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Abstract: Satellite-based PM2.5 estimation has been widely used to assess health impact associated
with PM2.5 exposure and might be affected by spatial resolutions of satellite input data, e.g., aerosol
optical depth (AOD). Here, based on Multi-Angle Implementation of Atmospheric Correction (MA-
IAC) AOD in 2020 over the Yangtze River Delta (YRD) and three PM2.5 retrieval models, i.e., the
mixed effects model (ME), the land-use regression model (LUR) and the Random Forest model (RF),
we compare these model performances at different spatial resolutions (1, 3, 5 and 10 km). The PM2.5

estimations are further used to investigate the impact of spatial resolution on health assessment. Our
cross-validated results show that the model performance is not sensitive to spatial resolution change
for the ME and LUR models. By contrast, the RF model can create a more accurate PM2.5 prediction
with a finer AOD spatial resolution. Additionally, we find that annual population-weighted mean
(PWM) PM2.5 concentration and attributable mortality strongly depend on spatial resolution, with
larger values estimated from coarser resolution. Specifically, compared to PWM PM2.5 at 1 km
resolution, the estimation at 10 km resolution increases by 7.8%, 22.9%, and 9.7% for ME, LUR,
and RF models, respectively. The corresponding increases in mortality are 7.3%, 18.3%, and 8.4%.
Our results also show that PWM PM2.5 at 10 km resolution from the three models fails to meet the
national air quality standard, whereas the estimations at 1, 3 and 5 km resolutions generally meet the
standard. These findings suggest that satellite-based health assessment should consider the spatial
resolution effect.

Keywords: PM2.5 retrieval; AOD; spatial resolution; health assessment

1. Introduction

Exposure to fine particulate matter (particulate matter with a diameter <2.5 µm, PM2.5)
causes a variety of negative effects on human health [1,2]. Thus, it is crucial to accurately
estimate the PM2.5 exposures for health assessment. Satellite remote sensing is an effective
way to estimate PM2.5 with continuous temporal and spatial coverage [3,4].

Satellite-derived aerosol optical depth (AOD) is a widely used proxy for PM2.5 [5].
Many scholars have estimated PM2.5 concentrations with different spatio-temporal reso-
lutions by using AOD data and various models [6–10]. Wei et al. [11,12] developed the
space–time extremely randomized tree model to generate daily PM2.5 data at a spatial
resolution of 1 km in China by using MAIAC AOD products. Geng et al. [13] provided near
real-time PM2.5 data in China on a daily scale at a spatial resolution of 10 km. These data
were based on a two-stage machine learning model and multiple data sources, including
official MODIS AOD products. Zhang et al. [14] created monthly PM2.5 estimates in China
by using a land-use regression model and MODIS AOD product. Numerous studies have
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also used satellite AOD data to retrieve PM2.5 concentrations at a regional scale, such as the
Yangtze River Delta (YRD) [15–20].

The performance of the AOD-based PM2.5 retrieval models may be affected by the
AOD spatial resolution. However, the conclusions of this issue are not consistent in previous
studies [17,21–23]; their work mainly focuses on the traditional statistical regression models,
and such analysis is lacking for machine learning models. Lee et al. [23] used the linear
mixed-effect model to estimate PM2.5 in the Southeastern United States. They found that
the model using 1 km AOD data showed a better performance than that using 10 km AOD
data. Li et al. [21] conducted similar work in northern China but found that the 1 km model
performance was slightly lower than the 10 km model. The YRD region also experienced
such a difference in performance between 3 and 10 km AOD data [17]. The inconsistent
conclusions may be because the linear model can not effectively capture the nonlinear
relationship between AOD and PM2.5 involving different spatial scales [24].

Previous studies have extensively used satellite-derived PM2.5 data to assess PM2.5-related
health effects [9,25–31]. These health assessments were performed at a wide range of spatial
resolutions from 1 to 50 km and may suffer from a potential uncertainty due to the impact
of satellite data resolution on PM2.5 estimations. Numerous studies have investigated the
impact of spatial resolution on PM2.5 attributable mortality, and they found that the coarser
resolution typically leads to lower estimated mortality [32–35]. These studies, however,
were based on the air quality model simulations. Few studies have evaluated the sensitivity
of human health to spatial resolution using satellite-derived PM2.5 data. Furthermore, the
findings of previous model studies above were mainly for the United States and European
regions. Whether these findings hold for heavily polluted areas, such as the YRD region,
remains unclear.

As outlined above, satellite AOD spatial resolution may affect the performance of the
PM2.5 retrieval model. Previous studies, however, have drawn inconsistent conclusions on
this topic [17,21–23], and fewer have investigated the spatial resolution effect using machine
learning models. Regarding the sensitivity of the PM2.5-related health impacts to spatial
resolution, existing studies were mostly based on the air quality model simulations and
mainly focused on Western countries or regions [32–35]. The application of their findings is
questionable for satellite-derived PM2.5 data, especially in heavily polluted areas.

The above limitations motivate us to conduct this work with the following contribu-
tions. First, we explore AOD spatial resolution effect on PM2.5 retrieval model performance,
including machine learning and statistical regression methods. Second, this work uses
satellite-derived PM2.5 to investigate the sensitivity of the associated health impacts to
spatial resolution in the YRD region, one of the most polluted areas in China.

Here, by using satellite AOD at spatial resolutions of 1, 3, 5 and 10 km, this study
analyzes the impact of spatial resolution on the AOD–PM2.5 correlation. Additionally,
satellite AOD is used to estimate PM2.5 based on three different retrieval models (i.e.,
the mixed effects model (ME), the land-use regression model (LUR) and the Random
Forest model (RF)), and we compare these model performances at different AOD spatial
resolutions. Finally, this work uses AOD-based PM2.5 estimation to assess population-
weighted PM2.5 and attributable mortality and further explores these health assessments’
sensitivity to spatial resolution.

2. Data and Methods
2.1. Study Area

The study region is the Yangtze River Delta (YRD), which is located in Eastern China.
This region contains a total of 26 cities and covers 2.2% of the national land area [36]. Based
on the latest statistical yearbook in 2020, YRD accounts for 11.4% of the national population
and 20.2% of the national gross domestic product. Despite a significant declining trend of
PM2.5 concentrations in the recent decades observed in YRD, this region is still one of the
most polluted areas in China [12].



Remote Sens. 2022, 14, 2933 3 of 18

2.2. Data Sets
2.2.1. MAIAC AOD Product

The study used the Multi-Angle Implementation of Atmospheric Correction (MAIAC)
AOD with a 1 km spatial resolution (MCD19A2 product). This product over YRD in 2020
was obtained from the NASA Earthdata website (https://earthdata.nasa.gov/ (accessed
on 18 October 2021)). We used AOD retrievals at a wavelength of 550 nm with high-quality
assurance (QACloudMask = Clear and QAAdjacenyMask = Clear) [11]. The MAIAC algorithm
generates AOD retrievals from the darkest to the brightest surfaces over land, and a detailed
description of this algorithm can be seen elsewhere [37,38]. Previous studies have shown a
good performance of MAIAC AOD data over China [11,39].

Aqua and Terra MAIAC AOD retrievals were averaged to enlarge the spatial coverage
and to increase the number of valid data samples [11]. This new 1 km AOD dataset was
further averaged to create AOD data at three additional spatial resolutions (3, 5 and 10 km).

2.2.2. Ground-Based PM2.5 Measurements

Hourly PM2.5 observations at 163 stations over YRD in 2020 were collected from the
China National Environmental Monitor Center (CNEMC, http://www.cnemc.cn (accessed
on 13 August 2021)). Hourly measurements < 1 µg/m3 were removed because they are
below the instruments’ limit of detection [16]. Daily mean PM2.5 values were then calculated
from the hourly time series when there were more than 18 measurements on each day [40].
We adopted 24 h average PM2.5 concentrations here because they are widely used for
PM2.5-related health assessment. During matching MAIAC AOD and ground-based PM2.5
data, one AOD pixel may cover multiple PM2.5 sites, especially for coarser resolutions. For
these cases, PM2.5 concentrations from multiple sites were averaged to ensure one matchup
for a given AOD value. The spatial distribution of 163 stations is shown in Figure 1a.

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 20 
 

 

tional population and 20.2% of the national gross domestic product. Despite a significant 
declining trend of PM2.5 concentrations in the recent decades observed in YRD, this re-
gion is still one of the most polluted areas in China [12]. 

2.2. Data Sets 
2.2.1. MAIAC AOD Product 

The study used the Multi-Angle Implementation of Atmospheric Correction (MA-
IAC) AOD with a 1 km spatial resolution (MCD19A2 product). This product over YRD in 
2020 was obtained from the NASA Earthdata website (https://earthdata.nasa.gov/ (ac-
cessed on 18 October 2021)). We used AOD retrievals at a wavelength of 550 nm with 
high-quality assurance (QACloudMask = Clear and QAAdjacenyMask = Clear) [11]. The MAIAC 
algorithm generates AOD retrievals from the darkest to the brightest surfaces over land, 
and a detailed description of this algorithm can be seen elsewhere [37,38]. Previous 
studies have shown a good performance of MAIAC AOD data over China [11,39]. 

Aqua and Terra MAIAC AOD retrievals were averaged to enlarge the spatial cov-
erage and to increase the number of valid data samples [11]. This new 1 km AOD dataset 
was further averaged to create AOD data at three additional spatial resolutions (3, 5 and 
10 km). 

2.2.2. Ground-Based PM2.5 Measurements 
Hourly PM2.5 observations at 163 stations over YRD in 2020 were collected from the 

China National Environmental Monitor Center (CNEMC, http://www.cnemc.cn (ac-
cessed on 13 August 2021)). Hourly measurements < 1 μg/m3 were removed because they 
are below the instruments’ limit of detection [16]. Daily mean PM2.5 values were then 
calculated from the hourly time series when there were more than 18 measurements on 
each day [40]. We adopted 24 h average PM2.5 concentrations here because they are 
widely used for PM2.5-related health assessment. During matching MAIAC AOD and 
ground-based PM2.5 data, one AOD pixel may cover multiple PM2.5 sites, especially for 
coarser resolutions. For these cases, PM2.5 concentrations from multiple sites were aver-
aged to ensure one matchup for a given AOD value. The spatial distribution of 163 sta-
tions is shown in Figure 1a. 

 
Figure 1. Panel (a) presents the locations of PM2.5 monitoring stations (magenta dots) and DEM at 1 
km spatial resolution in the Yangtze River Delta. Panel (b) shows the spatial distribution of the 
natural logarithm of population count in 2020. 

2.2.3. Population and Mortality Data 
The population data came from the Gridded Population of the World, Version 4 [41]. 

The data are available from the Socioeconomic Data and Applications Center 
(https://sedac.ciesin.columbia.edu/data/collection/gpw-v4 (accessed on 27 June 2021)). 

Figure 1. Panel (a) presents the locations of PM2.5 monitoring stations (magenta dots) and DEM at
1 km spatial resolution in the Yangtze River Delta. Panel (b) shows the spatial distribution of the
natural logarithm of population count in 2020.

2.2.3. Population and Mortality Data

The population data came from the Gridded Population of the World, Version 4 [41].
The data are available from the Socioeconomic Data and Applications Center (https://
sedac.ciesin.columbia.edu/data/collection/gpw-v4 (accessed on 27 June 2021)). This study
used the 2020 population count with 1 km spatial resolution. The gridded population data
were adjusted by using the Seventh China Census in 2020. Specifically, for a given city in
YRD, we scaled the gridded values by the ratio of the city’s total population from census
data to gridded data. The spatial distribution of 2020 adjusted population estimates with
1 km spatial resolution in YRD is shown in Figure 1b. Additionally, the 1 km population
count data were summed up to generate data with three coarser resolutions (3, 5 and 10 km).
Note that the spatial coverage of the 1 × 1 km grid cell is different between MCD19A2
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and the gridded population data. Thus, we interpolated these two datasets to the same
regular grid using the nearest neighbor algorithm before generating coarser resolution
data. The national-level age structure and the age-specific and disease-specific mortality
for 2019 were obtained from the Global Burden of Disease Study 2019 (GBD 2019) dataset
(https://vizhub.healthdata.org/gbd-compare/ (accessed on 29 March 2021)). Note that
all datasets used in this study are for 2020 except the GBD data, which are only available
until 2019.

2.2.4. Auxiliary Data

The auxiliary data used in this study include land use, surface elevation and meteoro-
logical data. The land-use data contain land cover and normalized difference vegetation
index (NDVI). Ten types of land cover at 30 m resolution for 2020 were obtained from
GlobeLand30 dataset (http://www.globallandcover.com/ (accessed on 13 October 2021)).
Land cover data at multiple spatial resolutions (1, 3, 5 and 10 km) were generated by
calculating land cover percentages for each grid in YRD at corresponding spatial scales.
Monthly NDVI data at 1 km resolution came from the MODIS product (MOD13A3) and
were simply aggregated to three additional spatial resolutions (3, 5 and 10 km). Elevation
data were obtained from the Shuttle Radar Topography Mission (SRTM) Digital Elevation
Model (DEM) at 90 m resolution (https://earthexplorer.usgs.gov/ (accessed on 13 October
2021)). We resampled the 90 m elevation data to 1 km resolution data (shown in Figure 1a)
and further aggregated the resampled the DEM data to coarser resolutions (3, 5 and 10 km).

Meteorological variables associated with surface PM2.5 were extracted from the ECMWF
ERA5 hourly reanalysis (https://cds.climate.copernicus.eu/ (accessed on 12 October 2021)).
These variables include air temperature at an altitude of 2 m (T), the surface atmospheric
pressure (P), 10 m u-wind (U10) and v-wind (V10) component, total column water (TCW),
total column ozone (TCO), relative humidity (RH), and planetary boundary layer height
(PBLH). The hourly meteorological data for 2020 between 10:00 a.m. and 2:00 p.m. local
time were averaged to be consistent with satellite overpass times [11]. Another reanalysis
dataset of ERA5-Land had a high resolution of 0.1◦ × 0.1◦; however, we did not use
the ERA5-Land data given that PBLH, RH, TCW and TCO variables are not included
in the dataset. The meteorological data have a spatial resolution of 0.25◦ × 0.25◦ and
were resampled to four finer spatial resolutions (1, 3, 5 and 10 km) using the nearest
neighbor algorithm.

2.3. Methods

Gridded data at four spatial resolutions were collocated with daily surface PM2.5
measurements. These collocated pairs were used to build three satellite-based PM2.5
retrieval models including the mixed effects model (ME), the land-use regression model
(LUR) and the Random Forest model (RF). Based on PM2.5 retrievals using the above
models, we further estimated the deaths attributable to PM2.5 pollution in YRD in 2020.
The detailed introduction of each model is as follows.

2.3.1. The Mixed Effects Model

The ME model is a linear approach, which takes into consideration both fixed and
random effects. The model is represented by Equation [42]:

PMij =
(
α + µj

)
+

(
β + νj

)
× AODij + εij

(
µjνj

)
∼ N

[
(0, 0), ∑

]
(1)

where PMij is the daily average PM2.5 concentration at monitoring site i on day j; AODij
is the AOD value for the pixel corresponding to site i on day j; α and µj are the fixed
and day-specific random effects for intercept, respectively; β and νj are the fixed and
day-specific random effect for slope, respectively; εij is the error term; Σ is an unstructured
variancecovariance matrix for day-specific random effects. In the ME model, the fixed effect

https://vizhub.healthdata.org/gbd-compare/
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explains the average effect of AOD on PM2.5 for the entire study period. The random effect
represents the daily variability in the PM2.5–AOD relationship [42].

2.3.2. The Land-use regression Model

A stepwise linear regression method is adopted for building the LUR model [43].
Input predictors for the LUR model include land cover, NDVI, population, DEM, AOD,
meteorological parameters, geographical locations and dummy variables (month and day).
Note that predictors for the final LUR model with four spatial resolutions are different,
especially for land cover variables. For instance, land cover predictors for the 1 km LUR
model only include cultivated land, wetland and water body, whereas the land cover
predictors additionally contain forest, grass land and artificial land for the 3 km LUR model.
One possible explanation for this is that distributions of some land cover variables of
the LUR model samples differ obviously among different resolutions. For instance, since
most air quality monitoring stations in the YRD region are located in urban areas [44],
artificial land cover ratios of 1 km LUR model samples are primarily equal to 1. Thus, the
1 km LUR model could hardly capture the relationship between PM2.5 and the artificial
land cover ratio, thus discarding this land cover variable. The artificial land cover ratio
increasingly varies between samples as the resolution of LUR model samples becomes
coarser (not shown). Therefore, the LUR model possibly captures the response of PM2.5 to
changes in artificial land cover ratio variation and finally includes this variable as an input
predictor. Note that other input predictors besides land use generally hold for different
spatial resolutions.

2.3.3. The Random Forest Model

The RF model is based on a set of decision trees [45,46]. It can be used for both
classification and regression. The model has only two important hyperparameters to tune:
the number of predictors randomly sampled as candidates at each split (max_features)
and the number of trees to grow (n_estimators). Input predictors for the RF model are
the same as the LUR model. We carried out a grid search approach to find the optimized
hyperparameters [15]. For the RF model at 1, 3, 5 and 10 km resolution, the optimized
values of max_features (n_estimators) are 9 (900), 10 (800), 13 (700) and 11 (300), respectively.

2.3.4. Model Evaluation

We used 10-fold cross validation (CV) to evaluate the performance of the above satellite-
based PM2.5 retrieval models. All samples were randomly divided into 10 subsets; nine of
them were used for training, and the remaining one was used for validation. This process was
repeated 10 times until every subset was tested. Based on predicted PM2.5 concentrations from
10-fold CV and surface measurements, this study calculated the determination coefficient (R2)
and root-mean-square error (RMSE) to assess the model performance.

2.3.5. Exposure and Health Impact Assessments

For each PM2.5 retrieval model and each spatial resolution, the daily PM2.5 retrievals
in YRD were averaged to annual values. These annual values were further used to calcu-
late annual population-weighted mean (PWM) PM2.5 concentration over the entire YRD
area. Additionally, we adopted a method from the GBD 2019 project to estimate deaths
attributable to exposure to annual mean PM2.5, based on the following equation [47]:

M = ∑
i,a,d

(
POPi,a × MBi,a,d ×

RRa,d(PMi)− 1
RRa,d(PMi)

)
(2)

where M is attributable death in YRD in 2020; i, a, and d represent grid, age group and
cause of death, respectively; POP is population count; MB stands for the baseline mortality
rate; RR(PM) is the relative risk associated with exposure at level PMi. This work used
an updated RR, which is based on a Meta Regression–Bayesian, Regularized, Trimmed
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(MR-BRT) spline from the GBD 2019 [48]. Five mortality endpoints associated with PM2.5
pollution were estimated, including stroke, ischemic heart disease (IHD), chronic obstruc-
tive pulmonary disease (COPD), lung cancer (LC) and lower respiratory infection (LRI).
Note that age group and MB used in this study are both national level due to a lack of
refined data.

3. Results
3.1. The Impact of Spatial Resolution on AOD–PM2.5 Correlation

Figure 2a shows the correlation coefficients between PM2.5 concentration and AOD at
1, 3, 5 and 10 km resolutions for different seasons. As can be seen, the correlation generally
decreases with the decrease in AOD spatial resolution. This pattern is evident for spring,
and the correlation decreases from 0.44 to 0.40 as resolution decreases from 1 to 10 km.
Additionally, Figure 2a shows a seasonal variation of the correlation irrespective of AOD
spatial resolution, with the highest value in winter and the lowest in spring. Note that
this seasonal pattern may change over time. For instance, Yang et al. [49] found that the
AOD–PM2.5 correlation in YRD in 2016 was highest in January and lowest in March. In
contrast, the highest and lowest in 2014 appeared in September and July, respectively.
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Figure 2. (a) The correlation coefficients between PM2.5 concentration and AOD at the resolutions of
1, 3, 5 and 10 km over the Yangtze River Delta for different seasons. Based on the spatial AOD–PM2.5

correlation for each day in summer, the box-and-whisker in panel (b) shows 10th, 25th, 50th, 75th and
90th percentile values of the correlation for different resolutions. Note that the spatial AOD–PM2.5

correlation for a given day is excluded in panel (b) if the number of AOD–PM2.5 pairs is less than 10.

The AOD–PM2.5 correlation in summer initially decreases as the resolution changes
from 1 to 3 km and then increases gradually as the resolution continues to become coarser
(Figure 2a). This spatial resolution effect is partly because a coarser AOD resolution can
better capture the spatial variation of PM2.5 in summer. To examine this explanation, we
plot the box-and-whisker based on the spatial AOD–PM2.5 correlation for each day in
summer (Figure 2b). As the resolution becomes coarser, the median of spatial AOD–PM2.5
correlation in summer dramatically increases from 0.23 to 0.39 (Figure 2b). However, this
feature does not hold for other seasons (not shown).

Figure 2b shows a higher spatial correlation at a coarser AOD resolution in summer.
One possible explanation is that AOD values are overestimated for these retrievals near
cloud pixels [50,51]. This situation appears more frequently in summer when the cloud
amount is the highest versus other seasons [52]. After aggregating AOD products for coarser
resolutions, the overestimated AOD values tend to be smoothed, thereby improving the
AOD–PM2.5 correlation. To examine this point, we choose a case on 15 August 2020 when
the number of AOD–PM2.5 pairs is the highest in summer and plot the spatial distributions
of AOD and PM2.5 in this case for different resolutions, as shown in Figure 3. In this case,
AOD at a 1 km resolution is widely missing due to cloud cover, and some AOD values are
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likely high due to cloud contamination rather than high pollution levels. Aggregating AOD
products for coarser resolutions may mitigate this situation. In this case, the AOD–PM2.5
correlations at the resolutions of 1, 3, 5, and 10 km are 0.64, 0.69, 0.70, and 0.75, respectively.
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Figure 3. The spatial distributions of AOD and PM2.5 concentration on 15 August 2020 at the
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3.2. The Impact of Spatial Resolution on PM2.5 Retrieval Model

Here, we investigate the impact of AOD spatial resolution on model performance
for different PM2.5 retrieval algorithms, i.e., the mixed effects model (ME), the land-use
regression model (LUR) and the Random Forest model (RF). The 10-fold cross validation
results for these three models are shown in Figures 4–6. As can be seen, the performance
is not sensitive to the AOD spatial resolution for both ME and LUR models. Specifically,
for the ME model with different resolutions (Figure 4), R2 remains at 0.78, and RMSE
ranges from 10.2 to 10.4 µg/m3. R2 ranges from 0.51 to 0.52, and RMSE ranges from 15.5 to
15.7 µg/m3 for the LUR model (Figure 5). The LUR model shows the poorest performance
compared to other models. This is partly because the LUR model severely underestimates
high-level PM2.5 (Figure 5). Our results show that AOD data at a finer spatial resolution
cannot improve the performance of ME and LUR models in the YRD region. This finding
was also observed in the same region [17], northern China [21], and the southeastern
United States [22] based on the traditional statistical regression. Nevertheless, it still needs
to further examine this finding by using multi-year AOD data with finer resolution and
more spatial coverage in the future.



Remote Sens. 2022, 14, 2933 8 of 18

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 20 
 

 

Here, we investigate the impact of AOD spatial resolution on model performance for 
different PM2.5 retrieval algorithms, i.e., the mixed effects model (ME), the land-use re-
gression model (LUR) and the Random Forest model (RF). The 10-fold cross validation 
results for these three models are shown in Figures 4–6. As can be seen, the performance 
is not sensitive to the AOD spatial resolution for both ME and LUR models. Specifically, 
for the ME model with different resolutions (Figure 4), R2 remains at 0.78, and RMSE 
ranges from 10.2 to 10.4 μg/m3. R2 ranges from 0.51 to 0.52, and RMSE ranges from 15.5 to 
15.7 μg/m3 for the LUR model (Figure 5). The LUR model shows the poorest performance 
compared to other models. This is partly because the LUR model severely underesti-
mates high-level PM2.5 (Figure 5). Our results show that AOD data at a finer spatial res-
olution cannot improve the performance of ME and LUR models in the YRD region. This 
finding was also observed in the same region [17], northern China [21], and the south-
eastern United States [22] based on the traditional statistical regression. Nevertheless, it 
still needs to further examine this finding by using multi-year AOD data with finer res-
olution and more spatial coverage in the future. 

 
Figure 4. Scatter plots of 10-fold cross validation (CV) results for the mixed effects (ME) model at 
the resolutions of (a) 1, (b) 3, (c) 5 and (d) 10 km. The color bar represents the counts of samples. R2, 
RMSE and N are the coefficient of determination, root-mean-square error and number of samples, 
respectively. The dashed line stands for the 1:1 line. 

Figure 4. Scatter plots of 10-fold cross validation (CV) results for the mixed effects (ME) model at
the resolutions of (a) 1, (b) 3, (c) 5 and (d) 10 km. The color bar represents the counts of samples. R2,
RMSE and N are the coefficient of determination, root-mean-square error and number of samples,
respectively. The dashed line stands for the 1:1 line.

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 5. Scatter plots of 10-fold cross validation (CV) results for the land-use regression (LUR) 
model at the resolutions of (a) 1, (b) 3, (c) 5 and (d) 10 km. The color bar represents the counts of 
samples. R2, RMSE and N are the coefficient of determination, root-mean-square error and number 
of samples, respectively. The dashed line stands for the 1:1 line. 

Figure 5. Scatter plots of 10-fold cross validation (CV) results for the land-use regression (LUR) model
at the resolutions of (a) 1, (b) 3, (c) 5 and (d) 10 km. The color bar represents the counts of samples.
R2, RMSE and N are the coefficient of determination, root-mean-square error and number of samples,
respectively. The dashed line stands for the 1:1 line.



Remote Sens. 2022, 14, 2933 9 of 18Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 6. Scatter plots of 10-fold cross validation (CV) results for the Random Forest (RF) model at 
the resolutions of (a) 1, (b) 3, (c) 5 and (d) 10 km. The color bar represents the counts of samples. R2, 
RMSE and N are the coefficient of determination, root-mean-square error and number of samples, 
respectively. The dashed line stands for the 1:1 line. 

By contrast, the performance of the RF model is sensitive to AOD spatial resolution, 
with higher prediction accuracy at a finer resolution (Figure 6). Specifically, by compar-
ing the performance between 1 and 10 km, R2 improves from 0.85 to 0.88, and RMSE de-
creases from 8.6 to 7.9 μg/m3. Furthermore, the RF model at a 1 km resolution success-
fully predicts the high-level PM2.5 observation (Figure 6a), whereas the RF model at 
coarser resolution commonly underestimates them (Figure 6b–d). We also compared 
PM2.5 estimates from the 1 km RF model with the currently available data, e.g., Chi-
naHighPM2.5 from CHAP data set [11,12] (https://weijing-rs.github.io/product.html (ac-
cessed on 19 June 2021)). The PM2.5 estimates from ChinaHighPM2.5 data have higher 
accuracy with CV R2 of 0.90 than our 1 km RF model (CV R2 as 0.88). Furthermore, the 
spatial distribution of annual PM2.5 concentrations in 2020 over the YRD region is overall 
similar between these two data sources (Figure 7). Compared to the CHAP dataset, the 
annual PM2.5 concentration from our RF model is relatively high, especially in the south-
ern YRD region. One possible reason for this is the difference in data sampling since this 
study did not consider the missing values in satellite AOD product under cloudy or 
snow/ice surfaces. 
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the resolutions of (a) 1, (b) 3, (c) 5 and (d) 10 km. The color bar represents the counts of samples. R2,
RMSE and N are the coefficient of determination, root-mean-square error and number of samples,
respectively. The dashed line stands for the 1:1 line.

By contrast, the performance of the RF model is sensitive to AOD spatial resolution,
with higher prediction accuracy at a finer resolution (Figure 6). Specifically, by comparing
the performance between 1 and 10 km, R2 improves from 0.85 to 0.88, and RMSE decreases
from 8.6 to 7.9 µg/m3. Furthermore, the RF model at a 1 km resolution successfully predicts
the high-level PM2.5 observation (Figure 6a), whereas the RF model at coarser resolution
commonly underestimates them (Figure 6b–d). We also compared PM2.5 estimates from
the 1 km RF model with the currently available data, e.g., ChinaHighPM2.5 from CHAP
data set [11,12] (https://weijing-rs.github.io/product.html (accessed on 19 June 2021)).
The PM2.5 estimates from ChinaHighPM2.5 data have higher accuracy with CV R2 of 0.90
than our 1 km RF model (CV R2 as 0.88). Furthermore, the spatial distribution of annual
PM2.5 concentrations in 2020 over the YRD region is overall similar between these two data
sources (Figure 7). Compared to the CHAP dataset, the annual PM2.5 concentration from
our RF model is relatively high, especially in the southern YRD region. One possible reason
for this is the difference in data sampling since this study did not consider the missing
values in satellite AOD product under cloudy or snow/ice surfaces.

https://weijing-rs.github.io/product.html
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In general, the performance of the ME model in this work is comparable to previous
studies focusing on the YRD region. In contrast, our RF model has better prediction
accuracy (see Table 1). Specifically, CV R2 values of the 10 km LME model are 0.80 and
0.73 from Zheng et al. [18] and Ma et al. [17], respectively. By comparison, CV R2 of
our 10 km ME model is 0.78. Note that our LUR model performance is worse than the
traditional statistical regression model in the YRD region from previous studies [16–19].
This may be partly because input predictors for our LUR model do not include additional
geographic information, e.g., road length and density. Additionally, Bai et al. [15] and
Wang et al. [20] used 5 km RF model and 3 km XGBoost model to retrieve PM2.5 in the YRD
region, respectively, and they reported CV R2 as 0.65 and 0.80. Our RF model has better
performance, with CV R2 of 0.84 for both 3 and 5 km models.

Table 1. Comparison of performances of different AOD-based PM2.5 retrieval models in the Yangtze
River Delta region.

Related Study Model Spatial
Resolution

Model Cross-Validation

R2 RMSE

Zheng et al. [18] LME 10 km 0.80 17.89

Ma et al. [17] LME
10 km 0.73 18.30
3 km 0.67 15.82

Jiang et al. [19] GWR 10 km 0.79 -
Xiao et al. [16] Two-stage 1 km 0.77 -
Bai et al. [15] RF 5 km 0.65 15.69

Wang et al. [20] XGBoost 3 km 0.80 11.57

This study ME

1 km 0.78 10.39
3 km 0.78 10.25
5 km 0.78 10.20

10 km 0.78 10.39

This study LUR

1 km 0.51 15.72
3 km 0.51 15.49
5 km 0.51 15.46

10 km 0.52 15.57

This study RF

1 km 0.88 7.86
3 km 0.84 8.71
5 km 0.84 8.80

10 km 0.85 8.60
LME: linear mixed effect; GWR: geographically weighted regression; RF: Random Forest; XGBoost: extreme
gradient boosting; ME: mixed effect; LUR: land-use regression. Input predictors for the ME model in this study
only include AOD, whereas the LME model requires additional input predictors, e.g., air temperature.

Although the RF model performance is sensitive to resolution, regional annual aver-
ages of PM2.5 concentrations based on this model are similar among different resolutions

https://weijing-rs.github.io/product.html
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and are all about 36 µg/m3 (see Table 2). The standard deviation (SD) and interquartile
range (IQR) of annual PM2.5 throughout all grids in YRD generally increase as the res-
olution becomes coarser, indicating that the RF model at coarser resolution can create a
larger spatial variability of annual PM2.5 concentrations. For the ME model, as resolution
decreases from 1 to 10 km, the regional annual average of PM2.5 gradually decreases from
37.0 to 35.4 µg/m3, and SD and IQR both slightly increase (Table 2). For the LUR model,
regional mean, SD and IQR values all fluctuate as the resolution changes (Table 2).

Table 2. Main statistics of annual (2020) PM2.5 concentration (µg/m3) estimated by the mixed effects
(ME), the land-use regression (LUR) and the Random Forest (RF) models.

PM2.5 Retrieval Models Statistics
Spatial Resolutions

1 km 3 km 5 km 10 km

ME model
Mean 37.0 36.3 35.7 35.4

SD 2.2 2.2 2.1 2.3
IQR 2.9 3.0 3.0 3.2

LUR model
Mean 23.6 32.2 31.2 33.8

SD 25.1 8.0 11.7 7.9
IQR 21.6 8.9 14.2 8.9

RF model
Mean 36.3 36.4 35.7 35.9

SD 4.0 4.2 4.7 4.6
IQR 6.2 6.4 7.3 7.0

Notes: SD, standard deviation; IQR, interquartile range.

Given that the RF model has a better performance compared to the ME and LUR
models, and the prediction accuracy of the 1 km RF model is the best among the four
different resolutions, we recommend using the 1 km RF model to estimate PM2.5 in the
YRD region.

3.3. The Impact of Spatial Resolution on Health Assessment

Annual population-weighted mean (PWM) PM2.5 estimated at different spatial res-
olutions is shown in Figure 8a. As the resolution becomes coarser, PWM PM2.5 clearly
increases regardless of which PM2.5 retrieval model is used (Figure 8a). Based on the ME
model, PWM PM2.5 at 10 km resolution is 7.8% higher than the result at 1 km resolution.
This difference is 22.9% and 9.7% for the LUR and RF models, respectively. Additionally,
Figure 8a shows that the spatial resolution has an essential impact on achievement of the
national air quality standard (35 µg/m3). PWM PM2.5 concentrations estimated at 1, 3 and
5 km resolution meet the standard for LUR and RF models, whereas estimates at 10 km
resolution fails to meet the standard for all models (Figure 8a). Furthermore, mortality
attributable to PM2.5 is also sensitive to resolution change, as shown in Figure 8b. Mortality
estimated at 10 km resolution increases by 7.3% compared to that at 1 km resolution for
ME model. This increase is 18.3% and 8.4% for the LUR and RF models, respectively.

PWM PM2.5 and attributable mortality notably increase with decreasing spatial res-
olution in YRD (Figure 8). One reason for this sensitivity is that annual PM2.5 increases
with coarser spatial resolutions in the northern YRD, especially in areas along the Yangtze
River; these areas usually correspond to highly polluted and densely populated regions.
Figure 9 shows the spatial distribution of annual PM2.5 at 1 km from the RF model and its
difference from coarser resolutions. As can be seen, annual PM2.5 at 3 km increases widely
in YRD compared to 1 km (Figure 9b), and this pattern still holds in the northern YRD
when going to coarser resolutions (Figure 9c,d). The sensitivity of PWM PM2.5 to spatial
resolution is further investigated for different sub-regions of YRD, as shown in Figure 10.
For annual PWM PM2.5 from the ME and RF models, the estimation gradually increases
as resolution decreases from 1 to 10 km in northeast YRD (sub-region 1) and northwest
YRD (sub-region 2). By contrast, PWM PM2.5 is less sensitive to resolution in southern YRD
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(sub-region 3). Although not shown here, PWM PM2.5 from the LUR model is sensitive to
resolution for all sub-regions in YRD.
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Figure 10. Annual population-weighted mean (PWM) PM2.5 as a function of spatial resolution. Panels
(a,b) are based on PM2.5 retrievals from the mixed effects (ME) and Random Forest (RF) models. Red,
green and blue lines in each panel stand for sub-region 1 (northeast YRD), sub-region 2 (northwest
YRD) and sub-region 3 (southern YRD), respectively. See Figure 1a for different sub-regions.

Another possible reason for the sensitivity of health assessments to spatial resolution
is that resolution affects the spatial coverage of PM2.5 retrievals. Annual PM2.5 estimated at
1 km resolution is commonly invalid over water bodies (e.g., rivers and lakes), which is
because high-quality assurance used in this study masks AOD values over inland water
bodies and coastal water areas with high uncertainty [39,53]. As the resolution becomes
coarser, PM2.5 estimates cover of more water bodies where annual PM2.5 is usually high;
meanwhile, coarser population grids include more densely populated sub-grids near water
bodies. These spatial expansions likely result in an increase in PWM PM2.5 with decreasing
resolution. An example of the above explanation is shown in Figure 11. As can be seen,
the annual 1 km PM2.5 from the RF model over Yangtze River and Taihu Lake is invalid.
In contrast, the annual PM2.5 tends to be valid and takes high values when decreasing
resolution (Figure 11a–d). This tendency is also observed for the population (Figure 11e–h).
Consequently, both high-level PM2.5 and dense population spatially expand, leading to a
higher PWM PM2.5.
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Figure 11. Spatial distribution of (top panels) annual PM2.5 estimated by the Random Forest (RF)
model and (bottom panels) population in northeast YRD (sub-region 1 in Figure 1a) for the resolutions
of (a,e) 1, (b,f) 3, (c,g) 5 and (d,h) 10 km. Population data in bottom panels are normalized by using
standardized z-scores.
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4. Discussion

Our results show that the AOD–PM2.5 correlation generally decreases as the AOD
spatial resolution becomes coarser, consistent with previous studies [54–56]. This pattern,
however, is the opposite in summer. One possible explanation for this unexpected result
is that AOD values collocated to PM2.5 observations are frequently near cloud pixels in
summer, and these AOD retrievals at finer resolution are likely unreliable due to cloud
contamination. By contrast, Chudnovsky et al. [55] indicated that MAIAC 1 km AOD
retrievals remain reliable under partly cloudy conditions. This cloud effect should be further
investigated in the future, perhaps in combination with a full-coverage AOD dataset.

Additionally, after applying vertical and humidity corrections of AOD following
previous works [57,58], the spatial resolution effect on the AOD–PM2.5 correlation still
holds (not shown). Note that the spatial resolution range may affect the sensitivity of
AOD–PM2.5 correlation on resolution. For instance, Wu et al. [57] found that, as degrading
spatial resolution, the correlation in Shenzhen City in summer rapidly increases until
reaching the peak at about 1 km resolution and then slowly decreases when going to
coarser resolutions.

This work indicates that AOD data at a finer spatial resolution cannot improve the
performance of the PM2.5 retrieval models based on the traditional statistical regression
(i.e., ME and LUR models). The spatial resolution effect on the PM2.5 retrieval model is
inconsistent among the previous studies [21–23]. For instance, Lee et al. [23] showed a
better performance of the ME model at a 1 km AOD resolution in the southeastern United
States (US) compared with 10 km resolution. Conversely, this trend is opposite in northern
China [21]. Hence, we speculate that the sensitivity of the PM2.5 retrieval model on AOD
spatial resolution varies by region. Northwest YRD (sub-region 2 in Figure 1a) shows a
better performance of the ME model as the resolution becomes coarser (not shown). For
the other two sub-regions, the ME model performance is still insensitive to AOD spatial
resolution (not shown).

For the PM2.5 retrieval model based on machine learning (i.e., the RF model), the
results presented here show that a finer AOD spatial resolution can produce a more
accurate PM2.5 prediction. This conclusion still holds for the three sub-regions in YRD (not
shown). Therefore, machine learning is likely a good way to solve the spatial resolution
effect on PM2.5 prediction. Note that PM2.5 prediction accuracy may not keep improving
when satellite data spatial resolution continues to be enhanced. For instance, based on
micro-satellite images, Zheng et al. [59] used a convolutional neural network and random
forest approach to estimate PM2.5 and compared prediction accuracy between different
input image sizes (i.e., 670, 500, 200 and 100 m). They found that as the image size
decreases, the performance improves at first until reaching the peak at 200 m, after which
the performance degrades.

We find that health assessment strongly depends on spatial resolution, with larger
values estimated from coarser resolution. This sensitivity holds for all three PM2.5 retrieval
models. Previous studies have drawn inconsistent conclusions regarding the spatial resolu-
tion effect on health assessment. Most of them have shown that PWM PM2.5 decreases as
spatial resolution becomes coarser [33,34,60,61]. By contrast, Thompson et al. [62] found
that PWM PM2.5 and attributable death are not sensitive to resolution. Furthermore, Punger
and West [32] showed that PWM PM2.5 increases with resolution from 12 to 36 km and then
decreases when going to coarser resolutions. A possible reason for the above inconsistent
conclusions may be that the spatial resolution range is different among different studies.
For instance, Li et al. [35] found that PM2.5 attributable mortality in the US gradually
decreases at degrading resolution (0.5◦ × 0.66◦, 1◦ × 1.25◦, 2◦ × 2.5◦, and 4◦ × 5◦). Punger
and West [32] reproduced this result for a similar resolution range but found an opposite
change in health assessment when comparing estimations between 12 and 36 km. To further
examine this resolution range effect, we create PWM PM2.5 at resolutions ranging from 1 to
15 km (in 2 km increments) by simply averaging 1 km PM2.5 concentrations. Although not
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shown here, we find that, as resolution becomes coarser, PWM PM2.5 gradually increases
until reaching a peak at 9 km, after which PWM PM2.5 is relatively flat.

Our study has some limitations. First, this work is limited to the YRD region in 2020.
The findings presented here may not be applicable for different periods and/or different
regions. Given that the impact of satellite data spatial resolution on the PM2.5 retrieval
model likely varies by region, it would be highly interesting to examine regional variation
in this resolution impact in the future. This further work should include different represen-
tative areas and long-term satellite data. Second, we set a limited spatial resolution range
(i.e., 1, 3, 5, and 10 km) to investigate the sensitivity of the PM2.5 retrieval model on AOD
spatial resolution. It remains unclear whether our sensitivity findings are reproduced for a
wider resolution range (e.g., sub-km scale). Higher spatial resolution satellite data are likely
beneficial for PM2.5 retrieval. However, this benefit may be clearly shown when supported
by additional refined data, e.g., meteorological fields, given the complex relationship be-
tween satellite observation and ground PM2.5 measurements. This speculation is supported
by a recent study in which they used ultrahigh-resolution top-of-atmosphere reflectance
(TOAR) to build different PM2.5 retrieval models without including additional factors [63].
They found that the model performance changes little, with the resolution varying from
30 m to 9 km (see their Figure 2a). They speculated that incorporating urban micro-climate
products may improve the PM2.5 prediction accuracy at a high resolution, e.g., 90 m [63].
In the future, we will further check our findings by using satellite data at higher spatial
resolution than MAIAC data (e.g., 20 m AOD product from Sentinel-2), in combination
with meteorological fields from Computational Fluid Dynamics (CFD) simulations.

5. Conclusions

Based on Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol
optical depth (AOD) and other auxiliary data in 2020 over the Yangtze River Delta (YRD),
this work investigates the effect of AOD spatial resolution on the performance of satellite-
based PM2.5 retrieval models. Overall, we find that the spatial resolution effect varies by
method. Specifically, the PM2.5 retrieval model performance is not sensitive to resolution
change (i.e., 1, 3, 5 and 10 km) for the mixed effects model (ME) and the land-use regression
model (LUR). By contrast, the PM2.5 retrieval model based on Random Forest (RF) can
perform a more accurate PM2.5 prediction with a finer AOD spatial resolution. R2 increases
from 0.85 to 0.88, and RMSE decreases from 8.6 to 7.9 µg/m3 when comparing the RF
model performance between 1 and 10 km. These findings provide further evidence that
machine learning may be an effective way to build the AOD–PM2.5 relationship involving
different spatial scales.

We also examine the spatial resolution effect on health assessment using the satellite-derived
PM2.5 estimation at spatial resolutions of 1, 3, 5 and 10 km. Our results show that annual
population-weighted mean (PWM) PM2.5 concentration and attributable mortality gradu-
ally increase as the resolution becomes coarser. Mortality estimated at 10 km resolution
increases by 18.3%, 8.4% and 7.3% compared to that at 1 km resolution for the LUR, RF
and ME models, respectively. Note that PWM PM2.5 at 10 km fails to meet the national
air quality standard (35 µg/m3), whereas the estimate at finer resolutions generally meets
the standard. These findings suggest that caution is needed when interpreting the health
assessment at the coarser resolution for the YRD region. Overall, we recommend using
satellite-derived PM2.5 based on a machine learning method and finer spatial resolution
AOD data for regional health assessment. Nevertheless, the resolution effect covering
a wider range of finer spatial resolution (e.g., <1 km) should be further investigated in
the future.
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