimetric covariance matrices. We present
the application of PolSAR-SIFT keypoint detector to the detection of ship targets in PolSAR data by
combining the PolSAR-SIFT keypoint detector with the patch variation indicator we proposed before.
The keypoints extracted by the PolSAR-SIFT keypoint detector are usually located in regions with
corner structures, which are likely to be ship regions. Then, the patch variation indicator is used to
characterize the context information of the extracted keypoints, and the keypoints located on the sea
area are filtered out by setting a constant false alarm rate threshold for the patch variation indicator.
Finally, a patch centered on each filtered keypoint is selected. Then, the detection statistics in the
patch are calculated. The detection statistics are binarized according to the local threshold set by
the detection statistic value of the keypoint to complete the ship detection. Experiments on three
data sets obtained from the RADARSAT-2 and AIRSAR quad-polarization data demonstrate that the
proposed detector is effective for ship detection.

Keywords: polarimetric synthetic aperture radar (PolSAR); scale-invariant feature transform (SIFT);
target detection; ship detection

1. Introduction

Ship monitoring plays an important role in maintaining navigation safety, combating
illegal fishing and coastal defense early warning missions. As an active microwave imaging
system, synthetic aperture radar (SAR) has the ability to observe the Earth in all weather
and at all times.

Due to its metal material and complex structure, the backscattering energy of a large
ship is often strong, and it appears as a bright area on the SAR imaging plane. At the same
time, when the wind speed is low, the backscattering energy of sea clutter is weak, and it
appears as a dark area in the SAR image. Therefore, the intensity difference between the
ship and sea is a useful feature to distinguish them. However, for a small ship or high wind
speed condition, the intensity difference between the ship and sea clutter may decrease.

Since the polarimetric scattering mechanism difference between ship and sea clutter
is beneficial to ship detection, ship detection using polarimetric SAR (PolSAR) data has
become a promising research area for maritime surveillance. Many ship detectors based on
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PolSAR data have been proposed [1–12]. According to whether spatial information is used,
PolSAR ship detection methods can be divided into two categories.

One category is based on the pixel-level feature. The polarimetric whitening filter is
an optimal technique for target detection by minimizing the fluctuation of speckle noise [1].
The reflection symmetry (RS) metric is used to detect man-made targets [2] based on the
difference of physical behavior between ship and sea clutter. It has been successfully used
in PolSAR ship detection. Marino et al. proposed a novel PolSAR ship detector called the
polarimetric notch filter (PNF), which enhanced the TCR between ship and sea clutter by
minimizing the sea clutter power [3]. Yang et al. proposed a novel polarimetric notch filter
which is suitable for a heterogeneous region [4]. It extended the clutter model in PNF from
a complex feature vector to a complex feature subspace. Liu et al. proposed a new form of
the polarimetric notch filter (NPNF) based on the physical mechanism of targets and clutter
which is further developed for partial targets [5]. The polarimetric matched filter (PMF) is
another optimal polarimetric enhancement technique which improved the target detection
performance by maximizing the target-to-clutter ratio (TCR) [12]. Liu et al. proposed a new
optimal technique by combining the PMF and PNF to maximize the TCR and minimize
the speckle noise, which was referred to as the polarimetric detection optimization filter
(PDOF) [13]. Yang et al. proposed a novel optimal polarimetric enhancement method based
on the minimal clutter-to-signal (MCSR) subspace [14]. Chen et al. developed the uniform
polarimetric matrix transformation theory [15] and proposed a visualization and charac-
terization tool for PolSAR data investigation called polarimetric correlation pattern [16].
Cui et al. proposed a PolSAR ship detection method based on the polarimetric rotation
domain feature [17]. Li et al. investigated the optimal combination of the polarimetric
rotation domain feature and proposed a ship detection method based on SVM [18].

The other category is based on the region-level feature which includes the superpixel-
level feature and patch-level feature. Wang et al. proposed a PolSAR ship detection method
based on the superpixel-level scattering mechanism distribution feature [6]. He et al. pro-
posed a ship detection method by using a local scattering mechanism difference based on
regression kernel (SD-LSMDRK) [7]. He et al. also proposed a novel automatic ship detec-
tion method based on the superpixel-level local information measurement (SD-SLLIM) [8].
Liu et al. proposed a new neighborhood polarimetric covariance matrix (NPCM) to detect
the small ships in PolSAR image [9], which utilized the spatial correlation between neighbor
pixels and mapped a low-dimensional complex feature vector into a high-dimensional
complex vector. Cui et al. proposed a saliency detector for PolSAR ship detection which
focused on the different scattering mechanism between ship and sea clutter in low and
medium sea condition [19]. Wang et al. proposed a saliency detector for target detection in
PolSAR images based on the pattern recurrence, which is defined by the similarity between
PolSAR image patches [20]. We proposed a refined PNF ship detector which introduced
region information into traditional PNF by a patch variation indicator [10]. It is validated on
the measured PolSAR data. However, calculating the patch variation indicator of each pixel
in a PolSAR image is time consuming. Determining potential target regions in advance
helps to improve computational efficiency.

The advent of deep learning algorithms allows ship detection to be done automat-
ically in an end-to-end mode. Chen et al. [21] proposed a PolSAR target detection and
classification method using a deep convolutional neural network (CNN). Fan et al. [22]
proposed a ship detection method for PolSAR data based on a modified faster region-based
convolutional neural network (Faster R-CNN). Jin et al. [23] proposed a patch-to-pixel
CNN for small ship detection in PolSAR images. However, these methods usually require a
large number of training samples, which limits the application of them in practical use [24].

In our previous work [11], we proposed a PolSAR ship detection method which was
based on the physical behavior and spatial characteristics of ship and sea clutter. Reflection
symmetry is a useful physical behavior for man-made target detection. Man-made targets
usually have a reflection asymmetry characteristic and appears as bright blob-like structures
on amplitude images of the C12 and C23 terms in the polarimetric covariance matrix [11],



Remote Sens. 2022, 14, 2900 3 of 22

while sea clutter usually has a reflection symmetry characteristic and appears as dark
regions on the above images. Thus, ships can be detected by detecting these bright blob-like
structures. The scale-invariant feature transform (SIFT) algorithm is widely used in optical
remote sensing fields due to its efficiency [25], and includes a keypoint detector and a local
descriptor extractor. Wang et al. applied the traditional SIFT keypoint detector in SAR
image change detection and proved that the keypoints are useful to target detection [26].
Inspired by this work, we used the SIFT keypoint detector on the amplitude image of C12
and C23 terms to detect the bright blob-like structure and extract potential ship regions in
the C12 and C23 images. However, the reflection asymmetry characteristics of ships with
simple structures or smaller sizes are not significant, so the original SIFT keypoint detector
may not be able to detect this type of ship. Moreover, although the SIFT keypoint detection
uses region information, the final detection step of the method we proposed before is still
implemented at the pixel level, which is not completely a region-based method.

Compared with optical remote sensing data, SAR images have different characteristics.
SAR is an active microwave imaging system and has the ability to acquire fine spatial
resolution images regardless of weather conditions and solar illumination. Due to the
coherent imaging mechanism of the SAR system, speckle noise is an inherent phenomenon
in SAR imaging, which increases the difficulty of data processing. To reduce the influence
of speckle on SIFT performance, Dellinger et al. proposed a SIFT-like algorithm named
SAR-SIFT which is specifically dedicated to SAR images [27]. The algorithm included both
the keypoint detector and local descriptor extractor. A new gradient definition robust to
speckle noise which is used for the keypoint detection and local descriptor extraction was
introduced. In addition to the intensity information in SAR data, PolSAR data also contain
abundant polarimetric information. It is a reasonable idea to define gradients according
to the polarimetric information of PolSAR data to construct a SAR-SIFT-like algorithm
suitable for PolSAR data. Zou et al. proposed a SAR-SIFT-like algorithm for PolSAR image
registration by defining a gradient based on the Freeman three-component decomposi-
tion [28]. However, the Freeman decomposition method has negative power values for
some pixels [29]; thus, the gradient may not be consistent with actual PolSAR data.

To address the above problems, we introduce an improved gradient definition adapted
to the characteristics of PolSAR data. It is then used to adapt the keypoint detector of
the SAR-SIFT algorithm to PolSAR data. This part of the work is largely inspired by the
SAR-SIFT and will be referred to as the PolSAR-SIFT keypoint detector. Then, the keypoint
detector is used to locate the potential target regions in PolSAR images and combined
with the patch variation indicator [10] for ship detection, and the keypoints located on
the sea area are filtered out by setting a constant false alarm rate threshold for the patch
variation indicator.

The content of this paper is arranged as follows: Section 1 is the introduction; Section 2
briefly introduces the PolSAR data and the outline of the SAR-SIFT algorithm; Section 3
introduces the proposed ship detection method based on the PolSAR-SIFT keypoint detec-
tion algorithm; Section 4 shows the experimental validations with the measured PolSAR
data; and Section 5 concludes this paper.

2. PolSAR Data and SAR-SIFT Keypoint Detector
2.1. Polarimetric SAR Data

In polarimetric SAR data, in addition to the difference in backscattering energy be-
tween ship and sea clutter, their polarimetric scattering mechanisms are also different. The
backscattering of sea clutter is usually dominated by surface scattering. As a man-made
target, the scattering mechanism of a large ship is complex, which includes odd-bounce
scattering, double-bounce scattering, volume scattering and helix scattering caused by the
complex structure. Among these, the dominant scattering mechanism is the double-bounce
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scattering mechanism. The polarimetric information of ships and sea clutter can be fully
represented by the complex scattering matrix S [30]:

S =

[
SHH SHV
SVH SVV

]
(1)

where the first and second subscripts of SHH denote the receive and transmit polarization
and the subscripts H and V denote the horizontal and vertical polarizations, respectively.
SHV is equal to SVH in the single station case based on the reciprocity theorem [30]. To deal
with polarimetric scattering from a distributed and depolarized target in a dynamically
changing environment, each pixel in a PolSAR image can be represented by its second-order
statistical characteristics, reflected by the polarimetric covariance matrix as follows:

C =


〈
|SHH|2

〉 √
2〈SHHS∗HV〉 〈SHHS∗VV〉√

2〈SHVS∗HH〉 2
〈
|SHV|2

〉 √
2〈SHVS∗VV〉

〈SVVS∗HH〉
√

2〈SVVS∗HV〉
〈
|SVV|2

〉
 (2)

where the superscript * denotes the complex conjugate and 〈·〉 stands for the ensemble average.

2.2. Original SAR-SIFT Keypoint Detector

The SAR-SIFT algorithm was proposed by Dellinger et al. in 2015 [13] and later applied
in SAR image registration, target discrimination and target recognition. The algorithm
consists of two operators: a keypoint detection operator and a local feature descriptor.
Both the operators rely on the consistent gradient computation method adapted to the
characteristics of SAR images.

The ratio of exponentially weighted averages (ROEWA) [27] operator is used to
calculate the multiscale gradients for a SAR image, which is suitable to multiplicative
noise. For a given pixel (a,b) in a SAR image, the local exponentially weighted averages
for the four directions, which include the up, the down, the left and the right side, need
to be computed firstly, and can be denoted as Mu,α, Md,α, Ml,α and Mr,α, respectively. For
example, the definition of Mu,α and Md,α given in [23] is as follows:

Mu,α =
∫

x=R

∫
y=R+ I(a + x, b + y)× e−

|x|+|y|
α

Md,α =
∫

x=R

∫
y=R− I(a + x, b + y)× e−

|x|+|y|
α

(3)

where I(·) represents the image intensity of a pixel and α is the exponential weight parame-
ter that determines the scale of the average. The ratios for the vertical and the horizontal
directions are formulated as follows:

Rv,α =
Mu,α

Md,α
, Rh,α =

Ml,α

Mr,α
(4)

The exponential weight parameter α allows adaptive smoothing for SAR images.
Therefore, the two ratios are robust to speckle noise. The gradient by ratio (GR) in the
vertical and the horizontal directions are defined as

Gv,α = log(Rv,α), Gh,α = log(Rh,α) (5)

Utilizing the GR, the SAR-SIFT algorithm formulated a new multiscale SAR-Harris
matrix CSH and a new multiscale SAR-Harris response function RSH, shown as follows:

CSH(x, y, α) =g√2α ∗
[

(Gh,α)
2 (Gh,α)(Gv,α)

(Gv,α)(Gh,α) (Gv,α)
2

]
RSH(x, y, α) = det(CSH(x, y, α))− d · tr(CSH(x, y, α))2

(6)



Remote Sens. 2022, 14, 2900 5 of 22

where g√2α is a Gaussian kernel with standard deviation
√

2α, ∗ is the convolution operator,
det(·) and tr(·) represent the determinant and trace of a matrix, respectively, and d is a
given parameter.

The detection of keypoints can be achieved by: (1) computing the multiscale SAR-
Harris matrix CSH by setting different scale parameter α and generating the SAR-Harris
response function RSH (Equation (6)), and then constructing the SAR-Harris scale-space
by RSH images with different scales; (2) selecting extrema in space; and (3) applying a
threshold TSH on the selected extrema to get the detected keypoints. Please refer to [27] for
more details of the SAR-SIFT keypoint detection method.

3. Ship Detection Method Based on PolSAR-SIFT Keypoint Detector

The proposed PolSAR ship detection method mainly consists of three steps: (1) key-
point detection for locating the potential target area; (2) keypoint filtering for eliminating
false alarm keypoints; and (3) ship region extraction for final detection. Figure 1 shows the
outline of the proposed algorithm, which is named as a PolSAR-SIFT-based ship detector.
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Figure 1. Outline of the PolSAR-SIFT ship detection algorithm, which includes three steps: (1) key-
point detection (PolSAR-Harris); (2) keypoint filtering; and (3) ship region extraction. The background
in (1) and (2) is the log SPAN image.

3.1. PolSAR-SIFT Keypoint Detector

To adapt the SIFT algorithm to SAR images, the SAR-SIFT method took the speckle
noise of SAR images into account. It developed a new gradient computation method by
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using the ratio of exponentially weighted averages. The exponentially weighed averages
are obtained by computing exponentially weighted local means of a pixel in a SAR image,
which is essentially an image filtering operation. The weight coefficient of the filter is
determined by the spatial distance between pixels using an exponential kernel.

Inspired by the formulation of the exponentially weighted averages in SAR images,
and considering the robustness of ROEWA to speckle noise, we define the exponentially
weighted averages of polarimetric covariance matrix for PolSAR data, which are also
obtained by computing exponentially weighted local means. For a given pixel (a,b) in a
PolSAR image, the exponentially weighted averages of the polarimetric covariance matrix
for the four directions can be denoted as MCu,α, MCd,α, MCl,α and MCr,α, respectively. For
example, the definition of MCu,α and MCd,α is as follows:

MC(i,j)u,α =
∫

x=R

∫
y=R+ C(i,j)(a + x, b + y)× e−

|x|+|y|
α

MC(i,j)d,α =
∫

x=R

∫
y=R− C(i,j)(a + x, b + y)× e−

|x|+|y|
α

(7)

where C(i,j) represents the (ith,jth) term in the polarimetric covariance matrix of a pixel.
The ratio of the exponentially weighted means in ROEWA is essentially a difference

measurement for the weighted pixels. For PolSAR data, there are many difference measure-
ments based on polarimetric covariance matrix. For example, Wishart distribution-based
distance [30], Riemannian metric distance [31] and symmetrized Kullback–Leibler diver-
gence [32]. Among them, the Wishart distribution-based distance and the symmetrized
Kullback–Leibler divergence are both defined according to statistical distribution. The
weighting operation on the covariance matrix changes the distribution characteristics of the
covariance matrix, so the distance defined based on the statistical distribution cannot be
directly applied to the weighted matrix. Therefore, we define the difference measurement
for exponentially weighted averages of the polarimetric covariance matrix based on the
Riemannian metric distance in this paper, and this method is referred to as the Riemannian
distance of exponentially weighted averages (RDEWA). The Riemannian distances for the
vertical and the horizontal directions are formulated as follows:

RDv,α =

√
tr(MCu,α)+tr(MCd,α)− 2tr

(
MC1/2

u,α MC1/2
d,α

)
RDh,α =

√
tr(MCl,α)+tr(MCr,α)− 2tr

(
MC1/2

l,α MC1/2
r,α

) (8)

where tr(·) represents the trace of a matrix. The gradients of the vertical and the horizontal
directions are computed by RDv,α and RDh,α in the same way as SAR-SIFT, i.e.,

GRDv,α = log(RDv,α), GRDh,α = log(RDh,α) (9)

The multiscale SAR-Harris matrix and function are defined in (4). Inspired by this
definition and the gradient by Riemannian distance (GRD), we propose the new multiscale
PolSAR-Harris matrix CPSH and PolSAR-Harris response function RPSH, respectively, as

CPSH(x, y, α) =g√2α ∗
[

(GRDh,α)
2 (GRDh,α)(GRDv,α)

(GRDv,α)(GRDh,α) (GRDv,α)
2

]
RPSH(x, y, α) = det(CPSH(x, y, α))− d · tr(CPSH(x, y, α))2

(10)

where d is an arbitrary parameter whose default value is properly set to 0.015 in experiments
and the gradients GRDv,α and GRDh,α are computed using (9). The keypoint detection step
of the proposed PolSAR ship detection method can be achieved by: (1) computing the
multiscale PolSAR-Harris matrix CPSH by setting different scale parameter α and generating
the PolSAR-Harris response function RPSH (Equation (10)), and then constructing the
PolSAR-Harris scale-space by RPSH images with different scales; (2) selecting extrema in
PolSAR-Harris scale-space; and (3) applying a threshold TPSH on the selected extrema,
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which could suppress low-contrast and edge points. The top part of Figure 1 summarizes
the above steps.

We use the GRD which is obtained by computing the RDEWA of the polarimetric
covariance matrix to adapt the keypoint detector to PolSAR data. The same as for the
SAR-Harris function, the threshold TPSH on the PolSAR-Harris response function value
could remove the edge points and low-contrast points. In the original SAR-SIFT algorithm,
the steps after detecting the keypoints are orientation assignment and descriptor extraction,
which both rely on the histogram of the gradient computed by the GR. For PolSAR data, the
orientation assignment and descriptor extraction could be obtained by the GRD, which is
not the focus of this paper. In the following section, we introduce the PolSAR ship detection
method based on this keypoint detector.

3.2. Ship Detection Based on the Keypoint and Patch Variation Indicator

The effectiveness of the SAR-SIFT keypoint detection operator in detecting corner
structures in SAR images has been confirmed [27]. In PolSAR images, compared with sea
clutter, ships have strong backscattering and complex polarimetric scattering characteristics.
Therefore, in both the image intensity domain and the polarimetric scattering mechanism
domain, ships will have corner shape structures. The PolSAR-SIFT keypoint detector based
on the GRD, which combines intensity information and polarimetric scattering information,
could be used to detect corner points in PolSAR images. Then, ships in PolSAR images
could be extracted using these corner points.

Considering weak and small ships, we need to set a lower TPSH for RPSH to detect
weak ships. A lower threshold means false alarms, i.e., keypoints located in the sea area
will be also extracted. To eliminate these kinds of false alarm keypoints, the local context
information should be taken into account. Therefore, the patch variation indicator [10] of
each keypoint is computed. The expression of Pvi is as follows [10]:

Pvi(xi) =
std[Is(pi)]

mean[Is(pi)]
(11)

where pi is a patch centered on a keypoint and Is(pi) is the similarity image obtained by
computing the similarity metric between the center pixel and other pixels in pi. More-
over, std[·] and mean[·] represent the standard deviation and mean of the elements in
the similarity image Is(pi), respectively. The similarity metric between pixels is defined
based on the symmetrized Kullback–Leibler divergence [32] of polarimetric covariance
matrixes as introduced in [10], after comparing the detection performance of Pvi computed
using different distance metrics on synthetic data. The expression of the symmetrized
Kullback–Leibler divergence is as follows [18]:

KL(C1, C2)= 1/2 · tr
(

C−1
1 C2 + C−1

2 C1

)
− dim (12)

where dim is the dimension of the polarimetric covariance matrix C1 and C2. Then, the
similarity based on Equation (12) can be formulated as

sKL(C1, C2) = exp(−KL(C1, C2)/h) (13)

where h is a tuning parameter whose default value is properly set to 5 in experiments.
Generally, keypoints located on the ship are quite different from other points in the

context. However, keypoints located on the sea area are less different from other points in
the context. Thus, the Pvi of the keypoint on the ship is larger, and the Pvi of the keypoint on
the sea area is smaller. Therefore, by comparing the Pvi of the keypoint with a threshold, the
keypoints located on the sea area can be filtered out. The threshold is set under a constant
false alarm rate (CFAR) criterion in this paper.

To realize the CFAR detection, it is necessary to establish an accurate statistical model
for Pvi first. In general, statistical modeling and probability density function estimation
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methodologies have two main categories: parametric and nonparametric. Parametric
methodologies rely on a certain a priori parametric model assumption for data distribution.
Nonparametric methodologies can model arbitrary probability density functions with
general assumptions and a certain approximation error [33]. As a nonparametric method,
kernel density estimation (KDE) can produce smooth continuous differentiable functions
and ensure a good probability density function approximation for a set of given data [34,35].
KDE has been used in many applications. We also use the KDE method to develop
an effective model for Pvi. In the KDE method, a kernel function is assigned to each
sample {Xi, i = 1, . . . , N}, and the probability density function that represents these data is
approximated by

ψ(X) =
1

Nσ

N

∑
i=1

κ

(
X− Xi

σ

)
(14)

where κ(·) is the kernel function and σ is the kernel bandwidth. The kernel function and
bandwidth are two main factors influencing the model efficiency and local smoothness.
Most studies prefer to apply Gaussian kernel due to its good properties. Therefore, we also
chose the Gauss kernel in this paper. A classical asymptotic mean integrated squared error
(AMISE) bandwidth estimation [33] is as follows:

σ =
1.06
N1/5 σdata (15)

where σdata is the stand deviation of the given data {Xi, i = 1, . . . , N}. We performed KDE
estimation on a set of sea clutter data, and set a CFAR threshold for keypoint filtering based
on the estimated PDF and CDF. This part of the work is summarized in the middle part of
Figure 1.

In our previous work [10], we needed to calculate the Pvi of each pixel in the image and
use Pvi to identify whether the pixel is a ship or sea clutter, which is time-consuming, and
the statistical distribution of Pvi was not analyzed. In this paper, the location of potential
targets is obtained by extracting the keypoints in advance. The keypoints located on the
sea are eliminated through the Pvi of the keypoints, and the number of keypoints is much
smaller than the total number of pixels in the image, which improves the calculation
efficiency. Moreover, we analyze the statistical distribution of Pvi to set the threshold by the
CFAR criterion.

Ship detection can be accomplished in the regions around the filtered keypoints. We
can select a square region centered on a keypoint and apply a ship detector on this region.
A ship detector is usually implemented by calculating the detection statistics of all pixels in
the image, and then setting a threshold on the defined detection statistics, and the pixels
larger than the threshold are considered as ship targets. In this paper, the detection statistic
is represented by the power of the double-bounce scattering mechanism which is mainly
contained in ship targets. According to the Pauli decomposition theorem [30], HH + VV,
HH − VV and HV channels correspond to the surface reflection and double-bounce reflec-
tion which is caused by the angular reflectors with direction angle of 0◦ and 45◦. Therefore,
the HH − VV channel and HV channel can be used to complete ship detection. It should
be noticed that the ensemble average of |HH − VV|·|HV| is also a term in the polari-
metric coherence matrix, which also represents the reflection asymmetry component [30].
Therefore, we use the ensemble average of |HH − VV|·|HV| as the detection statistic in
this paper. Finally, by combining all the ship regions extracted through the keypoints, the
final ship detection result can be obtained as shown in the bottom part of Figure 1.

4. Ship Detection Performance Validation

Figure 2 shows the two sets of C-band quad-polarization RADARSAT-2 data and one
set of L-band quad-polarization AIRSAR data used for validation in this section. The details
of the data are listed in Table 1.
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Table 1. Description of the three data sets.

Dataset 1 Dataset 2 Dataset 3

Location Yokohama Port, Japan Tanggu Port, China Kojimawan Bay, Japan
Date 4 August 2010 23 June 2011 4 October 2000
Resolution (range × azimuth) 12 m × 8 m 12 m × 8 m 3.33 m × 4.63 m
Incidence angle 35◦ 30◦ -

4.1. Validation of Each Part of the Proposed Method
4.1.1. Keypoint Detection Test

First, we generated a set of synthetic data using the ship targets in the R1 region and
the randomly selected sea clutter pixels in other regions, and the generation method is
consistent with that in [6]. The Pauli pseudo-color image and the ground truth image of
the synthetic data are shown in Figure 3a,b, respectively. The keypoint detection results of
the proposed PolSAR-SIFT keypoint detector and those of the SAR-SIFT keypoint detector
are shown in Figure 3c,d. The keypoint detection results of the SAR-SIFT keypoint detector
are obtained by applying the SAR-SIFT detector on the SPAN image of PolSAR data. The
result of Figure 3c is different from Figure 1(1) due to the different thresholds for the
PolSAR-Harris response values.

The scale parameters in the two keypoint detectors are both set to α = 2.51. Although
the application background of the SAR-SIFT algorithm and the PolSAR-SIFT keypoint de-
tector proposed in this paper is different, we still give the detection results of the SAR-SIFT
keypoint detector on the synthetic data to demonstrate the effect of introducing polarimetric
information into keypoint extraction. It can be seen from Figure 3c,d that the proposed
keypoint detector that introduces polarimetric information is more suitable for the ship
detection. It extracts more keypoints on ship targets in the synthetic data, and has no false
alarm points on the sea area in the synthetic data. The keypoint detection result of the SAR-
SIFT keypoint detector also has no false alarms on the sea area. However, it extracts fewer
keypoints on the large ship. The Harris response images of the two keypoint detectors
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are shown in Figure 3e,f. Since the intensity difference is small inside the large ship in the
SPAN image, the GR is small inside the large ship. Since the magnitude of the SAR-Harris
function response value is related to the magnitude of the gradient, the SAR-Harris re-
sponse inside the ship region is small. In this condition, the SAR-SIFT keypoint detector
cannot extract keypoints inside the ship region. While the polarimetric scattering difference
is significant inside the large ship, as shown in Figure 3e, the PolSAR-Harris response
function still has a high response value inside the large ship.
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Figure 3. Synthetic data and keypoint detection results: (a) Pauli pseudo-color image; (b) ground
truth image; (c) keypoint detection result of PolSAR-SIFT keypoint detector shown in the log SPAN
image, and the red circle indicates the location of the keypoint; (d) keypoint detection result of
SAR-SIFT keypoint detector shown in the log SPAN image, and the red circle indicates the location
of the keypoint; (e) PolSAR-Harris response function image of the large ship; and (f) SAR-Harris
response function image of the large ship.

Although PolSAR-SIFT keypoint detection can be achieved by constructing multi-scale
PolSAR-Harris function images, we found in experiments that the keypoints extracted from
a single scale PolSAR-Harris function image are sufficient to complete the ship detection
mission. Figure 4 presents the keypoint extraction results on the R2 region for a set of
keypoint detectors with the same threshold and different scale parameters αm = α0 · cm,
with m ∈ [0, . . . , 7], α0 = 1 and c = 21/3. Figure 4 shows that many false alarm keypoints
occur at small scale parameters as mentioned in [13]. When the scale parameter of the
keypoint detector is large, there are fewer false alarms detected. However, since the larger
scale parameter has a more significant smoothing effect on the PolSAR image, it also has
missed detections on small and weak targets. According to the keypoint detection results in
Figure 4, we chose an appropriate scale parameter α = 2.51 for the following experiments.

Large ships tend to have some strong scattering points, and the PolSAR-Harris re-
sponse value of keypoints extracted near such scattering points will also be large. It is
not difficult to extract keypoints located on large ships by setting a suitable threshold
on the PolSAR-Harris response value. However, for a weak and small ship target, its
PolSAR-Harris response may be very close to that of sea clutter, so it is difficult for us
to choose an accurate threshold. To detect more weak and small objects, we set a lower
threshold. The threshold TPSH has been set to the maximum value of the PolSAR-Harris
response function multiplied by 10−5 in the following experiments. This parameter does
not need to be finely adjusted for different data, as long as it is small enough to detect all
small targets. The resulting false alarm keypoints will be removed by the patch variation
indicator in the subsequent step.
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Figure 4. Pauli pseudo-color image of R2 region and keypoint detection results of R2 region with
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(c) α = 1.25; (d) α = 1.58; (e) α = 2; (f) α = 2.51; (g) α = 3.17; (h) α = 4; and (i) α = 5.03.

4.1.2. Patch Variation Indicator

In order to filter out the keypoints located on the sea clutter, we introduced the patch
variation indicator we proposed before. Moreover, a filter operation based on the CFAR
threshold is given for the patch variation indicator in this paper.

Figure 5 shows similarity images of three ship pixels and three sea clutter pixels, which
are generated using our previous method [10], and Table 2 shows their Pvi values. It can be
seen in Figure 5 that the patterns of similarity images of the ship target and sea clutter are
different. The ship target pixels are different from the background, while the sea clutter
pixels are similar to the background. The patch variation indicator can reflect the contextual
information of a pixel, which is used to represent the patch pattern of the ship target pixel
and sea clutter pixel.

The patch size used in the patch variation indicator is set to 21 pixels in this paper
according to the size of the large ships. Figure 6 shows the histogram of the Pvi of the sea
regions in the synthetic data under different patch sizes. Figure 7 shows the probability
density function and the cumulative distribution function of the Pvi estimated by the KDE
method. It can be seen that the PDF and CDF curves of the Pvi of sea clutter under different
window lengths are very close. This means that the distribution of the Pvi of sea clutter is
not sensitive to changes with patch size. The threshold of Pvi is chosen from 1.2 to 1.4, and
the false alarm rate is around 0.0063 according to the CDF of the Pvi of sea clutter.
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Table 2. Pvi of the six pixels in Figure 5.

Pixel a b c d e f

Pvi 4.2882 3.9423 2.3387 0.1951 0.4723 0.2875
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Figure 7. (a) PDF estimation of Pvi and (b) CDF estimation of Pvi. The win in the figure represents
the patch size.

4.1.3. Detection Statistic

As mentioned before, the backscattering energy of the ship is dominated by the energy
of the double-bounce scattering. Figures 8 and 9 show several amplitude images of a small
ship and a large ship on different channels. As can be seen in Figure 9, the contrast of a
small target to sea clutter is higher in the HH − VV channel than in the other channels
and the contrast of a large target to sea clutter is higher in the HV channel than in the
other channels. Table 3 gives the peak signal-to-clutter ratios of the ship and sea clutter in
different channels. From these results, it can be seen that it is reasonable to set the detection
statistic to the ensemble average of |HH − VV|·|HV|.
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Figure 8. (a) Pauli pseudo-color image; (b) HH; (c) VV; (d) HV; (e) HH − VV; and (f) HH + VV.

Table 3. Peak signal-to-clutter ratios of the two ships in different image channels (SCR/dB).

Channel HH VV HV HH − VV HH + VV

Large ship 9.9 9.3 26.8 19.6 9.7

Small ship −1.3 −5.2 5.8 8.4 −6.6

For a keypoint detection statistic patch, the detection threshold is set according to the
value of the center pixel, namely the detection statistic value of the keypoint pixel. In this
paper, the threshold is set as the detection statistic value of the center pixel multiplied by
0.55 according to the experiment.
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Figure 9. Three-dimensional figure of different channels. The first row of each figure is a 3D display
of each channel. The second row of each figure is the 3D display of each channel in range direction
view. (a) HH; (b) VV; (c) HV; (d) HH − VV; and (e) HH + VV.

4.2. Results of Different Ship Detection Methods

In this section, R2, R3, R4 and R5 regions in Figure 2 are used for the performance evalu-
ation of different PolSAR ship detection methods. By observing the Pauli pseudo-color image,
we manually marked 34, 46, 21 and 21 potential ship targets in Figures 10a, 11a, 12a and 13a,
respectively. The strong ship targets are marked with rectangles and the comparatively
weak ship targets are marked with ovals.
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Figure 10. R2 regions: (a) Pauli pseudo-color image with potential targets manually marked. White 

rectangles indicate the strong targets and white ellipses indicate the comparatively weak targets. (b) 

Keypoints extracted by PolSAR-SIFT keypoint detector. (c–h) Detection results of the proposed 

method, the PNF, the PWF, the RS, the SD-LSMDRK and the SD-SLLIM, respectively. The main 

false alarms are marked by the red circles. 

Figure 10 shows the detection results of different methods in the R2 region. The pro-
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Compared with the traditional methods, such as the PWF, PNF and RS, the proposed 

method uses the semantic information of the corner shape structure on the ship in the 

PolSAR image, and extracts the corner points in the image through the PolSAR-SIFT key-

point detector. This method eliminates the sea clutter regions that do not contain corner 

shape structures and locates the potential ship target regions. The traditional methods 

present a few more FAs. The proposed method achieves comparable performance with 

Figure 10. R2 regions: (a) Pauli pseudo-color image with potential targets manually marked. White
rectangles indicate the strong targets and white ellipses indicate the comparatively weak targets.
(b) Keypoints extracted by PolSAR-SIFT keypoint detector. (c–h) Detection results of the proposed
method, the PNF, the PWF, the RS, the SD-LSMDRK and the SD-SLLIM, respectively. The main false
alarms are marked by the red circles.
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Figure 11. R3 regions: (a) Pauli pseudo-color image with potential targets manually marked. White
rectangles indicate the strong targets and white ellipses indicate the comparatively weak targets.
(b) Keypoints extracted by PolSAR-SIFT keypoint detector. (c–h) Detection results of the proposed
method, the PNF, the PWF, the RS, the SD-LSMDRK and the SD-SLLIM, respectively. The main false
alarms are marked by the red circles.
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Figure 12. R4 regions: (a) Pauli pseudo-color image with potential targets manually marked. White 
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Keypoints extracted by PolSAR-SIFT keypoint detector. (c–h) Detection results of the proposed 
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Figure 12. R4 regions: (a) Pauli pseudo-color image with potential targets manually marked. White
rectangles indicate the strong targets and white ellipses indicate the comparatively weak targets.
(b) Keypoints extracted by PolSAR-SIFT keypoint detector. (c–h) Detection results of the proposed
method, the PNF, the PWF, the RS, the SD-LSMDRK and the SD-SLLIM, respectively. The main false
alarms are marked by the red circles.
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Figure 13. R5 regions: (a) Pauli pseudo-color image with potential targets manually marked. White 

rectangles indicate the strong targets and white ellipses indicate the comparatively weak targets. (b) 

Keypoints extracted by PolSAR-SIFT keypoint detector. (c–h) Detection results of the proposed 

method, the PNF, the PWF, the RS, the SD-LSMDRK, and the SD-SLLIM, respectively. The main 

false alarms are marked by the red circles. 

Compared with the detection performance on the RADARSAT-2 dataset, the detec-

tion performance of the SD-SLLIM method decreased on the AIRSAR dataset, as shown 

in Table 4. We think that there are two main reasons for this performance difference. One 

reason is that, as a supervised detection method based on the SVM classifier, the selection 

of training samples has a great impact on the detection performance, and it is hard to find 

the most representative training samples. Another reason is that the SD-SLLIM method 

performs energy normalization on the polarimetric covariance matrix when extracting 

features. The original intention of this is to use the difference in the polarimetric scattering 

mechanism between weak targets and sea clutter to improve the detection performance 

of weak targets. When the polarimetric scattering mechanism of the clutter in the scene is 
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To sum up, the proposed method had a robust detection performance on all three 
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to the supervised detection method SD-SLLIM in the R3 region, and shows the best per-

formance in the R2/R4/R5 regions. 

Figure 13. R5 regions: (a) Pauli pseudo-color image with potential targets manually marked. White
rectangles indicate the strong targets and white ellipses indicate the comparatively weak targets.
(b) Keypoints extracted by PolSAR-SIFT keypoint detector. (c–h) Detection results of the proposed
method, the PNF, the PWF, the RS, the SD-LSMDRK, and the SD-SLLIM, respectively. The main false
alarms are marked by the red circles.

We used the quality factor figure of merit (FoM) [5] to evaluate the ship detection
performance of the proposed method and other methods. The FoM considers both the
detection rate (PD) and false alarm rate (PFA) of the detection result. A higher FoM means
a better detection performance. The FoM is defined as follows:

FoM =
Ntd

Ngt + Nfa
(16)

where Ntd is the number of detected targets, Ngt is the number of ground-truth targets and
Nfa is the number of total false alarms. The FoM of different methods on the R2 and R3
regions are shown in Table 4.

The proposed PolSAR-SIFT ship detection method is compared with the PWF [1], the
RS [2], the PNF [3] and two state-of-the-art methods, namely the SD-LSMDRK [7] and the
SD-SLLIM [8]. As revealed by our previous work [6], the ship detection comparison of
these methods mainly lies in the ability to detect ships with a low ship–sea contrast, rather
than the ships with a high ship–sea contrast. Therefore, we chose appropriate detection
thresholds for the above methods, except for the SD-SLLIM, which implemented ship target
detection through a linear SVM classifier [8], to detect as many ships as possible. These
thresholds were carefully chosen to reach a trade-off between few false alarms (FAs) and
more detected ships.
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Table 4. Quantitative comparisons of different methods on R2/R3/R4/R5.

Data Method Ngt Ntd Nfa FoM

R2

Proposed

34

33 0 0.97
PNF 33 >20 <0.61
PWF 34 >18 <0.65
RS 30 >30 <0.47

SD-LSMDRK 33 3 0.89
SD-SLLIM 34 4 0.89

R3

Proposed

46

45 3 0.92
PNF 43 >30 <0.57
PWF 45 >30 <0.59
RS 42 >20 <0.63

SD-LSMDRK 45 5 0.88
SD-SLLIM 46 3 0.94

R4

Proposed

21

21 3 0.88
PNF 21 >15 <0.58
PWF 21 >30 <0.41
RS 21 >40 <0.34

SD-LSMDRK 18 4 0.72
SD-SLLIM 21 12 0.58

R5

Proposed

21

21 5 0.81
PNF 21 >30 <0.41
PWF 21 >30 <0.41
RS 19 >40 <0.31

SD-LSMDRK 18 2 0.78
SD-SLLIM 15 9 0.50

The scenes delineated by R2, R3, R4 and R5 in Figure 2 are displayed in
Figures 10a, 11a, 12a and 13a, which are the Pauli pseudo-color images of the R2, R3, R4
and R5 regions, respectively. The keypoint extraction results of the four regions are shown
in Figures 10b, 11b, 12b and 13b respectively. The detection results of different methods
on the R2, R3, R4 and R5 regions are displayed in Figures 10c–h, 11c–h, 12c–h and 13c–h
respectively, and the main FAs are marked by red ovals. Before ship detection, sea and land
segmentation is usually performed first, and then the land area is masked. Therefore, this
paper does not consider the land part when counting the number of false alarm targets.
There may be isolated strong scattering points in the sea clutter region that can cause false
alarms in target detection. This kind of false alarm may affect the evaluation of detection
performance in the object level. Therefore, morphological filtering has often been used
to remove these isolated strong points to reduce false alarms in many previous papers.
However, considering that the small ship may only be composed of a few pixels, this paper
does not perform morphological filtering on the binary image of the ship detection, which
may cause the missed detection of the small ship.

Figure 10 shows the detection results of different methods in the R2 region. The
proposed method has only 1 missed detection and no false alarms with the highest FoM
of 0.97, while other methods have more false alarms and lower FoMs, which verifies the
performance advantages of the proposed method. Figure 11 shows the detection results
of different methods in the R3 region. The proposed method has 1 missed detection and
3 false alarms with an FoM of 0.92, while the SD-SLLIM has a better performance with the
highest FoM of 0.94. Figure 12 shows the detection results of different methods in the R4
region. The proposed method has no miss detection and three false alarms with the highest
FoM of 0.88. Figure 13 shows the detection results of different methods in the R5 region. The
proposed method has no miss detection and five false alarms with the highest FoM of 0.81.

Compared with the traditional methods, such as the PWF, PNF and RS, the proposed
method uses the semantic information of the corner shape structure on the ship in the
PolSAR image, and extracts the corner points in the image through the PolSAR-SIFT
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keypoint detector. This method eliminates the sea clutter regions that do not contain corner
shape structures and locates the potential ship target regions. The traditional methods
present a few more FAs. The proposed method achieves comparable performance with the
supervised method SD-SLLIM in the R3 region and better performance in the R2, R4 and
R5 regions.

Compared with the detection performance on the RADARSAT-2 dataset, the detection
performance of the SD-SLLIM method decreased on the AIRSAR dataset, as shown in
Table 4. We think that there are two main reasons for this performance difference. One
reason is that, as a supervised detection method based on the SVM classifier, the selection
of training samples has a great impact on the detection performance, and it is hard to find
the most representative training samples. Another reason is that the SD-SLLIM method
performs energy normalization on the polarimetric covariance matrix when extracting
features. The original intention of this is to use the difference in the polarimetric scattering
mechanism between weak targets and sea clutter to improve the detection performance
of weak targets. When the polarimetric scattering mechanism of the clutter in the scene is
complex, this energy normalization operation may make the clutter that can be filtered out
by the energy difference indistinguishable.

To sum up, the proposed method had a robust detection performance on all three
data sets, two of which are spaceborne RADARSAT-2 PolSAR data and one of which is
airborne AIRSAR PolSAR data. Moreover, the sea condition of the AIRSAR data is relatively
more complex than that of the RADARSAT-2 data. Compared with the existing detection
methods, the method proposed in this paper shows a close detection performance to the
supervised detection method SD-SLLIM in the R3 region, and shows the best performance
in the R2/R4/R5 regions.

5. Conclusions

Ship detection, especially for small ships, using PolSAR images is a difficult and
interesting research field at present. Based on the experience of previous work, we find
that the SIFT keypoint detector can be used for ship detection in PolSAR data. However,
since the traditional SIFT keypoint detector is mainly for processing optical data, it is
not competent for the detection tasks in PolSAR data, such as the detection of small
targets. Therefore, inspired by the SAR-SIFT keypoint detection algorithm, we proposed
a keypoint detection algorithm suitable for ship detection in PolSAR data, and named it
the PolSAR-SIFT keypoint detector. To adapt to PolSAR data, we introduced an improved
gradient based on the Riemannian distance of exponentially weighted averages of the
polarimetric covariance matrix. The gradients by RDEWA are utilized to construct the
PolSAR-Harris function. Keypoint detection can be achieved using the PolSAR-Harris
response function image. Then, the keypoints located in the sea area are eliminated by
setting a CFAR threshold on the patch variation indicator of each keypoint, and the potential
target regions are selected according to the filtered keypoints. Finally, we obtained binarized
ship detection results with detection statistics constructed based on the double-bouncing
scattering components.

The performance of the proposed method was evaluated by two RADARSAT-2
datasets and one AIRSAR dataset. Compared with some existing methods, the proposed
method had much less false alarms and could achieve a better detection performance on
weak targets.

However, there are still many deficiencies in this work, and further investigation work
should be carried out in the following aspects:

(1) All the targets in the ground truth are manually marked based on the visual judgment
of the Pauli pseudo-color images and analysis of scattering patterns. In order to more
accurately verify the detection performance of the proposed method, in the future,
we will try to obtain more accurate ground truth through AIS verification, optical
picture-assisted verification, etc.
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(2) The two data sets used in this paper are both under low- and middle-sea conditions.
The method should be validated on more data with complex sea conditions in the
future, with a view to identifying deficiencies and improving them.
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