Atmospheric Effects and Precursors of Rainfall over the Swiss Plateau
Abstract
:1. Introduction
2. Study Area, Derivation, Data, and Methodology
2.1. Study Area
2.2. Derivation
2.3. Data and Methodology
- The timing mark of a rain event is set as 0 epoch time (onset time of rainfall). The occurrence/duration time of rainfall is set as t; 1 h before rainfall is set as −1, 1 h during rainfall is set as +1, and 1 h after rainfall is set as t + 1.
- If no rainfall occurs during 8 h before the time 0 and during 16 h after the time t, then this rain event is selected.
3. Results
3.1. Atmospheric Effects of Rainfall
3.2. Precursors of Rainfall
3.3. ILW Threshold and Diurnal Variations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rössler, O.; Froidevaux, P.; Börst, U.; Rickli, R.; Martius, O.; Weingartner, R. Retrospective analysis of a nonforecasted rain-on-snow flood in the Alps—A matter of model limitations or unpredictable nature? Hydrol. Earth Syst. Sci. 2014, 18, 2265–2285. [Google Scholar] [CrossRef] [Green Version]
- Barton, Y.; Giannakaki, P.; Von Waldow, H.; Chevalier, C.; Pfahl, S.; Martius, O. Clustering of regional-scale extreme precipitation events in southern Switzerland. Mon. Weather Rev. 2016, 144, 347–369. [Google Scholar] [CrossRef] [Green Version]
- Beniston, M.; Stoffel, M. Rain-on-snow events, floods and climate change in the Alps: Events may increase with warming up to 4 °C and decrease thereafter. Sci. Total Environ. 2016, 571, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Schmocker-Fackel, P.; Naef, F. More frequent flooding? Changes in flood frequency in Switzerland since 1850. J. Hydrol. 2010, 381, 1–8. [Google Scholar] [CrossRef]
- Speirs, P.; Gabella, M.; Berne, A. A comparison between the GPM dual-frequency precipitation radar and ground-based radar precipitation rate estimates in the Swiss Alps and Plateau. J. Hydrometeorol. 2017, 18, 1247–1269. [Google Scholar] [CrossRef]
- Ragettli, S.; Tong, X.; Zhang, G.; Wang, H.; Zhang, P.; Stähli, M. Climate change impacts on summer flood frequencies in two mountainous catchments in China and Switzerland. Hydrol. Res. 2021, 52, 4–25. [Google Scholar] [CrossRef] [Green Version]
- Kreienkamp, F.; Philip, S.Y.; Tradowsky, J.S.; Kew, S.F.; Lorenz, P.; Arrighi, J.; Belleflamme, A.; Bettmann, T.; Caluwaerts, S.; Chan, S.C.; et al. Rapid Attribution of Heavy Rainfall Events Leading to the Severe Flooding in Western Europe during July 2021. 2021. Available online: https://biblio.ugent.be/publication/8732135 (accessed on 15 March 2022).
- Sun, J.; Xue, M.; Wilson, J.W.; Zawadzki, I.; Ballard, S.P.; Onvlee-Hooimeyer, J.; Joe, P.; Barker, D.M.; Li, P.W.; Golding, B.; et al. Use of NWP for nowcasting convective precipitation: Recent progress and challenges. Bull. Am. Meteorol. Soc. 2014, 95, 409–426. [Google Scholar] [CrossRef] [Green Version]
- Marzano, F.S.; Fionda, E.; Ciotti, P. Neural-network approach to ground-based passive microwave estimation of precipitation intensity and extinction. J. Hydrol. 2006, 328, 121–131. [Google Scholar] [CrossRef]
- Chakraborty, R.; Das, S.; Jana, S.; Maitra, A. Nowcasting of rain events using multi-frequency radiometric observations. J. Hydrol. 2014, 513, 467–474. [Google Scholar] [CrossRef]
- Wei, J.; Shi, Y.; Ren, Y.; Li, Q.; Qiao, Z.; Cao, J.; Ayantobo, O.O.; Yin, J.; Wang, G. Application of ground-based microwave radiometer in retrieving meteorological characteristics of Tibet Plateau. Remote Sens. 2021, 13, 2527. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, W.; Feng, G.; Liao, K.; Liu, Y. Effect of off-zenith observations on reducing the impact of precipitation on ground-based microwave radiometer measurement accuracy. Atmos. Res. 2014, 140, 85–94. [Google Scholar] [CrossRef]
- Chan, P.W. Performance and application of a multi-wavelength, ground-based microwave radiometer in intense convective weather. Meteorol. Z. 2009, 18, 253–265. [Google Scholar] [CrossRef]
- Bernet, L.; Brockmann, E.; von Clarmann, T.; Kämpfer, N.; Mahieu, E.; Mätzler, C.; Stober, G.; Hocke, K. Trends of atmospheric water vapor in Switzerland from ground-based radiometry, FTIR and GNSS data. Atmos. Chem. Phys. 2020, 20, 11223–11244. [Google Scholar] [CrossRef]
- Cossu, F.; Hocke, K.; Martynov, A.; Martius, O.; Mätzler, C. Atmospheric water parameters measured by a ground-based microwave radiometer and compared with the WRF model. Atmos. Sci. Lett. 2015, 16, 465–472. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Hocke, K.; Mätzler, C. Physical retrieval of rain rate from ground-based microwave radiometry. Remote Sens. 2021, 13, 2217. [Google Scholar] [CrossRef]
- Sherwood, S.C. Convective precursors and predictability in the tropical western Pacific. Mon. Weather Rev. 1999, 127, 2977–2991. [Google Scholar] [CrossRef]
- Hocke, K.; Navas-Guzmán, F.; Moreira, L.; Bernet, L.; Mätzler, C. Oscillations in atmospheric water above Switzerland. Atmos. Chem. Phys. 2017, 17, 12121–12131. [Google Scholar] [CrossRef] [Green Version]
- Hocke, K.; Bernet, L.; Wang, W.; Mätzler, C.; Hervo, M.; Haefele, A. Integrated water vapor during rain and rain-free conditions above the Swiss Plateau. Climate 2021, 9, 105. [Google Scholar] [CrossRef]
- Knupp, K.; Coleman, T.; Phillips, D.; Ware, R.; Cimini, D.; Vandenberghe, F.; Vivekanandan, J.; Westwater, E.; Coleman, T.; Phillips, D. Ground-based passive microwave profiling during dynamic weather conditions. J. Atmos. Ocean. Techol. 2009, 26, 1057–1073. [Google Scholar] [CrossRef]
- Piaget, N.; Froidevaux, P.; Giannakaki, P.; Gierth, F.; Martius, O.; Riemer, M.; Wolf, G.; Grams, C.M. Dynamics of a local Alpine flooding event in October 2011: Moisture source and large-scale circulation. Q. J. R. Meteorol. Soc. 2015, 141, 1922–1937. [Google Scholar] [CrossRef] [Green Version]
- Van Baelen, J.; Reverdy, M.; Tridon, F.; Labbouz, L.; Dick, G.; Bender, M.; Hagen, M. On the relationship between water vapor field evolution and the life cycle of precipitation systems. Q. J. R. Meteorol. Soc. 2011, 137, 204–223. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.K.; Fernandes, R.M.; Kursinski, E.R.; Maia, J.M.; Sapucci, L.F.; Machado, L.A.; Vitorello, I.; Monico, J.F.G.; Holub, K.L.; Gutman, S.I.; et al. A dense GNSS meteorological network for observing deep convection in the Amazon. Atmos. Sci. Lett. 2011, 12, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Muller, C.J.; Back, L.E.; O’Gorman, P.A.; Emanuel, K.A. A model for the relationship between tropical precipitation and column water vapor. Geophys. Res. Lett. 2009, 36, L16804. [Google Scholar] [CrossRef]
- Benevides, P.; Catalao, J.; Miranda, P. On the inclusion of GPS precipitable water vapor in the nowcasting of rainfall. Nat. Hazard. Earth Sys. 2015, 15, 2605–2616. [Google Scholar] [CrossRef] [Green Version]
- Madonna, E.; Wernli, H.; Joos, H.; Martius, O. Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution. J. Clim. 2014, 27, 3–26. [Google Scholar] [CrossRef] [Green Version]
- Pfahl, S.; Madonna, E.; Boettcher, M.; Joos, H.; Wernli, H. Warm conveyor belts in the ERA-Interim dataset (1979–2010). Part II: Moisture origin and relevance for precipitation. J. Clim. 2014, 27, 27–40. [Google Scholar] [CrossRef]
- Adams, D.K.; Gutman, S.I.; Holub, K.L.; Pereira, D.S. GNSS observations of deep convective time scales in the Amazon. Geophys. Res. Lett. 2013, 40, 2818–2823. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, G.; Xi, B.; Ren, J.; Wan, X.; Zhou, L.; Cui, C.; Wu, D. Comparative study of cloud liquid water and rain liquid water obtained from microwave radiometer and micro rain radar observations over central China during the monsoon. J. Geophys. Res. Atmos. 2020, 125, e2020JD032456. [Google Scholar] [CrossRef]
- Sapucci, L.F.; Machado, L.A.; de Souza, E.M.; Campos, T.B. Global Positioning System precipitable water vapor (GPS-PWV) jumps before intense rain events: A potential application to nowcasting. Meteorol. Appl. 2019, 26, 49–63. [Google Scholar] [CrossRef] [Green Version]
- Allan, R.P.; Blenkinsop, S.; Fowler, H.J.; Champion, A.J. Atmospheric precursors for intense summer rainfall over the United Kingdom. Int. J. Climatol. 2020, 40, 3849–3867. [Google Scholar] [CrossRef]
- Madhulatha, A.; Rajeevan, M.; Venkat Ratnam, M.; Bhate, J.; Naidu, C. Nowcasting severe convective activity over southeast India using ground-based microwave radiometer observations. J. Geophys. Res. Atmos. 2013, 118, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.P.; Cook, E.R.; Cook, B.I.; Anchukaitis, K.J.; D’Arrigo, R.D.; Krusic, P.J.; LeGrande, A.N. A double bootstrap approach to Superposed Epoch Analysis to evaluate response uncertainty. Dendrochronologia 2019, 55, 119–124. [Google Scholar] [CrossRef]
- Wan, T.; Wu, S.W. Aerodynamic analysis under influence of heavy rain. J. Aeronaut. Astronaut. Aviat. 2004, 41, 173–180. [Google Scholar]
- Niu, S.; Jia, X.; Sang, J.; Liu, X.; Lu, C.; Liu, Y. Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: Convective versus stratiform rains. J. Appl. Meteorol. Clim. 2010, 49, 632–645. [Google Scholar] [CrossRef]
- Nakakita, E.; Ikebuchi, S.; Nakamura, T.; Kanmuri, M.; Okuda, M.; Yamaji, A.; Takasao, T. Short-term rainfall prediction method using a volume scanning radar and grid point value data from numerical weather prediction. J. Geophys. Res. Atmos. 1996, 101, 26181–26197. [Google Scholar] [CrossRef]
- Sugimoto, S.; Nakakita, E.; Ikebuchi, S. A stochastic approach to short-term rainfall prediction using a physically based conceptual rainfall model. J. Hydrol. 2001, 242, 137–155. [Google Scholar] [CrossRef]
- French, M.N.; Krajewski, W.F. A model for real-time quantitative rainfall forecasting using remote sensing: 1. Formulation. Water Resour. Res. 1994, 30, 1075–1083. [Google Scholar] [CrossRef]
- Ji, S.Y.; Sharma, S.; Yu, B.; Jeong, D.H. Designing a rule-based hourly rainfall prediction model. In Proceedings of the 2012 IEEE 13th International Conference on Information Reuse and Integration (IRI), Las Vegas, NV, USA, 8–10 August 2012; pp. 303–308. [Google Scholar]
- Mass, C. Nowcasting: The promise of new technologies of communication, modeling, and observation. Bull. Am. Meteorol. Soc. 2012, 93, 797–809. [Google Scholar] [CrossRef] [Green Version]
- MeteoSwiss. Climate Normals Bern/Zollikofen (Reference Period. 1981–2010); Federal Office of Meteorology and Climatology MeteoSwiss: Zurich, Switzerland, 2014; Available online: https://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/climate-normals/climate-diagrams-and-normals–per-station.html?station=ber (accessed on 15 March 2022).
- Brandsma, T.; Buishand, T.A. Statistical linkage of daily precipitation in Switzerland to atmospheric circulation and temperature. J. Hydrol. 1997, 198, 98–123. [Google Scholar] [CrossRef]
- Mätzler, C.; Morland, J. Refined physical retrieval of integrated water vapor and cloud liquid for microwave radiometer data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1585–1594. [Google Scholar] [CrossRef]
- Ellison, W. Dielectric properties of natural media. In Thermal Microwave Radiation: Applications for Remote Sensing; Mätzler, C., Ed.; IET Electromagnetic Waves Series: London, UK, 2006; Volume 52, pp. 431–454. Available online: https://scholar.google.com/scholar?cluster=13553953111540458320&hl=en&as_sdt=0,5 (accessed on 16 June 2022).
- McIlveen, R. Fundamentals of Weather and Climate; Oxford University Press: New York, NY, USA, 2010. [Google Scholar]
- Wexler, A. Vapor pressure formulation for water in range 0 to 100 C. A revision. J. Res. Natl. Bur. Stand. A Phys. Chem. 1976, 80, 775. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Xu, G.; Li, Q.; Chen, C.; Li, J. Effect of precipitation on reducing atmospheric pollutant over Beijing. Atmos. Pollut. Res. 2019, 10, 1443–1453. [Google Scholar] [CrossRef]
- Haurwitz, M.W.; Brier, G.W. A critique of the superposed epoch analysis method: Its application to solar–weather relations. Mon. Weather Rev. 1981, 109, 2074–2079. [Google Scholar] [CrossRef] [Green Version]
- Löhnert, U.; Crewell, S. Accuracy of cloud liquid water path from ground-based microwave radiometry 1. Dependency on cloud model statistics. Radio Sci. 2003, 38, 8041. [Google Scholar] [CrossRef] [Green Version]
- Studer, S.; Hocke, K.; Kämpfer, N. Intraseasonal oscillations of stratospheric ozone above Switzerland. J. Atmos. Sol. Terr. Phy. 2012, 74, 189–198. [Google Scholar] [CrossRef]
- Koffi, E.N.; Graham, C.E.; Mätzler, C. The water vapor flux above Switzerland and its role in the August 2005 extreme precipitation and flooding. Meteorol. Z. 2013, 22, 329–342. [Google Scholar] [CrossRef]
- Graham, E.; Koffi, E.N.; Mätzler, C. An observational study of air and water vapor convergence over the Bernese Alps, Switzerland, during summertime and the development of isolated thunderstorms. Meteorol. Z. 2012, 21, 561–574. [Google Scholar] [CrossRef]
- Wang, J.; Dai, A.; Carlson, D.J.; Ware, R.H.; Liljegren, J.C. Diurnal Variation in Water Vapor and Liquid Water Profiles from a New Microwave Radiometer Profiler; No. ANL/ER/CP-105344; Argonne National Lab.: Argonne, IL, USA, 2001. Available online: https://publications.anl.gov/anlpubs/2001/10/40826.pdf (accessed on 16 June 2022).
- Priego, E.; Jones, J.; Porres, M.; Seco, A. Monitoring water vapor with GNSS during a heavy rainfall event in the Spanish Mediterranean area. Geomat. Nat. Hazards Risk 2017, 8, 282–294. [Google Scholar] [CrossRef]
- Newton, I. Opticks, or, a Treatise of the Reflections, Refractions, Inflections and Colours of Light; Courier Corporation: Gloucester, MA, USA, 1952. [Google Scholar]
- Avogadro, A. Essay on a manner of determining the relative masses of the elementary molecules of bodies, and the proportions in which they enter into these compounds. J. Phys. (Paris) 1811, 73, 58–76. [Google Scholar]
- Mätzler, C. Ground-based observations of atmospheric radiation at 5, 10, 21, 35, and 94 GHz. Radio Sci. 1992, 27, 403–415. [Google Scholar] [CrossRef]
- Hocke, K.; Bernet, L.; Hagen, J.; Murk, A.; Renker, M.; Mätzler, C. Diurnal cycle of short-term fluctuations of integrated water vapour above Switzerland. Atmos. Chem. Phys. 2019, 19, 12083–12090. [Google Scholar] [CrossRef] [Green Version]
- Manandhar, S.; Dev, S.; Lee, Y.H.; Meng, Y.S.; Winkler, S. A data-driven approach for accurate rainfall prediction. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9323–9331. [Google Scholar] [CrossRef] [Green Version]
- Manandhar, S.; Lee, Y.H.; Meng, Y.S.; Yuan, F.; Ong, J.T. GPS-derived PWV for rainfall nowcasting in tropical region. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4835–4844. [Google Scholar] [CrossRef]
- Kim, D.K.; Suezawa, T.; Mega, T.; Kikuchi, H.; Yoshikawa, E.; Baron, P.; Ushio, T. Improving precipitation nowcasting using a three-dimensional convolutional neural network model from multi parameter phased array weather radar observations. Atmos. Res. 2021, 262, 105774. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Hocke, K. Atmospheric Effects and Precursors of Rainfall over the Swiss Plateau. Remote Sens. 2022, 14, 2938. https://doi.org/10.3390/rs14122938
Wang W, Hocke K. Atmospheric Effects and Precursors of Rainfall over the Swiss Plateau. Remote Sensing. 2022; 14(12):2938. https://doi.org/10.3390/rs14122938
Chicago/Turabian StyleWang, Wenyue, and Klemens Hocke. 2022. "Atmospheric Effects and Precursors of Rainfall over the Swiss Plateau" Remote Sensing 14, no. 12: 2938. https://doi.org/10.3390/rs14122938
APA StyleWang, W., & Hocke, K. (2022). Atmospheric Effects and Precursors of Rainfall over the Swiss Plateau. Remote Sensing, 14(12), 2938. https://doi.org/10.3390/rs14122938