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Abstract: The energy-intensive industrial sector (EIIS) occupies a majority of global CO2 emissions,
but spatially monitoring the spatiotemporal dynamics of these emissions remains challenging. In
this study, we used the Chinese province with the largest carbon emissions, Shandong Province,
as an example to investigate the capacity of remotely sensed thermal anomaly products to identify
annual industrial heat source (IHS) patterns at a 1 km resolution and estimated the carbon emissions
of these sources using auxiliary datasets and the boosting regression tree (BRT) model. The IHS
identification accuracy was evaluated based on two IHS references and further attributed according
to corporate inventory data. We followed a bottom-up approach to estimate carbon emissions for
each IHS object and conducted model fitting using the explanatory strength of the annual population
density, nighttime light (NTL), and relevant thermal characteristic information derived from the
Visible Infrared Imaging Radiometer Suite (VIIRS). We generated a time series of IHS distributions
from 2012 to 2020 containing a total of over 3700 IHS pixels exhibiting better alignment with the
reference data than that obtained in previous work. The results indicated that the identified IHSs
mostly belonged to the EIIS, such as energy-related industries (e.g., thermal power plants) and heavy
manufacturing industries (e.g., chemistry and cement plants), that primarily use coal and coke as
fuel sources. The BRT model exhibited a good performance, explaining 61.9% of the variance in the
inventory-based carbon emissions and possessing an index of agreement (IOA) of 0.83, suggesting
a feasible goodness of fit of the model when simulating carbon emissions. Explanatory variables
such as the population density, thermal power radiation, NTL, and remotely sensed thermal anomaly
durations were found to be important factors for improving carbon emissions modeling. The method
proposed in this study is useful to aid management agencies and policymakers in tracking the carbon
footprint of the EIIS and regulating high-emission corporations to achieve carbon neutrality.

Keywords: thermal anomalies; boosting regression tree; industrial carbon emissions; DBSCAN;
Shandong Province

1. Introduction

Fossil fuel consumption is the dominant source of atmospheric greenhouse gas (GHG)
concentration increases, which are believed to be responsible for global climate warming
and its resulting negative impacts on human well-being, ecosystem health, biodiversity,
sea-level rise, and other public concerns [1–6]. According to an assessment report released
by the Intergovernmental Panel on Climate Change (IPCC), carbon emissions are sourced
from the energy-intensive industrial sector (EIIS), such as the energy (14.0 Gt, ~41.8%)
and industry (6.16 Gt, 18.4%) sectors, which together accounted for approximately 60.4%
of the total CO2 emissions in 2019 [7]. In China, these two sectors together accounted
for approximately 83% of the total CO2 emissions of 15.0 Gt [8]. Quantifying the spatial
patterns of the carbon emissions from these industries and tracking changes in the EIIS
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thus provides critical benchmark information for policymakers and management agencies
aiming to regulate the climate crisis [9,10]. However, regular inventory methods cannot be
applied to these industries due to the vast number of corporations present in this sector
as well as many of these corporations being located remotely and running irregularly. On
the other hand, there is an urgent need to improve the spatial and temporal resolutions of
GHG emissions data to support the achievement of carbon neutrality.

Energy-intensive industries (e.g., thermal power plants, the cement industry, and the
metal-smelting industry) are usually high polluters due to the fact of their burning of fossil
fuels, as this process can produce waste gas, wastewater, and heat anomalies in contrast
with the relatively cool surrounding environment. New opportunities for observing and
monitoring EIIS activities have arisen from recent advances and the inherent advantages in
thermal infrared remote sensing techniques, such as the high sensitivity of these methods
to surface heat anomalies [11,12], the capacity of continuous and up-to-date observations
obtained at relatively high resolutions, and the critically important objectiveness and con-
sistency of the resulting data. An increasing number of available thermal infrared sensors,
such as the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER), the Visible Infrared
Imaging Radiometer Suite (VIIRS), and instruments onboard the Landsat-8 and -9 satel-
lites, have enabled improved surface heat anomaly detection methods related to active
fires [13–17] and urban heat islands [18–22].

The application of space-borne thermal imagery or products for identifying and moni-
toring industrial heat sources (IHSs) through various approaches, such as spatial clustering
analyses [23–25], thermal anomaly indices [26,27], and object-oriented approaches [28], has
also gained increasing interest. Although the IHS identification accuracy differed among
these past studies, the distinct temperature differences observed between industrial process-
ing operation areas (e.g., boilers, blast furnaces, and chimneys) and the cool background
can enable the precise detection of IHS objects [26]. The spatial distributions, amounts, and
temporal variations in IHSs derived from these past efforts form a critical foundation on
which our understanding of how anthropogenic industrial activities influence the envi-
ronment at various scales can be improved. However, research regarding the attribution
of remotely sensed IHS objects remains problematic and lacks evaluations of which types
of industrial sectors can be detected [28]. Though some studies have determined that the
industrial sectors, which correspond to the remotely sensed IHS objects that can be ob-
served through visual interpretations [23,27,28], may have overlooked the fact that several
industrial sectors may coexist within a given remotely sensed IHS polygon.

Furthermore, the spatially explicated tracking of carbon emission footprints is a prag-
matic and urgent requirement for environmental governing agencies, but this work remains
challenging. State-of-the-art remote sensing techniques have been effectively applied to
retrieve CO2 concentrations using CO2-observing satellites (e.g., the GHG Observing Satel-
lite (GOSAT), Orbiting Carbon Observatory 2 (OCO-2), and China’s TanSat) [29–34] and
indirectly estimate carbon emissions by combining nightlight observations with indicators
that can reflect socioeconomic activities [35–37]. Remotely sensed thermal anomalies have
also been applied to estimate carbon emissions from global wildfires and volcanic eruption
events [38–42], but the linkages between these anomalies and industrial-induced carbon
emissions have rarely been explored. Integrating remotely sensed IHSs with fine-scale
governmental inventory data may provide new insights that can improve the existing GHG
emission estimation methodologies.

Therefore, the objectives of our study were two-fold: (1) to determine the explicit
types of IHSs that can be detected using VIIRS thermal products and auxiliary datasets
and (2) to evaluate the feasibility of estimating carbon emissions by combining remotely
sensed IHSs, nightlight observations, and machine learning approaches. We used heat
anomaly data derived from the VIIRS active fire product to recognize IHSs based on a
spatial cluster analysis approach and auxiliary dataset. We used the corporation-level
position of interest (POI) data features with thoroughly official attributive information
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to verify the potential strength of the remotely sensed heat anomalies to depict the EIIS.
The boosting regression tree (BRT) model was employed to quantify the predictive power
of the utilized combination of remotely sensed variables and the official carbon emission
footprint inventory to obtain a wall-to-wall map of carbon emissions in Shandong Province,
China. The spatially explicit and straightforward modeling proposed in this study is the
first attempt to link the remotely sensed IHS objects with their in situ carbon emissions.
The combination of physically and empirically based approaches is novel and easy to
generalize with other study areas. This can play a vital role in refining the estimation of
industrial carbon emissions and forming a consistent approach for tracking carbon footprint
dynamics.

2. Materials and Methods
2.1. Study Area

We chose Shandong Province of China as our study area, because it has the largest
amount of carbon emissions among all Chinese provinces reported in recent years and has
the highest availability of corporation-level inventory data regarding carbon emissions and
industrial sector attributes for use in this study (Figure 1). The gross domestic product
(GDP) of Shandong Province was over USD 1 trillion (RMB ~8.31 trillion) in 2021, ranking
within the top 3 provinces with the highest GDPs in China. The population of this province
is over 100 million people, and the land area is 1.558 × 104 km2. This province is also well
known for its rapid precision farming development, especially regarding vegetable and
grain cultivation. At the same time, the province represents a typical Chinese industrial
structure dominated by the manufacturing industry mixed with heavy energy-intensive
industries such as the power generation industry, steel industry, chemical industry, and
mineral and energy extraction industry. The widely distributed farmlands within this
province can provide a cool background with which IHSs can be recognized according to
thermal anomaly and nightlight datasets.
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Change Initiative Land Cover (CCI-LC) product.
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2.2. Data Sources and Materials
2.2.1. VIIRS-Derived Thermal Anomaly Product

We obtained the Suomi National Polar-Orbiting Partnership (NPP) satellite-derived
VIIRS active fire product representing the 2012–2020 period from the Fire Information for
Resource Management System (FIRMS) data center under the administration of the Na-
tional Aeronautics and Space Administration (NASA). This product can provide the global
spatial distribution of thermally anomalous pixels (TAPs) at a 375 m spatial resolution,
synthesized and distributed annually [14]. The dataset also provides a series of detailed
thermal characteristics and attributes including the spatial locations of the observations, the
brightness temperatures of the VIIRS I-4 and I-5 channels, the acquisition dates and times,
the fire radiative power (FRP), and other attributive characteristics related to the confidence
level and inferred fire type. In this study, we obtained a total of 0.214 million TAPs from
the VIIRS active fire product (Figure 2). We retained all TAPs for the subsequent analysis
considering that IHSs may be characterized by relatively low brightness temperatures and
may have low confidence for active fire classification in the product.
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Figure 2. Spatial distribution of raw thermally anomalous pixels (TAPs) in Shandong Province. The
total number of TAPs that fell in each 1 × 1 km pixel was logarithmically transformed to improve the
visual effect. Two snapshots represent the TAP distribution in Zibo (A) and Linyi (B) cities, which
feature the petrochemical industry and manufacturing industry, respectively.

2.2.2. ESA_CCI Land Cover Dataset

To determine the land cover type corresponding to each TAP, we used a global annual
land cover time series dataset with a 300 m spatial resolution named the European Space
Agency (ESA) Climate Change Initiative Land Cover (CCI-LC) product. The land cover
types included in this dataset follow a classification scheme including 33 land cover types
with an overall global accuracy of 71.1% [43]. We extracted the bare area and settlement
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categories as the mask to filter out TAPs that were related to forest fires and agricultural
residual burning (see Figure 1). To effectively align these data with the temporal information
characterizing the thermal anomaly time series, we obtained land cover maps from two
versions of the ESA_CCI_LC product. The EAS_CCI_LC V2.0.7 product was used to
cover the period from 2012 to 2015, and the EAS_CCI_LC V2.1.1 product was used for the
2016–2020 period. The annual mask area, among which the settlement class accounted for
over 99.8%, tended to increase year by year from 1.28 × 104 km2 in 2012 to 1.79 × 104 km2

in 2020 (see Appendix A Figure A1).

2.2.3. Remotely Sensed Nighttime Light (NTL) and Gridded Population Data

It is well established that nighttime light (NTL) is a useful indicator that reflects the
intensity of socioeconomic activities [44]. Thus, we assumed that NTL information, the
spatiotemporal pattern of which can be quantified explicitly thanks to recent advances in
satellite sensors, may be very closely linked with carbon emissions due to the fact of its
strong explanatory power for many industrial-related activities such as energy consump-
tion [45–47]. We used a harmonized version of the global 1 km annual NTL time series
(1992–2020) product generated by Li et al. [48] to quantify the accumulated radiance of
the recognized IHSs. This NTL product was sourced from the satellite sensors of the Op-
erational Linescan System (OLS) of the Defense Meteorological Satellite Program (DMSP)
and the VIIRS on the Suomi NPP. The NTL time series data representing the 1992–2013
period were derived from the intercalibrated observations of the DMSP-OLS sensor, while
the 2014–2020 NTL time series data were simulated from the VIIRS observations using a
harmonization process. In this study, we used the 2012–2020 NTL time series to support
our analysis. We applied a nearest-neighbor interpolation approach to extract the NTL
values corresponding to the recognized IHS pixels.

Population density is another ancillary datum that has frequently been used to predict
carbon emissions in previous studies [49,50]. The distribution of the human footprint is
assumed to be correlated with industrial energy consumption and can thus be applied
to better describe carbon emissions statistically. To obtain a spatiotemporally consistent
population census for the 2012–2020 period, we used a gridded world population product
to estimate the human footprint intensity [51]. This product was a high-resolution (~90 m)
annual global population distribution time series covering the period from 2000 to 2020. A
random forest model, a type of machine learning algorithm, was combined with a collection
of harmonized covariates related to factors such as topography, climate, land cover, and
traffic to generate wall-to-wall population density predictions [51]. For each 90 × 90 m
grid, the prediction was subsequently applied as a weighting surface and integrated with
the dasymetric function to redistribute the census population counts. We then applied a
spatial aggregation approach to calculate the total population count corresponding to each
recognized HIS pixel in the corresponding year.

2.2.4. Reference IHS Patches

To verify the accuracy of the identified IHS objects, we randomly sampled 864 IHS
polygons as a type of reference data (Figure 3). We used the high-resolution imageries
embedded in Google Earth Pro software as the base maps to depict the polygon outlines
according to our empirical knowledge and understanding of the local industrial sectors
and their characteristics reflected in remote sensing imageries. For example, we used blast
furnaces and chimneys as important targets when determining the locations of IHS objects.
In addition, we also obtained the global IHS product published by Liu et al. [28] covering
the period from 2012 to 2016 (denoted as Liu_2018 hereafter). The IHS objects in this
product are composited in spatial polygon format (see Appendix A Figure A1). Although
this product was developed using VIIRS-derived active fire time series, the polygons were
organized together with no temporal information provided. We noticed that the Liu_2018
dataset omits many HIS objects in our study area, but this product was still the most reliable
open-access IHS dataset available in the present case. The overall accuracy of this product
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is rather high (~77%) when determining subcategorical industry sectors such as cement
plants and steel plants. Here, we applied these two datasets as benchmarks to validate the
accuracy of the IHSs identified in our study. Because these datasets cannot be effectively
aligned with the corporation-level inventory period, we did not use them in the carbon
emission analysis performed in the present study.
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2.2.5. Corporation-Level Inventory Data

To verify the attributes of the remotely sensed IHS objects and to establish a carbon
emissions estimation model, we obtained a portion of the annual corporate inventory data
credited by the official authorities on environmental pollution monitoring. These data
consisted of information characterizing the annual consumption of fuels (i.e., coal, coke,
and natural gas) and electric power from 2016 to 2020 by each corporation that fell in the
spatial extent of the identified IHS objects focused on in this study. The corporations could
be classified into three main sectors according to the International Standard Industrial Clas-
sification of All Economic Activities (UNSD: 2006) including sectors related to the mining
industry (denoted as Sector_B), the manufacturing industry (denoted as Sector_C), and
the electricity, heat, gas, and water production and supply industry (denoted as Sector_D).
These three main sectors could be further divided into 41 subcategories. Summarized
descriptions of these subcategories are provided in Appendix A Table A1.

For each corporation, we calculated the carbon emission amount (in terms of CO2)
following the IPCC method. The equation can be expressed as follows:

ACE =
44
12

4

∑
i=1

KiEi (1)



Remote Sens. 2022, 14, 2901 7 of 24

where ACE is the amount of carbon emissions; i represents the fuel or energy type; K is
the carbon emission coefficient of a given type of energy consumption; E is the amount of
fuel or energy consumed. The 44/12 term is the molar ratio by which CO2 is converted to
C. The conversion factor of different fuel types to standard coal equivalent and emission
factors can be found in Appendix A Table A2.

For a given IHS object, we obtained the corporations that were spatially located within
the object according to the corporation coordinates. We then calculated the total annual
carbon emissions from these corporations and assigned the resulting value to the IHS object.
We noted that the actual size of some corporations may be spatially larger than the spatial
size of the corresponding IHS objects, but we could not decompose the carbon emission
values to match the entire areas of these corporations due to the lack of such information;
thus, we roughly assigned the total carbon emission values to the nearest IHS objects.

2.3. Workflow

We graphically summarized our workflow into two main steps (Figure 4). The first
step involved identifying and characterizing the IHSs from the VIIRS thermal anomaly
and auxiliary datasets by combining a spatial cluster algorithm and a series of spatial
processing methods. We evaluated the accuracy of the identification results by comparing
them with the reference data. Then, in the second step, we established a statistical model
for estimating the carbon emissions of the identified IHSs. After the model training and
validation steps, we finally interpreted the model outputs and analyzed the explanatory
powers of the applied environmental variables.
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2.4. Data Processing and Analysis
2.4.1. Identification of IHSs

The VIIRS thermal anomalies were observed in the form of discrete points. We
reasonably assumed that these anomaly points should collocate with the core of the heat
source and be spatially clustered in a small area when using long time series observations,
given that industrial heat releases are stable and continuous. Such patterns can support
the use of the spatial cluster analysis approach when grouping the spatially adjacent
anomaly points into an object. Here, we utilized an unsupervised learning algorithm
(i.e., the density-based spatial cluster applications with noise (DBSCAN) approach [52])
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to distinguish whether a given point belonged to a cluster defined as the maximum set
of densely connected points. This approach can be used to discover clusters of different
shapes and sizes from a large amount of data containing noise and outliers.

The DBSCAN approach uses the minimum number of points (Min_Pts) and the
maximum radius of the neighborhood (EPS) to justify the density reachability and density
connectivity of a given point to a cluster [53]. The density reachability establishes that
a point is reachable from another point if it lies within a particular distance (i.e., EPS)
from the first point. Connectivity is a transitivity-based chaining approach that is used to
determine whether points are located within a particular cluster. This approach randomly
selects a point and estimates the reachability of all points from the selected point under the
constraints imposed by the EPS and Min_Pts values. If the number of adjacent points is
more than Min_Pts, the selected point is defined as a core point of a cluster; otherwise, it is
labeled as a noise point, and the process moves to the next point. This process continues
until all points have been classified. Because the spatial sizes of individual IHSs usually
do not reach the kilometer level or the point density of annual observations, we set the
Min_Pts value to four and the EPS value to 1.5 km. The DBSCAN approach is robust to
noise, insensitive to the cluster shape, and has a rather high computing speed [54,55].

2.4.2. Characterization of IHSs

We used the annual VIIRS thermal anomaly product as the input data and generated a
series of raw clusters that may have contained other thermal sources such as forest fires,
agricultural straw burning, or fire accidents. The annual ESA_CCI_LC product was used to
filter out the thermal anomaly points that fell within regions of vegetation-dominated land
cover types. Due to the coarse resolution of the VIIRS data, we carried out a filtering process
following the cluster analysis to prevent the potential omission of points located along edge
regions. We converted the spatial points to spatial pixel objects at a 1 km resolution using
the spatial overlay approach. We then characterized these pixels by spatially aggregating
the corresponding thermal points and calculating the point number, mean brightness
temperature, mean FRP, and duration. Some pixels contained very sparse thermal points
but featured long durations due to the presence of uncertain factors such as incorrect land
cover mapping or seasonal agricultural straw burning. We thus set decision rules based on
the point number (>10) and duration (>30 days) to further mitigate these uncertainties. We
acknowledge that such a hard classifier may remove some IHSs from the analyzed data,
but it should be noted that the retained data had high confidence and should be focused on
in practical applications.

2.4.3. Accuracy Assessment of IHSs

We used the two aforementioned reference IHS datasets to validate the accuracy of
our results. We further processed our results to solve the issues regarding temporal and
spatial inconsistencies between the datasets. To ensure that the temporal periods matched
the Liu_2018 dataset, we chose our IHS results from 2012 to 2016 and generated a mosaic
to improve the temporal consistency between the two datasets. For the sample data, we
generated a full 2012–2020 composite of our IHS results to promote temporal consistency
between the two datasets. Because the two reference datasets both represented partial
samples compared to the true IHS information, we did not think they could be used to
fully evaluate the accuracies of the IHS results in terms of the commission and omission
errors. Therefore, we used two measures to evaluate the accuracy of our identifications. At
the patch level, we calculated the rate of the overlapping area (ROA) for each referenced
IHS object, obtained the basic relevant statistics, such as the mean values and standard
deviations, and constructed a histogram to evaluate the patch-level accuracy. For the
whole dataset, we calculated the percentage of referenced IHSs that overlapped with our
identified results.

To determine the industrial sectors corresponding to the identified IHS objects, we did
not assign categories or subcategories to the IHS objects as has been conducted previously.
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As we noticed that one remotely sensed IHS object can cover multiple corporations that
belong to different industrial sectors, we used all corporations covered by each IHS and ob-
tained statistics related to the corporation abundances from 2016 to 2020. We subsequently
analyzed the composition of the validated IHSs to address our first objective.

2.5. Estimation of Industrial Carbon Emissions

To ensure consistency with the IHS analysis, we also converted the corporate carbon
emissions inventory into a raster dataset at a 1 km resolution. We followed the bottom-up
approach to generate a carbon emission raster in which the carbon emissions of a given
pixel were assigned using the sum of all corporations within the corresponding area. The
overlapping pixels between the remotely sensed IHSs and carbon emission grids were then
extracted and utilized as the training data in the subsequent modeling work. The summary
statistics and descriptions of explanatory variables for the carbon emission modeling can
be seen in Table 1.

Table 1. Summary statistics and descriptions of explanatory variables for the carbon emission
modeling.

Variable Abbreviations Description Mean ± SD Data Source

Pop Population density per unit area. 1706.238 ± 157.819 [51]
NTL The maximum nighttime light radiance. 42.755 ± 2.689 [48]

Num_TAPs Number of TAPs that fell in the IHS pixel. 26.474 ± 2.776 [14]

Duration The period length in days between the start and
end dates of all TAPs that fell in the IHS pixel. 201.106 ± 6.933 [14]

FRP Accumulated fire radiative power per unit area
derived from all TAPs the fell in the IHS pixel. 42.062 ± 4.822 [14]

BT4 Accumulated brightness temperature of the I-4
Channel derived from all TAPs in the IHS pixel. 8150.194 ± 851.2 [14]

BT5 Accumulated brightness temperature of the I-5
Channel derived from all TAPs in the IHS pixel. 7586.415 ± 799.994 [14]

2.5.1. BRT Modeling

Since the remotely sensed features can only provide parameters that are related to
carbon emissions, the carbon emission estimation via remote sensing is overwhelmingly
empirical. Here, we applied the BRT algorithm to establish the empirical relationships. We
did not choose deep learning algorithms, because their “black box” nature would limit us
to interpreting those empirical relationships and could be supported in the BRT algorithm.
The BRT model is a tree-based ensemble learning algorithm proposed by Elith et al. [56].
This algorithm is robust for processing nonlinear relationships between explanatory and
response variables. In the model, the boosting algorithm is integrated with the decision
tree model to enhance the predictive ability of the model by combining weak models into a
relatively strong model. The boosting algorithm can help the BRT model create weighted
trees to improve the subsequently constructed trees, meaning that the model takes into
account the error in the prediction of the previous tree when fitting the next tree. By using
this sequential procedure, the accuracy of the model results is continuously improved. In
addition, the model has a relatively strong tolerance to unbalanced data with skewness,
missing values, and complex interactions among predictors. It is widely reported that the
BRT model has a stronger regression power than most other machine learning algorithms,
such as the well-known random forest model and the support vector machine algorithm,
in the same application scenarios.

The BRT model has two important parameters that must be defined by the user: the
so-called tree complexity and the learning rate. The tree complexity controls the number
of branches in each tree, and the learning rate determines the contribution of each tree to
the growing model. Together, these parameters determine the number of trees required
to obtain the optimal prediction. We followed the parameter setting recommendations
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proposed by Elith, Leathwick, and Hastie [56], setting the tree complexity to 3 and the
learning rate to 0.01 to allow the model to grow a sufficient number of trees. We used the
relative importance as an indicator to quantify the contribution of predictors aiming to
improve the model explanatory strength to the variance in carbon emissions.

2.5.2. Accuracy Assessment

The BRT model’s performance was evaluated by comparing the model-fitted data with
the gridded corporate inventory data. We calculated the variance explained (R2) and the
index of agreement (IOA) to evaluate the goodness of fit of the model results. In addition,
we also calculated the root mean squared error (RMSE) and the mean absolute percentage
error (MAPE) as criteria to assess the errors in the results. These metrics can be calculated
using the following equations:

R2 =

 ∑N
i=1
(
Yo,i −Yo

)(
Ym,i −Ym

)√
∑N

i=1
(
Yo,i −Yo

)2
∑N

i=1
(
Ym,i −Ym

)2

2

(2)

IOA = 1− ∑N
i=1(Yo,i −Ym,i)

2

∑N
i=1
(∣∣Yo,i −Yo

∣∣+ ∣∣Ym,i −Yo
∣∣)2 (3)

RMSE =

√
1
N ∑N

i=1(Yo,i −Ym,i)
2 (4)

MAE =
1
N ∑N

i=1|Yo,i −Ym,i| (5)

where Yo is the observation value and Ym is the predicted value; Yo is the average observa-
tion values and Ym is the average predicted value; N is the number of observation data.

3. Results
3.1. Identification of IHSs

We identified a total of 4031 IHS pixels (1× 1 km) containing approximately 0.101 million
TAPs identified from 2012 to 2020 (Table 2). The annual number of IHS pixels was signifi-
cantly correlated with the corresponding number of raw TAPs (r = 0.64, p < 0.02). As a result
of government control on agricultural straw burning, the raw TAPs showed a remarkable
decreasing trend. However, we found that the retained TAPs used to identify IHSs did not
represent a statistically significant trend. In contrast, the fraction of retained TAPs exhibited
a significantly increasing trend as the number of raw TAPs decreased (r = −0.88, p < 0.02),
suggesting that the control of agricultural straw burning helped reduce the uncertainties
associated with thermal anomalies.

The DBSCAN clusters, from which the IHS pixels were obtained, also decreased
along with the dynamics of the annual raw TAPs (r = 0.98, p < 0.02), ultimately causing a
reduction in the number of raw IHS pixels. This procedure excluded approximately 52% of
the raw TAPs and generated an average of 541 clusters each year. The further thresholding
procedure filtered approximately 42% of the raw IHS pixels, comprising pixels that could
not meet the decision rules. We generated accumulated TAPs for each IHS pixel and found
that over 20% contained more than 1000 points between 2012 and 2020 (Figure 5A). The IHS
pixels were sparsely distributed in general but exhibited a clustered pattern in the south
and central parts of the province. Approximately 30% of the IHS pixels were identified
more than three times, and approximately 9.4% of the total number of IHS pixels were
identified every year (Figure 5B).
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Table 2. Statistical variations in thermal anomaly pixels (TAPs), clusters, and industrial heat source
(IHS) objects during processing.

Year
Thermal Anomaly Pixels

Cluster
Industrial Heat Source Pixels

Raw Retained Fraction Raw Retained Fraction

2012 28,797 10,583 0.37 684 775 389 0.502
2013 28,110 11,886 0.42 699 821 504 0.614
2014 29,346 13,138 0.45 728 876 483 0.551
2015 26,498 11,172 0.42 699 908 460 0.507
2016 21,070 9976 0.47 452 681 425 0.624
2017 21,196 10,605 0.50 459 595 350 0.588
2018 20,185 11,560 0.57 357 637 399 0.626
2019 20,249 10,836 0.54 413 592 351 0.593
2020 18,242 10,087 0.55 377 553 363 0.656

Mean
(SD)

23,744
(4364)

11,201
(1001)

0.48
(0.07)

541
(157)

715
(133)

414
(58)

0.58
(0.05)
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3.2. Comparison with the Referenced IHSs

Regarding the relatively coarse resolution of our analysis, the IHS pixel boundaries
did not strictly align with the spatial extent of each industrial corporation; however, we
still found that the IHS pixels could cover most areas corresponding to these corporations,
especially the locations from which heat was released (see Appendix A Figure A2). To obtain
an unbiased accuracy estimation, we compared our results with two types of benchmark
IHS datasets. We used only the IHS pixels corresponding to the 2012–2016 period for
the comparison with the Liu_2018 data but used all IHS pixels for the comparison with
the sample data to guarantee that the comparisons were carried out on consistent time
scales. Any duplicate IHS pixels that were identified multiple times were removed before
the comparisons.

We found that 150 out of 193 patches (OA = 77.7%) from the Liu_2018 data (Figure 6A)
and 797 out of 864 patches (OA = 92.2%) from the sample data (Figure 6D) overlapped
with our IHS pixels. We also compared the two reference datasets as a further reference,
although they represented different periods. We identified 307 patches (OA = 35.5%) from
the sample data that overlapped with the Liu_2018 data (Figure 6B), while as a comparison,
the IHS pixels of 2012–2016 (OA = 82.4%) overlapped with 712 patches (Figure 6C). We
applied an ROA ≥ 0.75 as a criterion to evaluate the state of IHS overlap. The results
showed that 84.8% of overlapped patches (with 2012–2020 IHS pixels, Figure 6D) from the
sample data and 58% of overlapped patches (with 2012–2016 IHS pixels, Figure 6A) from
Liu_2018 met the standard. Approximately 83.1% overlapped patches (with 2012–2016
IHS pixels, Figure 6C) and 61.3% overlapped patches (with Liu_2018, Figure 6B) from the
sample data met the standard.
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Figure 6. The density histogram shows the patch-level rate of the overlapping area (ROA) that was
cross-validated between the Liu_2018 data and the IHS pixels of 2012–2016 (A), the sample data and
the Liu_2018 data (B), the sample data and the IHS pixels of 2012–2016 (C), the sample data and
the IHS pixels of 2012–2020 (D). N represents the number of overlapping reference IHS patches; OA
represents the overall accuracy in terms of the fraction of validated patches from the reference data.
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3.3. Comparison with Corporate Inventory Data

According to the spatial extents of the remotely sensed IHS pixels (2012–2020), we
obtained a total of 5443 corporations with explicit attributes corresponding to the industrial
sectors and energy consumption amounts (Table 3). Integrating IHS pixels from multiple
years can increase the coverage area and thereby increase the number of cross-validated
corporations. We found that the IHS pixels contained similar manufacturing industry (i.e.,
Sector_C) and energy-related industry (i.e., Sector_D) percentages, suggesting very similar
capacities of the thermal anomalies for detecting IHS objects from these two domains.
Because the manufacturing industry (i.e., Sector_C) occupied approximately 95.0% of
the total number of analyzed corporations, it is reasonable that most of the identified
corporations belonged to Sector_C.

Table 3. Comparison of cross-validated corporations and their compositions (R).

Sector
IHS (2016–2020) IHS (2012–2016) Liu_2018 (2012–2016) Total Inventory

CorporationsCount Percent Count Percent Count Percent

B 5 100% 0 0 1 20.0% 5
C 1579 65.5% 2068 85.7% 904 37.5% 2412
D 97 62.2% 123 78.8% 44 28.2% 156

Total 1681 65.3% 2191 85.2% 949 36.9% 2573

As shown in Figure 7, the manufacturing of nonmetallic mineral products (e.g., ce-
ment, glass, graphite, and carbon products) and the chemical industry were the top two
subcategories among the identified Sector_C corporations, followed by the smelting and
pressing of ferrous metals (e.g., steel produce), fuel-processing industries (e.g., petroleum
and coal), and the manufacturing of metal products. Electric heat production (i.e., thermal
power plants) was the primary subcategory representing Sector_D.

3.4. BRT Modeling Performance Evaluation

We used 661 IHS pixels that overlapped with the gridded carbon emission dataset
characterizing the 2016–2020 period to establish the regression model. The results showed
that the BRT model performed reasonably well, as approximately 61.9% of the variance
was explained, and the IOA was 0.83, indicating a high goodness of fit between the model
predictions and corporate inventory data (Figure 8A). Across the five years, the model
accuracy in terms of the MAPE was 0.16, while the RMSE was 0.92. Figure 8B shows
the relative importance rankings of all explanatory variables. As the figure shows, the
population density (22.2%) and two thermal anomaly related features, namely, the duration
(19.5%) and the FRP (19.6%), as well as the nighttime light (13.2%), had larger contributions
to the predictive power of the BRT model than the other three analyzed variables.
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4. Discussion

In this study, we evaluated the capacity of remotely sensed thermal anomaly products
to identify IHSs. Based on the DBSCAN approach and a land cover dataset, we generated
the wall-to-wall IHS distribution in Shandong Province and generally found that the
modeled IHS results were well aligned with the IHSs in the two independent reference
datasets and were confirmed by high-resolution satellite imagery. These IHS pixels were
mostly located in the outskirts of cities (Figure 9), but some were spatially continuous within
cities dominated by manufacturing (e.g., Linyi city, Figure 9E). Isolated IHS objects were
generally easy to detect due to the relatively cool background conditions and clustered
thermal anomaly patterns. In most cities, the IHS objects located in downtown areas
were rarely represented in the reference data but were well captured in our analysis. We
considered that this may have been because our analysis was conducted at a larger grain
size than the reference data, which will increase the opportunity to retain more fire spots in
the identification.
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We also considered some factors that may have influenced the consistency between
our results and the reference datasets. First, because we filtered out thermal points located
in farmlands and forests according to the ESA_CCI land cover product, some IHS patches
in the Liu_2018 product located in farmlands and forests were not identified in our study.
Second, the accuracy of our IHS identification results was partially limited by the quality of
the land cover mapping, but such a filtering process was useful for reducing the confusion
and uncertainty that arise from biomass burning during wildfires or anthropogenic fires.
Since the DBSCAN approach was physically based and the raw data (i.e., fire spots and
landcover maps) could be obtained easily for other regions, our methods can be expanded
directly to other regions. In addition, in contrast to some other studies in which combined
datasets covering multiple years of observation were used [23,25,28], our approach to
mapping IHS annually was straightforward. This method can be beneficial in aiding
policymakers who track the temporal dynamics of IHS abundance, but we admit that the
consequently shorter period decreases the accumulation of thermal points around any
given IHS and increases the potential for omission errors.

Through a comparison with corporate-level inventory data, our results clearly showed
that the identified IHS pixels mostly belonged to the EIIS, especially to the heavy indus-
tries mainly belonging to the chemical industry and the manufacturing of nonmetallic
mineral products such as the cement, glass, graphite, and carbon production industries.
Corporations of Sector_C accounted for most of the total carbon emissions due to the large
number of individual corporations in this sector, but the individual corporations of Sec-
tor_D had remarkably higher mean annual emission amounts than other industrial sectors
(Figure 10A). From the perspective of fuel sources, coal and coke consumption contributed
the majority of the carbon emissions associated with the identified IHSs (Figure 10B). The
EIIS corporations that use coal and coke as fuel resources usually emit considerable waste
heat into the environment during their processing operations [57], while corporations that
rely primarily on electricity to support their operations may generate little heat waste,
and facilities such as constructions or shelters can also shield industrial heat emissions.
Although our results can cover these corporation components, we believe that the spatial
points identified on behalf of the spatial locations of these corporations fell in the IHS pixels
by chance or were not specifically identified as members of the EIIS. Thus, we concluded
that the identified IHS pixels could capture the EIIS corporations that contributed to the
majority of the carbon emissions.

The BRT model explained a considerable amount of variance in the total carbon emis-
sions estimated using the bottom-up inventory approach, suggesting that it is feasible to
estimate carbon emissions by combining machine learning approaches with environmental
variables that are linked with carbon emissions. We selected explanatory variables that
were sensitive to social economics and human activity footprints for model training. The
training data predictors were obtained from global gridded products that were carefully
investigated and produced with broad public credibility and are well accepted by the aca-
demic community. Benefiting from the strong ability of the BRT model to handle complex
and nonlinear relationships between predictors and response variables (Figure 11), we
found that the population density, FRP, and NTL showed negative relationships and no-
table nonmonotonicity with carbon emissions, while the tendency curve between duration
and carbon emissions showed a positive relationship.
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Figure 10. Comparisons of fuel and energy consumption, total carbon emissions (A), and mean
annual carbon emissions (B) among different industrial sectors. The total carbon emissions of
Sector_B are relatively low in (A) since the number of identified IHS in Sector_B was very small
compared with that in Sector_C and Sector_D. The high variation of mean annual carbon emissions
in (B) was caused by some high-emission corporations.

For the population density, we generally observed a decreasing carbon emissions
trend as the population number increased (Figure 11A). This result was consistent with the
general reality that high-emission industries are usually located in urban periphery regions,
where the population density is not as high as that in downtown areas where low-emissions
corporations are usually distributed. Regarding the duration, we found that IHS objects
with relatively long thermal anomaly durations led to increased carbon emissions; however,
we also noted that this relationship curve fluctuated considerably (Figure 11B). We believe
the underlying reason for this fluctuation was that multiple corporations are often located
within a given IHS pixel, and the operating temperature of corporations belonging to
different industrial sectors may differ substantially in their processing periods [58]. These
discrepancies may introduce uncertainties, as we could not attribute the identified thermal
anomalies to specific corporations. The mean FRP, a measure of thermal emissivity, and
the observed thermal anomaly duration were found to be important variables that could
improve the fit of the carbon emissions (Figure 11C). These two thermal-related variables
represented rather complex response curves. Ignoring the rugged curve regions with
large uncertainties, we generally found that carbon emissions increased sharply as the
FRP increased but easily reached a saturation situation. For NTL, we found that areas
of high brightness corresponded to low carbon emissions (Figure 11D). The underlying
reason for this is similar to that of population density; high-emission industries are usually
located in urban periphery regions, where the NTL is not as high as that in downtown
areas. Moreover, regions without any nighttime lights do not mean the regions have no
CO2 emissions [59]. For example, some EIIS corporations only operate during the daytime
but stop operating and turn off all lights at night.

Although the modeling framework was straightforward and the outputs were vali-
dated, we noted that the estimation approach could be further improved in future studies.
First, based on corporate inventory, we learned that the mean carbon emission amount
was considerably differentiated among industrial sectors. We believe that the model per-
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formance could be improved by involving the attribute information of the identified IHS
objects. Such information can perhaps be obtained from the POI services provided by web
platforms or databases such as Google Maps, Baidu Maps, and OpenStreetMap. Ideally,
these databases could be promoted to form a more comprehensive characterization of
IHS objects; however, it should also be noted that mismatch and omission issues may
reduce their usage. Second, we estimated only the carbon emissions associated with the
identified IHS objects, which may account for only a part of the overall carbon emissions.
Future studies should focus on improving this omission problem during IHS identification,
especially when identifying IHSs containing EIIS corporations. Simultaneously, to ensure
spatial consistency with the explanatory variables, we identified IHSs at a relatively coarse
spatial resolution. This resolution could be further improved by applying high-resolution
satellite imageries, especially nighttime thermal infrared imageries. In addition, though the
BRT model is simple and novel, we noted that the model fitting can be further improved by
using deep learning approaches regarding their high performance in handling classification
and regression problems. However, caution is required due to the fact of their disadvan-
tages such as greater computational burden, proneness to overfitting, and the empirical
nature of model development.
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5. Conclusions

In summary, in this study, we described a thermal anomaly based approach to iden-
tifying IHS objects and modeling their carbon emissions using machine learning. Based
on the DBSCAN algorithm, we identified approximately 414 IHS pixels (1 × 1 km) per
year in Shandong Province from 2012 to 2020. The cross-validation showed that our results
were consistent with the reference datasets. According to the corporation-level inventory
dataset, we highlighted that the remotely sensed thermal anomalies were sensitive to the
IHSs originating from EIIS-related corporations, especially thermal power plants, cement
plants, the chemical industry, the steel production industry, and other nonmetallic mineral
production industries (e.g., glass, graphite, and carbon production). We followed the
bottom-up method to calculate the corporation-level carbon emissions and upscaled them
to match the IHS pixels. Based on the BRT model, we found that the population density,
NTL, and remotely sensed thermal features were useful for improving the model fitting
of the carbon emissions in the identified IHS pixels. In this study, we proposed a novel
and straightforward framework that can provide valuable support for understanding the
spatiotemporal dynamics of IHSs, especially those related to the EIIS. We also provided
an alternative approach for estimating industrial carbon emissions, and although this
approach can account for only a limited fraction of the total emission amount, it can help
monitor industrial activities in the shift toward a cleaner and lower-carbon environment.
Future works need to improve the identification of IHS objects with low thermal emissivity
to reduce the omission problems and involve multiple-source datasets at finer scales to
characterize IHS object more comprehensively and accurately.
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Appendix A

Table A1. A brief description of the subcategorical industrial sectors of mining, manufacturing,
and energy industries that have the potential to be detected as industrial heat sources via thermal
remote sensing.

Code Industry Sector

B Mining
06 Mining and Washing of Coal Industry
07 Extraction of Petroleum and Natural Gas
08 Ferrous Metal Mining and Selection Industry
09 Nonferrous Metal Mining and Selection Industry
10 Nonmetallic Mining and Selection Industry
11 Mining Professional and Auxiliary Activities
12 Other Mining Industry
C Manufacturing
13 Processing of Food from Agricultural Products
14 Manufacture of Foods
15 Manufacture of Beverages
16 Manufacture of Tobacco
17 Manufacture of Textile
18 Manufacture of Textile Wearing Apparel, Footwear, and Caps
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Table A1. Cont.

Code Industry Sector

19 Manufacture of Leather, Fur, Feather, and Related Products

20 Processing of Timber, Manufacture of Wood, Bamboo, Rattan, Palm, and
Straw Products

21 Manufacture of Furniture
22 Manufacture of Paper and Paper Products
23 Printing, Reproduction of Recording Media
24 Manufacture of Articles for Culture, Education, and Sport Activities
25 Processing of Petroleum, Coking, Processing of Nuclear Fuel
26 Manufacture of Raw Chemical Materials and Chemical Products
27 Manufacture of Medicines
28 Manufacture of Chemical Fibers
29 Manufacture of Rubber and Plastics
30 Manufacture of Nonmetallic Mineral Products
31 Smelting and Pressing of Ferrous Metals
32 Smelting and Pressing of Nonferrous Metals
33 Manufacture of Metal Products
34 Manufacture of General Purpose Machinery
35 Manufacture of Special Purpose Machinery
36 Manufacture of Automobile

37 Manufacture of Railways, Shipbuilding, Aerospace, and Other
Transportation Equipment

38 Manufacture of Electrical Machinery and Equipment

39 Manufacture of Communication Equipment, Computers, and Other
Electronic Equipment

40 Manufacture of Measuring Instruments and Machinery for Cultural
Activity and Office Work

41 Manufacture of Artwork and Other Manufacturing
42 Recycling and Disposal of Waste
43 Repair and Installation of Machinery and Equipment
D Production and Supply of Electricity, Gas, and Water
44 Production and Supply of Electric Power and Heat Power
45 Production and Supply of Gas
46 Production and Supply of Tap Water

Table A2. Conversion factor of power generation coal to standard coal equivalent (SCE) and CO2

emission factor for different fuel types.

Energy Type
Conversion Factor to SCE

(Unit: tSCE/t)
Carbon Emission Factor

(×104 tC/104 tSCE)

CFSCE CEF

Raw Coal 0.7143 0.7559
Coke 0.9714 0.855

Natural Gas * 1.33 0.4483
Electricity * - 0.272

* The unit of natural gas conversion to CO2 emissions is t/103 m3, and the unit of electricity conversion to CO2
emissions is t C/103 kWh.
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