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Abstract: In the past few years, multiple-input multiple-output (MIMO) radar with electromagnetic
vector sensor (EMVS) array, or called EMVS-MIMO radar, has attracted extensive attention in
target detection. Unlike the traditional scalar sensor-based MIMO radar, an EMVS-MIMO radar
can not only provides a two-dimensional (2D) direction finding of the targets but also offers 2D
polarization parameter estimation, which may be important for detecting weak targets. In this
paper, we investigate into multiple parameter estimations for a bistatic EMVS-MIMO radar in
the presence of coherent targets, whose transmitting EMVS and receiving EMVS are placed in an
arbitrary topology. Three tensor-aware spatial smoothing estimators are introduced. The core of
the proposed estimators is to de-correlate the coherent targets via the spatial smoothing technique
and then formulate the covariance matrix into a third-order parallel factor (PARAFAC) tensor. After
the PARAFAC decomposition of the tensor, the factor matrices can be obtained. Thereafter, the 2D
direction finding can be accomplished via the normalized vector cross-product technique. Finally, the
2D polarization parameter can be estimated via the least squares method. Unlike the state-of-the-art
PARAFAC estimator, the proposed estimators are suitable for arbitrary sensor geometries, and they
are robust to coherent targets as well as sensor position errors. In addition, they have better estimation
performance than the current matrix-based estimators. Moreover, they are computationally efficient
than the current subspace methods, especially in the presence of a large-scale sensor array. In
addition, the proposed estimators are analyzed in detail. Numerical experiments coincide with our
theoretical findings.

Keywords: parallel factor decomposition; estimation; MIMO radar; vector sensors; coherent target

1. Introduction

Multiple-input multiple-output (MIMO) radar has attracted widespread attention in
remote sensing. MIMO radar is characterized by multiple transmitting (Tx) sensors and
multiple receiving (Rx) sensors [1]. A MIMO radar emits mutual orthogonal waveforms
and receives the echoes simultaneously [2]. The waveform diversity enables a MIMO radar
to achieve better performance than a phased-array radar in noise suppression, interference
elimination, and parameter identifiability [3]. Among various kinds of MIMO radars,
the bistatic MIMO radar is attractive as the Tx array and the Rx array are separated [4].
Benefitting from such a configuration, a bistatic MIMO radar would have better survival
ability than a monostatic one in military applications.

The issue of direction-of-departure (DOD) and direction-of-arrival (DOA) estimation
is critical to a bistatic MIMO radar. Many efforts have been devoted to this topic in the past
decades. A lot of super-resolution algorithms have been reported, for instance, estimation
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approach to signal parameters with rotational invariance technique (ESPRIT) [5,6], spatial
spectrum peak search [7–9], and tensor methods [10–13]. Generally speaking, tensor-aware
methods provide much better performance than the matrix-based one [14–19], since the
multidimensional structure of the array measurement can be taken into consideration by
the latter. However, most of the current algorithms mainly focus on the one-dimensional
(1D) direction estimation issue by using the 1D scalar linear array, e.g., uniform linear array
(ULA), and non-uniform linear array (nested array, coprime array). In engineering applica-
tions, two-dimensional (2D) direction estimation, i.e., 2D-DOD and 2D-DOA estimation, is
more attractive than the former. It is well-known that in order to obtain 2D angle estimation
using the scalar-array-based MIMO radar, non-linear Tx arrays and Rx arrays must be
adopted [20–23], e.g., rectangular array, circular array, arbitrary array. Unfortunately, these
nonlinear scalar geometries are usually too complex to be conformal with the platform.
In addition, the calibration of the model errors will become more complicated due to the
irregular geometries [24,25].

On the other hand, the electromagnetic vector sensor (EMVS) array has brought new
insight into direction estimation [26–29]. A complete EMVS occupies six components: three
of them measure the electric-field and three of them sense the magnetic-field. Unlike the
traditional scalar array, an EMVS array not only provides 2D direction estimation, but it
also offers the polarization status of the incoming source. The EMVS array enables the
MIMO radar to obtain 2D direction estimation as well as 2D polarization estimation of
the targets. A bistatic EMVS-MIMO radar was introduced in [30], whose Tx array and
Rx array are both ULA. Therein, an ESPRIT algorithm was introduced to estimate the
2D-DOD, the 2D-DOA, the 2D Tx polarization angle (2D-TPA) and the 2D Rx polarization
angle (2D-RPA). Another ESPRIT algorithm was proposed in [31], which can avoid the
aperture loss in [30]. A parallel factor (PARAFAC) estimator was designed in [32], in which
the tensor nature of the array measurement was taken into account, and it offers much
better estimation performance than those matrix approaches. In [33], the coprime array
geometry-based Tx/Rx configuration was considered for EMVS-MIMO radar. Benefitting
from the larger sensor aperture, it offers more accurate estimation performance than the
ULA setup. In [34], an arbitrary Tx/Rx geometry was investigated for EMVS-MIMO radar.
An ESPRIT-like estimator based on the normalized vector cross-product technique has been
given, which is capable of providing closed-form solutions for 2D-DOD, 2D-DOA, 2D-TPA
and 2D-RPA estimation. In addition, it is insensitive to the sensor position errors.

The above-mentioned algorithms are only suitable for uncorrelated targets scenario,
which is often inappropriate in practice. In the presence of coherent targets, there will
be a rank deficient in the array measurement. To alleviate this issue, the polarization
smoothing was performed in [35], which resolves the coherent targets via smoothing the
array measurement along the polarization domain. A polarization difference smoothing
framework was presented in [36], which is suitable for nonstationary noise. Nevertheless,
both [35,36] would sacrifice the polarization information of the targets. To avoid such
drawback, the generalized spatial smoothing framework was carried out in [37]. Three
spatial smoothing approaches, named Tx smoothing (TS), Rx smoothing (RS), and Tx/Rx
smoothing (TRS), were derived, which are suitable for arbitrary Tx/Rx geometry. However,
the eigendecomposition of TS, RS and TRS are computationally inefficient. In addition,
since the tensor nature has been ignored, the estimation accuracy of these approaches can
be improved further.

In this paper, tensor-aware approaches are proposed to tackle the coherent targets
problem in bistatic EMVS-MIMO radar. More specifically, the contributions of this paper
are listed as follows:

(1) The generalized spatial smoothing-based tensor models are established. The core of
the proposed algorithm is to solve the rank-deficiency issue via spatial smoothing. To
utilize the multi-dimensional structure of the array measurement, the array data after
smoothing is rearranged into a third-order PARAFAC tensor. Unlike the state-of-the-
art PARAFAC estimator in [32], the improved PARAFAC approaches are robust to
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coherent targets owing to the spatial smoothing. In addition, since the third-order
PARAFAC decomposition can be quickly accomplished via the existing COMFAC
algorithm, the proposed frameworks are more effective than the existing fourth-order
PARAFAC algorithms [12].

(2) The ESPRIT-like strategies are developed for joint 2D-DOD, 2D-DOA, 2D-TPA and
2D-RPA estimation. After PARAFAC decomposition, the factor matrices that form
the tensor are achieved. The 2D-DOD and 2D-DOA are estimated via the normalized
vector cross-product technique. Thereafter, 2D-TPA and 2D-RPA are achieved via
the least squares (LS) with the previously estimated 2D-DOD and 2D-DOA. All
the estimated parameters are in closed-form and paired automatically. Since the
multi-dimensional structure has been explored, they outperform the matrix-based
smoothing methods in [37]. Furthermore, as the 2D-DOD and 2D-DOA estimation
rely on the normalized vector cross-product technique instead of the uniformity of
the sensor array, the proposed approaches are suitable for arbitrary geometries and
sensor position errors, while the PARAFAC estimator in [32] is only effective for the
ULA configuration.

(3) The advantages of the proposed approaches are verified via theoretically analysis
and simulations. The proposed approaches are analyzed with respect to computa-
tional complexity, identifiability, as well as the Cramer–Rao Bound (CRB). Computer
simulations are designed to show its effectiveness.

2. Tensor and Problem Formulation
2.1. Tensor and PARAFAC Decomposition

The following preliminaries concerning tensor and tensor decomposition will be
utilized throughout this paper. Readers that are interested in more details on the tensor are
referred to [38].

Definition 1. An I1 × I2 × · · · × IN tensor has N degrees-of-freedom or indices. The mode-n
unfolding of X ∈ CI1×I2×···×IN is given by [X ](n), which unfolds a tensor into a matrix, where the
(i1, i2, · · · , iN) -entity of X is the (in, p) -th entity of [X ](n), where p = 1 + ∑N

k=1,k 6=n (ik − 1)Jk

with Jk = ∏k−1
m=1,m 6=n Im.

Definition 2. The mode-n product of matrix A ∈ CJn×In and X ∈ CI1×I2×···×IN is given by
Y = X×nA, which satisfies:

[Y ](n) = A[X ](n) (1)

Definition 3. The PARAFAC decomposition of a rank-K tensor X ∈ CI1×I2×···×IN is given by

X =
K
∑

k=1
a(1)

k ◦ a(2)
k · · · a

(N)
k

= I×1A(1)
×2A(2)

×3 · · ·A
(N−1)
×N A(N)

(2)

where ◦ denotes the outer-product, I ∈ CI1×I2×···×IN is the identical tensor, a(n)
k ∈ CIn×1

(n = 1, 2, · · · , N) is a rank-one vector, and A(n) =
[
a(n)

1 , a(n)
1 , · · · , a(n)

K

]
is the so-called factor

matrix. In matrix format, (2) is also given by

[X ](n) = An[An+1 � · · · �AN �A1 · · · �An−1]
T (3)

where � denotes the Khatri–Rao product, and (·)T denotes transpose.
Definition 4. For the PARAFAC decomposition in (2), define the order set Oj =

{
oj,1, oj,2, · · · , oj,Mj

}
,

j = 1, 2, · · · , J, which denotes a partitioning of the dimensions O = {1, 2, · · · , N}, a new PARAFAC
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tensor XO1,O2,··· ,OJ ∈ CT1×T2×···×TJ can be obtained via combining the rank-one vectors according
to the order set as [39]:

XO1,O2,··· ,OJ =
K

∑
k=1

b(1)k ◦ b(2)k ◦ · · · ◦ b(J)
k (4)

where Tj = Π
Mj
m=1Ioj,m , b(j)

k = a
(oj,Mj

)

k ⊗ a
(oj,Mj−1)

k · · · ⊗ a
(oj,1)

k , and⊗ denotes the Kronecker product.

2.2. Signal Model

Consider a bistatic EMVS-MIMO radar with arbitrary sensor geometry, as shown
in Figure 1. Without loss of generality, we assume that there are M-element colocated
transmitting EMVSs and N-element colocated receiving EMVSs. The positions with respect
to the m-th (m = 1, 2, · · · , M) Tx EMVS and the n-th (n = 1, 2, · · · , N) EMVS are denoted by
pt,m , [xt,m, yt,m, zt,m]

T and pr,n , [xr,n, yr,n, zr,n]
T , respectively. Supposing that K far-field

targets appearing in same range bin, the 2D-DOD, 2D-DOA, 2D-TPA, and 2D-RPA of the
k-th (k = 1, 2, · · · , K) target are denoted by (θr,k, φr,k), (θt,k, φt,k), (γr,k, ηr,k) and (γt,k, ηt,k),
where θt,k and θr,k are the Tx elevation angle and the Rx elevation angle, respectively, φt,k
and φr,k are the Tx azimuth angle and the Rx azimuth angle, respectively, γt,k and γr,k are
the Tx auxiliary polarization angle and the Rx auxiliary polarization angle, respectively,
and ηt,k and ηr,k are the Tx polarization phase difference and the Rx polarization phase
difference, respectively.
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Figure 1. Schematic diagram of the bistatic EMVS-MIMO radar with arbitrary geometry.

Suppose that the Tx array emit 6M mutual orthogonal pulse waveforms w(t, τ) =

[w1(t, τ), w2(t, τ), · · · , w6M(t, τ)]T , i.e.,∫
T

wm(t, τ)w∗n(t, τ)dτ = δ(m− n) (5)

where t denotes the pulse index, τ denotes the fast time index, (·)∗ denotes conjugate,
T denotes the pulse duration, and δ(·) denotes the Kronecker delta. In the presence of
orthogonal waveforms assumption, the array outputs from the matched filters are given
by [31,32]:

x(t) =
K
∑

k=1
[at,k ⊗ bt,k ⊗ ar,k ⊗ br,k]sk(t) + n(t)

= [At � Bt �Ar � Br]s(t) + n(t)
(6)
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where At = [at,1, at,2, · · · , at,K], Ar = [ar,1, ar,2, · · · , ar,K]; Bt = [bt,1, bt,2, · · · , bt,K] and
Br = [br,1, br,2, · · · , br,K]; s(t) = [s1(t), s2(t), · · · , sK(t)]

T denotes the target reflection co-
efficient vector; n(t) denotes the additive white Gaussian noise (AWGN) vector with
variance is σ2, namely, E

{
n(t)nH(t)

}
= σ2I36MN , where (·)H denotes conjugate trans-

pose, I36MN denotes the 36MN × 36MN identity matrix, and E{·} is the mathematical

expectation; at,k =
[
1, e−j2Πτt2,k/λ, · · · , e−j2ΠτtM,k/λ

]T
∈ CM×1 denotes the k-th Tx spa-

tial steering vector, τtm,k = pT
t,mrt,k with rt,k = [sin θt,k cos φt,k, sin θt,k sin φt,k, cos θt,k]

T ;

ar,k =
[
1, e−j2Πτr2,k/λ, · · · , e−j2ΠτrN,k/λ

]T
∈ CN×1 denotes the k-th Rx spatial steering vec-

tor, τrn,k = pT
r,nrr,k with rr,k = [sin θr,k cos φr,k, sin θr,k sin φr,k, cos θr,k]

T ; and bt/r,k ∈ C6×K

denote the k-th Tx/Rx polarization response vector, which is given by

bt/r,k =



cos φt/r,k cos θt/r,k sin γt/r,kejηt/r,k − sin φt/r,k cos γt/r,k
sin φt/r,k cos θt/r,k sin γt/r,kejηt/r,k + cos φt/r,k cos γt/r,k

− sin θt/r,k sin γt/r,kejηt/r,k

− sin φt/r,k sin γt/r,kejηt/r,k − cos φt/r,k cos θt/r,k cos γt/r,k
cos φt/r,k sin γt/r,kejηt/r,k − sin φt/r,k cos θt/r,k cos γt/r,k

sin θt/r,k cos γt/r,k



et/r,k ∈ C3×1

mt/r,k ∈ C3×1

(7)

where et/r,k denotes the electric-field response vector, and mt/r,k denotes the magnetic-field
components. Moreover, the vector cross-products with respect to et,k, mt,k and er,k, mr,k are
given by the normalized Poynting-vector as:

et,k
‖et,k‖F

~
m∗t,k
‖mt,k‖F

= rt,k , er,k
‖er,k‖F

~
m∗r,k
‖mr,k‖F

= rr,k (8)

where ~ denotes the vector cross-product, and ‖ · ‖F denotes the Frobenius norm. In
addition, the bt,k and br,k can be factorized as:

bt,k = Ft,kvt,k , br,k = Fr,kvr,k (9)

where Ft,k and Fr,k are direction-dependent-only matrices, and vt,k and vr,k are polarization
dependent-only vectors, which are given below:

Ft,k =



cos φt,k cos θt,k − sin φt,k
sin φt,k cos θt,k cos φt,k
− sin θt,k 0
− sin φt,k − cos φt,k cos θt,k
cos φt,k − sin φt,k cos θt,k

0 sin θt,k

, vt,k =

[
sin γt,kejηt,k

cos γt,k

]
(10)

Define Ct = At � Bt, Cr = Ar � Br. In addition, suppose that the noise vector n(t) is
uncorrelated with the target reflection coefficient vector s(t); then, the covariance matrix of
x(t) is given by:

R = E
{

x(t)xH(t)
}

= [Ct � Cr]Rs[Ct � Cr]
H + σ2I36MN

(11)

where Rs = E
{

s(t)sH(t)
}

is the mathematical expectation of s(t). In the presence of
correlated targets, Rs is rank deficient, i.e., rank{Rs} < K, rank{·} returns the rank of a
matrix. Consequently, the noise R is also rank deficient and yields ill signal subspace. As a
result, the subspace methods in [30,31,33,34] will fail to work, and the PARAFAC method
in [33] cannot correctly operate either.
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3. The Proposed PARAFAC Estimators
3.1. Review of the Generalized Spatial Smoothing Approaches

The core idea of the generalized spatial smoothing approaches is to smooth the array
measurement along the spatial domain [37]. According to the mechanism of spatial smooth-
ing, the generalized spatial smoothing approaches can be divided into three categories,
namely, the transmitting smoothing-based (TS) approach, the receiving smoothing-based
(RS) approach, and the transmitting–receiving-smoothing-based (TRS) approach. The TS
approach relies on smoothing the array measurement along the Tx direction. Let xt,m(t)
denotes the array measurement corresponding to the m-th Tx EMVS, i.e.,

xt,m(t) = [Bt � Cr]Sm{At}s(t) + nt,m(t) (12)

where nt,m(t) is the corresponding noise vector, and Sm{At} returns a diagonal matrix
whose diagonal elements are the m-th row of At. Accordingly, the covariance matrix of
xt,m(t) is given by

Rt,m = E
{

xt,m(t)xH
t,m(t)

}
= [Bt � Cr]Sm{At}RsSH

m {At}[Bt � Cr]
H + σ2I36N

(13)

Thereafter, a TS matrix Rt can be constructed via averaging all the Rt,m, i.e.,

Rt = 1/M∑M
m=1 Rt,m

= [Bt � Cr]Rs,t[Bt � Cr]
H + σ2I36N

(14)

where Rs,t = 1/M∑M
m=1 Sm{At}RsSH

m {At}. According to [40], Rs,t is full rank if M ≥ K
and (θt,k, φt,k) are distinct. Accordingly, the rank of the noiseless Rt is K, and then the
subspace-based ESPRIT is capable for parameter estimation.

Likewise, we can pick up the array measurement associated with the n-th Rx EMVS,
which is given by

xr,n(t) = [Ct � Br]Sn{Ar}s(t) + nr,n(t) (15)

where nr,n(t) accounts for the associated noise vector. Thereafter, we can construct an RS
matrix Rr via averaging all the covariance matrices of xr,n(t) (denoted by Rr,n), i.e.,

Rr = 1/N∑N
n=1 Rr,n

= [Ct � Br]Rs,r[Ct � Br]
H + σ2I36M

(16)

where Rs,r = 1/N∑N
n=1 Sn{Ar}RsSH

n {Ar}. Obviously, the rank of the noiseless Rr is K if
N ≥ K and (θr,k, φr,k) are distinct.

In addition, we can choose the array measurement associate with the m-th Tx EMVS
and the n-th Rx EMVS, which is given by

xtr,m,n(t) = [Bt � Br]Sm{At}Sn{Ar}s(t) + ntr,m,n(t) (17)

where ntr,m,n(t) represents the corresponding noise vector. Let the covariance matrix of
xtr,m,n(t) is Rtr,m,n. Similarly, the TRS approach is based on the averaging all the Rtr,m,n, i.e.,

Rtr = 1/MN∑N
n=1 ∑M

m=1 Rtr,m,n

= [Bt � Br]Rs,tr[Bt � Br]
H + σ2I36

(18)
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where Rs,tr = 1/NM∑N
n=1 ∑M

m=1 Sn{Ar}Sm{At}RsSH
n {Ar}SH

m {At}. In addition, the rank
of the noiseless Rtr should be K once MN ≥ K and (θt,k, φt,k), (θr,k, φr,k) are distinct. In
practice, Rt, Rr, and Rtr can be estimated via L snapshots as:

R̂t = 1/ML
L
∑

l=1

M
∑

m=1
xt,m(l)xH

t,m(l)

R̂r = 1/NL
L
∑

l=1

N
∑

n=1
xr,n(l)xH

r,n(l)

R̂tr =
L
∑

l=1

M
∑

m=1

N
∑

n=1
xtr,m,n(l)xH

tr,m,n(l)

(19)

Essentially, the TS approach is only smoothing the data measurements along the Tx
spatial direction. The RS approach, on the other hand, is only smoothing them along
the Rx spatial direction. Finally, the TRS approach is smoothing the data in both Tx and
Rx directions.

The existing subspace-based approaches rely on the eigen decomposition of the esti-
mated covariance matrices, which are computationally inefficient. Since the tensor nature
is ignored, the estimation accuracy can be improved further. In what follows, we will
introduce the PARAFAC-based estimators, which can avoid the above drawbacks.

3.2. PARAFAC Models and PARAFAC Decomposition

For the covariance data model in (14), it can be formulated as a fourth-order PARAFAC
model as:

R = I×1Bt×2Cr×3B∗t×4(C
∗
r Rs,t) +N (20)

where N is the tensor version of σ2I36N . Actually, Rs,t can be combined with any of the four
factor matrices Bt, Cr, B∗t and C∗r . The estimation of the factor matrices can be accomplished
via optimizing the following:

Bt, Cr = argmin‖R̂− I×1Bt×2Cr×3B∗t×4(C
∗
r Rs,t)‖

2
F (21)

where R̂ denotes the arranged R̂t. Although the above issue can be solved via the quadrilin-
ear alternative least squares (ALS) algorithm, it suffers from the slowness of the convergence
speed. Inspired by the fact that there exists a fast algorithm, named COMFAC, for a third-
order PARAFAC model, R can be arranged into a third-order PARAFAC model. For the
PARAFAC model in (20), define O1 = {1}, O2 = {2}, and O3 = {3, 4}. According to
Definition 4, we can obtain another PARAFAC model as:

Rt = I×1Bt×2Cr×3Dt +N t (22)

where Dt = B∗t C∗r Rs,t, N t denotes the arranged array noise. Similarly, we can obtain the
rearranged array tensor Rr and Rtr as:

Rr = I×1Ct×2Br×3Dr +N r (23)

Rtr = I×1Bt×2Br×3Dtr +N tr (24)

where Dr = C∗t B∗r Rs,r, Dtr = B∗t B∗r Rs,tr, N r and N tr denotes the rearranged array noise.
Taking the model in (22) as an example, we will show how to obtain the factor matrices

from the third-order PARAFAC tensor. Obviously, the factor matrices of Rt can be achieved
via solving:

Bt, Cr, Dt = argmin‖R̂t − I×1Bt×2Cr×3Dt‖
2
F (25)
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On the other hand, the PARAFAC tensor Rt in (22) can be unfolded into matrix format as

X1 = [Rt]
T
(1) = [Cr �Dt]BT

t + N1

X2 =
[
RT

t

]T

(2)
= [Dt � Bt]CT

r + N2

X3 = [Rt]
T
(3) = [Bt � Cr]DT

t + N3

(26)

where N1 = [N t]
T
(1), N2 = [N t]

T
(2) and N3 = [N t]

T
(3). As a result, the optimization in (25)

can be rewritten as joint optimize:

Bt, Cr, Dt =


argmin‖X̂1 − [Cr �Dt

]
BT

t ‖
2
F

argmin‖X̂2 − [Dt � Bt]CT
r ‖

2
F

argmin‖X̂3 − [Bt � Cr]DT
t ‖

2
F

(27)

The trilinear alternating least squares (TALS) is a popular solver of the joint opti-
mization issue in (27). TLAS treats each sub-issue as a least squares (LS) problem and
assumes two of the factor matrices are known. Then, it obtains the third factor matrix via
LS successively. The LS fitting will repeat until algorithm convergence. Mathematically, the
LS updates of Bt, Cr, and Dt are given by:

B̂T
t = [Cr �Dt]

†X̂1

ĈT
r = [Dr � Bt]

†X̂2

D̂T
t = [Br � Ct]

†X̂3

(28)

Usually, the convergence condition is set to ‖X̂1 − [Cr �Dt]BT
t ‖

2
F ≤ ξ or the iteration

steps are larger than a given integer; ξ denotes a given threshold. Moreover, the COMFAC
algorithm is often adopted [41], which only require a few iteration steps. Denote the
Kruskal ranks of Bt, Cr, and Dt as KR{Bt}, KR{Cr}, and KR{Dt}, respectively. It has been
pointed out in [38] that if

KR{Bt}+ KR{Cr}+ KR{Dt} ≥ 2K + 2 (29)

then the estimates of Bt, Cr, and Dt are unique to permutations and scaling effects of
columns, i.e., 

B̂t = BtΠ1∆1 + E1
Ĉr = CrΠ1∆2 + E2
D̂t = DtΠ1∆3 + E3

(30)

where Π1 denotes a permutation matrix, and ∆1, ∆2, and ∆3 denote the diagonal matrices
with ∆1∆2∆3 = IK. E1, E2, and E3 account for the associated fitting errors.

For the RS approach, the matrix unfolding of Rr is given by

Y1 = [Rr]
T
(1) = [Br �Dr]CT

t + N′1
Y2 = [Rr]

T
(2) = [Dr � Ct]BT

r + N′2
Y3 = [Rr]

T
(3) = [Ct � Br]DT

r + N′3

(31)

where N′1 = [N r]
T
(1), N′2 = [N r]

T
(2), and N′3 = [N r]

T
(3) are the noise matrices. Accordingly,

the factor matrices that formed Rr can be formulated as joint optimizers:

Br, Dr, Ct =


argmin‖Ŷ1 − [Br �Dr

]
CT

t ‖
2
F

argmin‖Ŷ2 − [Dr � Ct]BT
r ‖

2
F

argmin‖Ŷ3 − [Ct � Br]DT
r ‖

2
F

(32)
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Similarly, the LS updates of Ct, Br, and Dr are given by:
ĈT

t = [Br �Dr]
†Ŷ1

B̂T
r = [Dr � Ct]

†Ŷ2

D̂T
r = [Ct � Br]

†Ŷ3

(33)

The estimated factor matrices of Rr can be formulated as:
Ĉt = CtΠ2∆′1 + E′1
B̂r = BrΠ2∆′2 + E′2
D̂r = DrΠ2∆′3 + E′3

(34)

where ∆′1, ∆′2, and ∆′3 are diagonal matrices, and E′1, E′2, and E′3 are fitting errors.
For the TRS approach, the matrix unfolding of Rtr can be written as:

Z1 = [Rtr]
T
(1) = [Br �Dtr]BT

t + N′′1
Z2 = [Rtr]

T
(2) = [Dtr � Bt]BT

r + N′′2
Z3 = [Rtr]

T
(3) = [Bt �Dr]DT

tr + N′′3

(35)

where N′′1 = [N tr]
T
(1), N′′2 = [N tr]

T
(2) and N′′3 = [N tr]

T
(3). Similarly, the factor matrices associ-

ated with Rtr can be achieved via optimizing the following minimizations simultaneously:

Bt, Br, Dtr =


argmin‖Ẑ1 − [Br �Dtr

]
BT

t ‖
2
F

argmin‖Ẑ2 − [Dtr � Bt]BT
r ‖

2
F

argmin‖Ẑ3 − [Bt � Br]DT
tr‖

2
F

(36)

Therefore, the LS updates of Bt, Br, and Dtr are given by:
(
B̂′′t
)T

= [Br �Dtr]
†Ẑ1(

B̂′′r
)T

= [Dtr � Bt]
†Ẑ2

D̂′′Ttr = [Bt � Br]
†Ẑ3

(37)

Consequently, the estimated factor matrices of and Rtr are given by:
B̂′′t = BtΠ3∆

′′
1 + E′′1

B̂′′r = BrΠ3∆
′′
2 + E′′2

D̂tr = DtrΠ3∆
′′
3 + E′′3

(38)

where ∆
′′
1 , ∆

′′
2 , and ∆

′′
3 are diagonal matrices, and E′′1 , E′′2 , and E′′3 are error matrices.

3.3. 2D-DOD and 2D-DOA Estimation

It has been pointed in [34] that the polarization response vector bt/r,k can be repre-
sented in the normalized format as:

bt/r,k = bt/r,k(1)
[
1, β

(1,2)
t/r,k, · · · , β

(1,6)
t/r,k

]T
(39)

where bt/r,k(p) denotes the p-th entity of bt/r,k, β
(1,p)
t/r,k = bt/r,k(p)/bt/r,k(1). It is easy to

conclude thatbt/r,k(1)

 1
β
(1,2)
t/r,k

β
(1,3)
t/r,k


~

bt/r,k(1)


β
(1,4)
t/r,k

β
(1,5)
t/r,k

β
(1,6)
t/r,k



∗

= ‖bt/r,k(1)‖2


 1

β
(1,2)
t/r,k

β
(1,3)
t/r,k

~


β
(1,4)
t/r,k

β
(1,5)
t/r,k

β
(1,6)
t/r,k


∗ (40)
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Define ẽt,k =
[
1, β

(1,2)
t,k , β

(1,3)
t,k

]T
, m̃t,k =

[
β
(1,4)
t,k , β

(1,5)
t,k , β

(1,6)
t,k

]T
, ẽr,k =

[
1, β

(1,2)
r,k , β

(1,3)
r,k

]T
,

and m̃r,k =
[

β
(1,4)
r,k , β

(1,5)
r,k , β

(1,6)
r,k

]T
. Consequently, we have:

et,k
‖et,k‖F

~
m∗t,k
‖mt,k‖F

=

(
bt,k(1)b∗t,k(1)

‖bt,k(1)‖‖b∗t,k(1)‖

)(
ẽt,k
‖ẽt,k‖F

~
m̃∗t,k
‖m̃t,k‖F

)
=

(
ẽt,k
‖ẽt,k‖F

~
m̃∗t,k
‖m̃t,k‖F

)
= rt,k

(41)

er,k
‖er,k‖F

~
m∗r,k
‖mr,k‖F

=

(
br,k(1)b∗r,k(1)

‖br,k(1)‖‖b∗r,k(1)‖

)(
ẽr,k
‖ẽr,k‖F

~
m̃∗r,k
‖m̃r,k‖F

)
=

(
ẽr,k
‖ẽr,k‖F

~
m̃∗r,k
‖m̃r,k‖F

)
= rr,k

(42)

From (41) and (42), we can observe that the direction cosine is related to the nor-
malized polarization response vector. To obtain 2D-DOD and 2D-DOA estimation, we
need to estimate the normalized polarization response vector first. For the tensor-based
TS smoothing approach, we define Jr,p = IN ⊗ i6,p ∈ CN×6N , where i6,p ∈ C1×6 denotes
the p-th row of the 6× 6 identity matrix. It is easy to find that the following rotational
invariance principle is established:

Jr,pCrΨp = Jr,1Cr (43)

where Ψp = diag
{

β
(1,p)
r,1 , β

(1,p)
r,2 , · · · , β

(1,p)
r,K

}
, and diag{·} returns a diagonal matrix. Usually,

β
(1,p)
r,k is called the (k, p)-th rotational invariance factor corresponding to the k-th column

and the p-th polarization component of Cr, and Ψp is called the p-th rotational invariance
factor corresponding to the p-th polarization component of Cr. Replacing Cr with its
noiseless estimate Ĉr yields

Jr,pĈr(Π1∆2)
−1Ψp(Π1∆2) = Jr,1Ĉr (44)

where (·)−1 denotes the inverse. Equivalently,

(Π1∆2)
−1Ψp(Π1∆2) =

(
Jr,pĈr

)†
Jr,1Ĉr (45)

where (·)−1 denotes the pseudo-inverse. Combining the properties Π1∆2 = ∆2Π1 and
∆−1

2 Ψp∆2 = Ψp, (45) can be simplified as:

Π−1
1 ΨpΠ1 =

(
Jr,pĈr

)†
Jr,1Ĉr (46)

Obviously, performing eigen decomposition on
(

Jr,pĈr

)†
Jr,1Ĉr, one can obtain the

estimates of Π1 and Ψp (denoted by Π̂1 and Ψ̂p, respectively). From the k-th diagonal of

Ψ̂p, we can obtain the estimated β
(1,p)
r,k (denoted as β̂

(1,p)
r,k ). Right multiplying B̂t with Π̂−1

1 ,

followed by normalizing the calculated vector, we can obtain the estimate of β
(1,p)
t,k (denoted

as β̂
(1,p)
t,k ). Thereafter, we calculate:

r̂t,k =
êt,k
‖êt,k‖F

~
m̂∗t,k
‖m̂t,k‖F

, r̂r,k =
êr,k
‖êr,k‖F

~
m̂∗r,k
‖m̂r,k‖F

(47)
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where êt,k, m̂t,k, êr,k, and m̂r,k denote the estimates of ẽt,k, m̃t,k, ẽr,k, and m̃r,k, respectively.
Finally, 2D-DOD and 2D-DOA estimation can be accomplished via{

θ̂t,k = arcsin
√

r̂2
t,k(2) + r̂2

t,k(1)
φ̂t,k = arctan

{
r̂t,k(2)/r̂t,k(1)

} ,

{
θ̂r,k = arcsin

√
r̂2

r,k(2) + r̂2
r,k(1)

φ̂r,k = arctan
{

r̂r,k(2)/r̂r,k(1)
} (48)

Since the estimated factor matrices share the same permutation matrix, the estimated
2D-DOD and 2D-DOA are automatically paired.

For the tensor-based RS approach, we can construct Jt,p = IM ⊗ i6,p ∈ CM×6M; then,
we have:

Π−1
2 ΦpΠ2 =

(
Jt,pĈt

)†
Jt,1Ĉt (49)

where Φp = diag
{

β
(1,p)
t,1 , β

(1,p)
t,2 , · · · , β

(1,p)
t,K

}
, which can be interpreted as the p-th rotational

invariance factor corresponding to the p-th polarization component of Ct. Likewise, the

eigen decomposition of
(

Jt,pĈt

)†
Jt,1Ĉt reveals the estimates of Π2 and Φp (denoted by Π̂2

and Φ̂p, respectively). From the k-th diagonal of Φ̂p, we can obtain the estimated β
(1,p)
t,k

(denoted as β̂
(1,p)
r,k ). Right multiplying B̂r with Π̂−1

2 yields the estimate of β
(1,p)
r,k (denoted

as β̂
(1,p)
r,k ). Repeating the steps in (47) and (48), we the achieve the automatically paired

2D-DOD and 2D-DOA.
For the tensor-based TRS approach, since we can obtain the estimates of the polar-

ization vector matrices, β
(1,p)
t,k and β

(1,p)
r,k can be easily obtained via the normalizations of

B̂′′t and B̂′′r . In a similar way, automatically paired 2D-DOD and 2D-DOA can be easily
obtained via repeating the steps in (47) and (48).

3.4. 2D-TPA and 2D-RPA Estimation

After we have achieved the 2D-DOD and the 2D-DOA, we can construct the matrices
F̂t,k and F̂r,k according to (10). Moreover, the polarization response vectors bt,k and br,k can
be easily estimated from the factor matrices (denoting the corresponding estimates as b̂t,k
and b̂r,k, respectively). Thereafter, we calculate:{

v̂t,k = F̂†
t,kb̂t,k

v̂r,k = F̂†
r,kb̂r,k

(50)

Finally, γt,k, ηt,k, γr,k, and ηr,k can be estimated from{
γ̂t,k = arctan

{
v̂t,k(2)/v̂t,k(1)

}
η̂t,k = angle

{
v̂t,k(2)/v̂t,k(1)

} ,
{

γ̂r,k = arctan
{

v̂r,k(2)/v̂r,k(1)
}

η̂r,k = angle
{

v̂r,k(2)/v̂r,k(1)
} (51)

where angle{·} returns the phase, in radian. In addition, the estimated polarization param-
eters are one-to-one pairing with the estimated 2D-DOD and 2D-DOA.

Up to now, we have finished the descriptions of all the proposed approaches. The
algorithmic steps of the tensor-based TS approach (marked as T-TS), the RS approach
(marked as T-RS), and the TRS approach (marked as T-TRS) are summarized in Algorithm
1, Algorithm 2, and Algorithm 3, respectively.
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Algorithm 1: Algorithmic steps of the T-TS approach
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ˆˆ ˆ ˆ
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− −
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 ←  
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B C D X

C D B X

D B C X






 

end 
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Perform eigen decomposition on ( )†
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ˆ p
r kβ . Right multiplying ˆ
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,

ˆ p
t kβ . Construct 
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ˆ p
r kβ  and ( )1,

,
ˆ p
t kβ . 

5 For k = 1:K do 

( ) ( )
( ) ( ){ }
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2 2*
, , ,, ,

,
, , , , ,
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, , , , ,
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( ) ( ){ }

, , ,†
, , ,

, , ,

, , ,†
, , ,

, , ,
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γ

η

γ
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←

 ←← 
←
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end 
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Algorithm 2: Algorithmic steps of the T-RS approach
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Estimate the RS matrix trR  via ( ) ( ), , , ,
1 1 1

ˆ
L M N

H
tr tr m n tr m n

l m n
l l

= = =

←R x x , and rearrange it into 

a third-order tensor r  according to (24). 

2 Initialize , ,r r tB D C  as ,0
ˆ
rB , ,0

ˆ
rD , and ,0

ˆ
tC , respectively. Set 1i = , 

[ ]
2

1̂
T

i r r t F
ξ = −Y B D C . 

3 While iξ ξ≤  or maxi IT≤  do 
†

, , 1 , 1 1

†

, , 1 , 2

†

, , , 3

ˆ ˆ ˆ ˆ

ˆˆ ˆ ˆ

ˆˆ ˆ ˆ

1

T
t i r i r i

T
r i r i t i

T
r i t i r i

i i

− −

−

 ←  

 ←  

 ←  
← +

C B D Y

B D C Y

D C B Y






 

end 
4 

Perform eigen decomposition on ( )†

, ,1
ˆ ˆ

t p t t tJ C J C  to obtain 2Π̂  and ( )1,
,

ˆ p
t kβ . Right mul-

tiplying ˆ
rB  with 1

2
ˆ −Π  to obtain ( )1,

,
ˆ p
r kβ . Construct ,t ke , ,t km , ,r ke , and ,r km  using 

( )1,
,

ˆ p
r kβ  and ( )1,

,
ˆ p
t kβ . 

5 Repeat the Step 5 of Algorithm 1 to obtain the 2D-DOD, 2D-DOA, 2D-TPA and 2D-RPA 
of the k-th target.  
 
 
 

 
  

Algorithm 3: Algorithmic steps of the T-TRS approach
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end 
4 Normalize ˆ

t′′B  and ˆ
t′′B  to obtain ( )1,

,
ˆ p
r kβ  and ( )1,

,
ˆ p
t kβ , and the form ,t ke , ,t km , ,r ke , and ,r km . 

5 Repeat the Step 5 of Algorithm 1 to obtain the 2D-DOD, 2D-DOA, 2D-TPA and 2D-RPA of the  
k-th target.  
 

4. Algorithm Analysis 
4.1. Complexity Analysis 

The main complexities of the proposed estimators are the TALS for PARAFAC de-
composition. For an M N L× ×  PARAFAC tensor with rank-K, the TALS procedure re-
quires ( )2l MNLK K ML NL MN+ + +   , where l  represents the number of iterations re-
quired to achieve convergence. According to (22)–(24), the dimensions of the PARAFAC 
models associated with the T-TS approach, the T-RS approach, and the T-TRS approach 
are 6 6 36N N× × , 6 6 36M M× × , and 6 6 36× × , respectively. Therefore, the main 
complexities of the T-TS approach, the T-RS approach, and the T-TRS approach are 

( )24 2 3 3 26 2 6 6l K N NN + +   , ( )24 2 3 3 26 2 6 6l K M MM + +   , and 24 36 6l K+   , respec-
tively. In comparison, the dominant complexity of the TS approach, the RS approach, and 
the TRS approach in [37] is the eigen decomposition of the covariance matrix. Accord-
ingly, the dominant complexity of the TS approach, the RS approach, and the TRS ap-

proach are { }3 336O N , { }3 336O M , and { }336O , respectively. We list the main com-
plexity comparison in Table 1. Notably, the main computational burden of the matrix-
based approaches is on the third-order of the dimension of the covariance matrix, while 
the complexity may be lower in the tensor-based counterparts (since only the second-or-
der of the Tx/Rx scale is involved), especially in the presence of large scale Tx/Rx EMVS 
array. 
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4. Algorithm Analysis
4.1. Complexity Analysis

The main complexities of the proposed estimators are the TALS for PARAFAC de-
composition. For an M × N × L PARAFAC tensor with rank-K, the TALS procedure
requires l

[
MNLK + K2(ML + NL + MN)

]
, where l represents the number of iterations

required to achieve convergence. According to (22)–(24), the dimensions of the PARAFAC
models associated with the T-TS approach, the T-RS approach, and the T-TRS approach
are 6 × 6N × 36N, 6M × 6 × 36M, and 6 × 6 × 36, respectively. Therefore, the main
complexities of the T-TS approach, the T-RS approach, and the T-TRS approach are
l
[
64N2 + 2K2(63N + 63N2)], l

[
64M2 + 2K2(63M + 63M2)], and l

[
64 + 63K2], respectively.

In comparison, the dominant complexity of the TS approach, the RS approach, and the
TRS approach in [37] is the eigen decomposition of the covariance matrix. Accordingly,
the dominant complexity of the TS approach, the RS approach, and the TRS approach are
O
{

363N3}, O
{

363M3}, and O
{

363}, respectively. We list the main complexity comparison
in Table 1. Notably, the main computational burden of the matrix-based approaches is on
the third-order of the dimension of the covariance matrix, while the complexity may be
lower in the tensor-based counterparts (since only the second-order of the Tx/Rx scale is
involved), especially in the presence of large scale Tx/Rx EMVS array.

Table 1. Complexity and identifiability comparison.

Algorithm Computing Complexity Identifiability

TS O
{

363N3} 6N

RS O
{

363 M3} 6M

TRS O
{

363} 36

T-TS l
[
64N2 + 2K2(63N + 63N2)] 21N + 2

T-RS l
[
64 M2 + 2K2(63 M + 63 M2)] 21M + 2

T-TRS l
[
64 + 63K2] 23

4.2. Identifiability Analysis

The identifiability (maximum K) is another important index to evaluate the estimator.
The identifiability of a PARAFAC-model-based approach is usually constrained by the
uniqueness condition of the PARAFAC condition, which is presented in (29). As a result, the
uniqueness conditions with respect to T-TS, T-RS, and T-TRS are K ≤ 21N + 2, K ≤ 21M+ 2,
and K ≤ 23, respectively. In Table 1, we list the identifiabilities of the proposed estimators.
In addition, the identifiabilities corresponding to TS, RS, and TRS are added. It is observed
from Table 1 that the proposed T-TS and T-RS methods have better identifiability than the
matrix-based ones, while the T-TRS offers worse identifiability than the TRS approach.

4.3. CRB

The deterministic CRB on 2D-DOD, 2D-DOA, 2D-TPA, and 2D-TRA are given by [32]

CRB =
σ2

2L

[
Re
{(

D̃
H

Γ⊥C D̃
)
⊕ (Rs ⊗ 18×8)

}]−1
(52)

where D̃ =
[

∂c1
∂θt,1

, · · · , ∂cK
∂θr,K

, ∂c1
∂ϕt,1

, · · · , ∂cK
∂ηr,K

]
∈ C36MN×8K with C = Ct � Cr, ck denotes the

k-th column of C; ΓC = IMN − CC†; ⊕ denotes the Hadamard product; and 18×8 denotes
the 8× 8 matrix when all the entities are ones.

5. Simulation Results

In this section, Q = 200 Monte-Carlo trials are carried out to verify the effective-
ness of our estimators. Suppose that there exist K far-field targets, and we assume that
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L snapshots are collected: the targets’ reflected coefficients satisfy a standard complex
Gaussian distribution. Herein, we consider two different array configurations scenarios:
Case (I) is the arbitrary geometries. The three-dimensional coordinates (xt,m, yt,m, zt,m) of
each Tx sensor are randomly chosen from a uniform distribution uni f (−κt, κt), while the
three-dimensional coordinates (xr,n, yr,n, zr,n) of each Rx sensor are randomly chosen from
another uniform distribution uni f (−κr, κr). Case (II) is a ULA geometry. Both the Tx array
and the Rx array are ULAs along the z-axis with half-wavelength spacing. Simulations are
performed on a workstation with an Intel(R) Xeon(R) Silver 4214 CPU and 128 GB RAM,
and MATLAB 2018b is adopted. The signal-to-noise ratio (SNR) is defined as the power
ratio of x(t)− n(t) to n(t), and the two vectors are defined in (1). The estimation accuracy
of the parameter ϑ is evaluated by the root mean square error (RMSE) defined as:

RMSE =

√
1/Q∑Q

q=1

(
ϑ̂q − ϑ

)2
(53)

where ϑ̂q denotes the estimated ϑ in the q-th trial.

Example 1. Scatter results of the proposed approaches. In Figure 2, we plot the scatter results of the
proposed T-TS approach, the T-RS approach, as well as the T-TRS approach for completely coherent
targets in Case (I). Herein, we consider K = 3 complete coherent targets with θt = (10

◦
, 36

◦
, 78

◦
),

φt = (15
◦
, 15

◦
, 15

◦
), γt = (10

◦
, 52

◦
, 75

◦
), ηt = (18

◦
,−31

◦
, 67

◦
), θr = (5

◦
, 45

◦
, 78

◦
),

φr = (15
◦
,−23

◦
, 30

◦
), γr = (32

◦
, 10

◦
, 65

◦
), and ηr = (16

◦
, 56

◦
, 38

◦
). Moreover, M = 8,

N = 12, L = 500, κt = 2λ, κr = 4λ, and SNR = 0 dB are considered. It is obvious that 2D-DOD,
2D-DOA, 2D-TPA, and 2D-RPA can be accurately estimated by the T-TS, T-RS, and T-TRS
approaches, and all the results are correctly paired. It is evident that the proposed approaches are
effective for EMVS-MIMO radar, even through the two targets have the same Tx azimuth angle φt.
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Example 2. RMSE of the proposed approaches versus SNR. Figure 3 gives the average RMSE
on direction (2D-DOD and 2D-DOA) estimation and polarization (2D-TPA and 2D-RPA) es-
timation versus SNR comparison for K = 3 completely coherent targets in Case (I), where
φt = (15

◦
, 50

◦
,−53

◦
), and other conditions are the same as in Example I. The average RMSE on

direction and polarization are marked with suffixes ‘-d’ and ‘-p’, respectively. It is observed that
all the approaches provide improved RMSE with the increasing SNR. Obviously, the TS approach
and the RS approach offer more accuate direction estimations than the T-TS approach and the T-RS
approach, while the proposed T-TRS approach achieves better estimation accuracy than the TRS
approach. Interestingly, all the tensor-aware estimators offer much better polarization estimation
accuracy than their matrix counterparts. In addition, it should be noticed that there are gaps between
all the mentioned approaches and the CRB, implying that there is room to further improve the
estimation accuracy.
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Figure 3. RMSE of parameter estimation versus SNR in Case (I).

Example 3. RMSE comparisons of various algorithms with ULA geometry. Herein, the per-
formances with respect to the PARAFAC estimator in [32] and the ESPRIT-like algorithm in [34]
are added. Unless otherwise specified, the simulation conditions are the same as in Example 2.
Figure 4 (upper left) displays the average RMSE on direction estimation versus the SNR, from
which we can observe that both ESPRIT-like and traditional PARAFAC algorithms fail to work in
the presence of coherent targets. In addition, the tensor-based smoothing approaches outperform the
matrix-based ones. Figure 4 (upper right) presents the average RMSE versus correlation coefficient
between targets, where the SNR is set to 10 dB. As expected, both ESPRIT-like and traditional
PARAFAC algorithms have very close (or even better) RMSE performances to the smoothing ap-
proaches. However, they would achieve decreased RMSE with the increasing α once α is larger than
a given threshold. However, RMSE of the smoothing-based approaches barely change during the
entire α regions. Figure 4 (lower left) shows the RMSE results of various estimators versus sensor
position error factor δ, where random position error unif ([0, δλ]) is considered in both the Tx and
Rx arrays, and the SNR is set to 20 dB. Obvious, the RMSE of all the estimators barely change
with δ, except the traditional PARAFAC algorithm. It is evident that the proposed estimators are
insensitive to sensor position errors.
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Example 4. RMSE comparisons versus snapshot L in case (I). Figure 5 presents the average
RMSE on direction estimation and polarization estimation at different snapshot numbers L in
Case (I), where the SNR is fixed at 10 dB and other conditions are the same as in Example 2. The
observations in Figure 5 are similar to that in Figure 3. The proposed tensor-based approaches
achieve better RMSE than the matrix-based approaches in polarization parameter estimation, but
they may perform worse than the latter in direction parameter estimation.
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Figure 5. RMSE of parameters estimation versus L in Case (I).

Example 5. Performance comparisons versus Rx EMVS number N in case (I). Figure 6 illus-
trates the average RMSE comparison and average running time (ART) comparison for completely
coherent targets in Case (I) with different Rx EMVS number N, where M = 12, κt = 2λ, κr = 16λ,
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L = 500, and SNR = 10 dB are considered. In such a configuration, the MIMO radar system can be
interpreted as a massive MIMO radar since there are 72 Tx components and 6N Rx components.
It is shown that the tensor approaches offer a much closer direction estimation performance than
the matrix approaches, and they outperform the matrix counterparts with respect to polarization
parameter estimation. As expected, the T-TS approach is much more efficient than the TS approach,
especially in the presence of large N. However, since M is relatively small, the T-RS approach and the
T-TRS approach would require more calculation time than the RS approach and the TRS approach,
respectively. In sum, there is a trade-off between running time and the estimation accuracy. In
practice, the approprite algorithm should be chosen to balance the two indices.
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Figure 6. RMSE and ART comparisons versus N in Case (I).

Example 6. RMSE comparison versus target distance in case (I). Figure 7 illustrates the av-
erage RMSE comparison for completely coherent targets in Case (I) with different inter-target dis-
tance ∆, where K = 2 complete coherent targets are considered with parameters θt = (10

◦
, 10

◦
+ ∆),

φt = (15
◦
, 15

◦
+ ∆), γt = (10

◦
, 10

◦
+ ∆), ηt = (16

◦
, 16

◦
+ ∆), θr = (12

◦
, 12

◦
+ ∆),

φr = (11
◦
, 11

◦
+ ∆), γr = (2

◦
, 2
◦
+ ∆) and ηr = (7

◦
, 7
◦
+ ∆). Moreover, for L = 200 and

SNR = 10 dB, other conditions are the same as in Example 1. It is observed that the RMSE
of all the methods will improved quickly with the increasing ∆ when ∆ is smaller than 10◦;
otherwise the RMSE of all the methods would be improved slowly with the increasing ∆.
Since the proposed approaches can take advantage of the tensor nature, they outperform the
matrix-based estimators, especially in polarization parameters estimation.
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Figure 7. RMSE comparisons versus target distance ∆ in Case (I).

6. Conclusions

In this paper, three estimators based on PARAFAC decomposition are introduced for
2D-DOD, 2D-DOA, 2D-TPA, and 2D-RPA estimation in a bistatic EMVS-MIMO radar with
coherent targets. The core idea of the proposed estimators is to de-correlate the coherent
targets via spatial smoothing and then formulate the covariance matrix into a third-order
PARAFAC decomposition model. After performing PARAFAC decomposition, the factor
matrices with respect to various PARAFAC models are obtained. Then, the 2D-DOD and
2D-DOA are achieved via the normalized vector cross-product technique. Finally, the
2D-TPA and 2D-RPA are estimated via the LS technique. Simulations coincide with the
theorical results. In the near future, attention should be paid to developing more effective
estimation algorithms.
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