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Abstract: The block-stone embankment is a special type of embankment widely used to protect the
stability of the underlying warm and ice-rich permafrost. Under the influence of multiple factors,
certain damages will still occur in the block-stone embankment after a period of operation, which
may weaken or destroy its cooling function, introducing more serious damages to the Qinghai–
Tibet Highway (QTH). Ground-penetrating radar (GPR), a nondestructive testing technique, was
adopted to investigate the damage properties of the damaged block-stone embankment. GPR
imagery, together with the other data and methods (structural characteristics, field survey data, GPR
parameters, etc.), indicated four categories of damage: (i) loosening of the upper sand-gravel layer;
(ii) loosening of the block-stone layer; (iii) settlement of the block-stone layer; and (iv) dense filling of
the block-stones layer. The first two conditions were widely distributed, whereas the settlement and
dense filling of the block-stone layer were less so, and the other combined damages also occurred
frequently. The close correlation between the different damages indicated a causal relationship.
A preliminary discussion of these observations about the influences on the formation of the damage
of the block-stone embankment is included. The findings provide some points of reference for the
future construction and maintenance of block-stone embankments in permafrost regions.

Keywords: ground-penetrating radar; Qinghai–Tibet highway; block-stone embankment; permafrost;
embankment ratios

1. Introduction

The QTH, built in 1954, is a major artery connecting the interior of Chinese territory
and the remote Qinghai–Tibet Plateau (QTP). Of its total length of 1937 km, 528.5 km is over
continuous permafrost terrain [1]. Due to global warming, the permafrost table on the QTP
has fallen significantly [2–4], and the presence of the QTH has modified the water and heat
exchange conditions of the original soil on the QTP. This has created a surface temperature
difference between the black asphalt pavement and the natural ground surface, which has
accelerated the permafrost thaw under the highway embankment [5–11]. In addition, the
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sunny–shady slopes effect, which means that the sunny slope (east-facing slope) of the
highway embankment absorbs more solar heat and exhibits a higher surface ground tem-
perature, has led to the asymmetry of the thaw depth in the highway embankment [12,13].
The insulation effect of snow on highway embankment slopes in winter further warms
the permafrost [14]. These effects have affected the stability of the higher and ice-rich
permafrost under the embankment along the QTP engineering corridor. This destabilizing
effect is the main reason for embankment damages in permafrost regions, being closely
related to the temperature and ice content of the permafrost [15–17]. Therefore, a large
number of special highway embankments have been built in the QTH to reduce the impact
of changes in the permafrost.

Two categories of special highway embankments are currently employed in the QTH:
passive and proactive temperature-controlling measures [18]. The passive measures mainly
rely on maintaining the current ground temperature to slow down the degradation of the
permafrost, such as thermal-insulated highway embankments [19,20]. Proactive measures
have been designed to actively change the thermal condition of the permafrost so that
it develops in a direction that is conducive to the stability of the embankment, such as
duct-ventilated embankments, block-stone embankments, and thermosyphon embank-
ments (Figure 1) [18,21–24]. Block-stone embankments protect the underlying permafrost
by changing the embankment structure and using the convective heat transfer of air in
the porous block-stone layer to increase the cooling capacity of the embankment [25,26].
However, after this system has run for a certain period, various damages occur in the block-
stone embankment [27], and its cooling effect is weakened or disappears. The weakening or
loss of the cooling effect will produce more serious damage in this section of the highway.
Studies to date have mainly focused on the design and optimization of the structure of
block-stone embankments [28–32], with little research on their damages.

The QTH is used to transport materials and a large number of tourists in and out of
Tibet. Therefore, its normal operation is vital to local economic development and social
stability. The traditional methods, such as hammer sounding, destructive coring, and testing
pits, were used to investigate the damage characteristics of the highway that would affect
the normal operation of the highway [17,22]. Meanwhile, the QTP environment is harsh.
The large-scale surveys are time-consuming and labor-intensive, which is a burden on the
technicians and the fragile QTP environment. In the past, investigations of QTH damages
mainly focused on visual inspection, supplemented by local field surveys. The highway
conditions can only be generally evaluated with limited borehole data observations since it
is difficult to obtain specific information about the conditions under the embankment [33].

Ground-penetrating radar (GPR) detects and characterizes underground targets using
changes in the electromagnetic characteristics of the medium, and allows the continuous,
large-scale, long-distance, non-destructive detection of targets. [34–36]. Therefore, GPR
is widely used in geotechnical engineering, environmental protection, archeological site
detection, geological research, underground pipeline detection, detection of urban public
facilities, and military detection [37–46]. Based on this, GPR has more advantages in contin-
uous long-distance highway engineering detection. For example, Solla et al. [47] reviewed
the published literature to demonstrate the method, advantages, and disadvantages of GPR
in highway infrastructure detection, along with up-to-date research results, and potential.
Peng et al. [48] systematically expounded on the application of GPR in highway damage
detection together with typical engineering examples, proved its superiority, and discussed
the future development of GPR. Krysiński et al. [49] used GPR to study pavement cracks in
semi-rigid highways and analyzed the characteristics of GPR signals in detail.

There are two main applications of GPR in the permafrost regions. One is to research
the distribution characteristics and degradation mechanism of permafrost, and the determi-
nation of parameters related to specific strata [50–55]. The other is to research the impact of
the presence and degradation of permafrost on engineering facilities (highways, railways,
airports, pipelines, etc.) in these regions [56–60]. The QTH has been seriously deformed or
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even damaged due to changes in the properties of the underlying permafrost. Thus, the
use of GPR for QTH damage research has a very broad application potential.
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Figure 1. (a) Proactive temperature-controlling measures and the surrounding environment along the
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and duct-ventilated embankment.

In this paper, we present a highway embankment monitoring technology based on
GPR image characteristics. According to that, different damages of the block-stone embank-
ment were identified and classified based on their GPR imagery, and the distribution and
mutual relationships of different damages were investigated. Then, from the findings of the
study, a preliminary discussion of the damage-causing process of the block-stone embank-
ment is included. The research results provide references for the subsequent construction
and maintenance of block-stone embankments in permafrost regions.

2. Study Area
2.1. Physical Geography of the Study Region

The permafrost on the QTP is the largest high-altitude permafrost in the world, cov-
ering an area of 1.06 × 106 km2, and accounting for about 40.2% of the land area of the
QTP [61–64]. There are many linear infrastructures such as the QTH, the Qinghai–Tibet
Railway, and the Golmud–Lhasa Oil Product Pipeline. The QTH is located at an elevation
of 4000–5231 m, the annual average temperature varies from −2 to −7 ◦C, and the annual
freezing period lasts for 7–8 months. The permafrost region has poor geological condi-
tions due to lots of periglacial phenomena (e.g., frost mounds, ice layers, and thermokarst
lakes) [22,65].
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The study area is the block-stone embankment section from K3024 to K3025 (Figure 2),
which is located in the Kekexili Nature Reserve. The average elevation of the mountainous
area is 4600–4700 m, the average annual temperature is −5.5 to −6.5 ◦C, the permafrost
temperature is −0.5 to −1.8 ◦C, and the permafrost table at natural sites is 1.5–3.5 m below
the ground surface [22,64]. The vegetation on both sides of the highway is sparse, and the
vegetation grows at some distance from the highway.
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Figure 2. Study area: (a) spatial distribution of permafrost region in the QTP (the permafrost map
is from [61,62]); (b) the location of k3024 to K3025 in the QTH; (c) field photographs of k3024 to
k3025, from top to bottom: “wavy” pavement; local settlement of embankment and the block-
stone embankment.

The permafrost type underlying the highway embankment in this section belongs to
the icy permafrost exhibiting an ice layer with litter soil at a certain depth, classified as a
sub-stable area depending on the overall stability of the entire QTH [22]. The engineering
geological condition of the permafrost has been evaluated as a poor one. The overall
highway in the permafrost areas is severely damaged, and the embankment has settled
unevenly, with dense transverse and longitudinal cracks on the asphalt pavement. This has
resulted in a “wavy” pavement as a whole and vehicle traffic ability is poor.

2.2. Block-Stone Embankment
2.2.1. The Structure and Materials of the Block-Stone Embankment

The purpose of the block-stone embankment is to reduce the temperature in the
embankment by placing a layer of stone in the lower part of the highway embankment
and removing the heat in the embankment in winter. Figure 3 shows the typical block-
stone embankment structure. This includes the gravel layer, bottom sand-gravel layer,
block-stone layer, and top sand-gravel layer from bottom to top [24,66,67].

The bottom gravel layer (general thickness 0.3–0.5 m) is in direct contact with the
original ground, being densely compacted by vibration rolling. It is overlain by a layer
of geotextile and sand-gravel, mainly to provide a good foundation for the block-stone
layer. The overlying block-stone layer, which is the core of the block-stone embankment,
is generally between 1.0 and1.5 m thick. The stone size is 150–300 mm, the porosity is
not less than 25%, and the slenderness ratio is designed to be less than 3. In addition,
single-layer filling and double-layer filling are selected depending on the ice content of the
permafrost under the embankment. The structure shown in Figure 3 is double-layer filling.
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The overlying sand-gravel layer is divided into upper and lower sand-gravel layers and is
part of the auxiliary protection structure. The top sand-gravel layer (generally 0.3-m-thick)
above the block-stone layer is separated by a geotextile and gravel layer. Their main
function is to prevent fines from entering the block-stone layer, ensuring its convection
effect. A lower 0.5-m-thick sand-gravel layer is located above the gravel layer [24,66,67].
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2.2.2. Working Principle of the Block-Stone Embankment

During the cold season, the cold air with a large density flows downward via the pores
in the block-stone layer and the warm air rises correspondingly, causing a temperature
difference by convective heat transfer, thereby removing the heat from the embankment
and the active layer (Figure 4a). This cycle lowers the temperatures of the embankment and
the underlying active layer and permafrost, protecting the permafrost from thaw [24,66].

During the warm season, the atmospheric heat is transferred into the embankment
through the asphalt pavement and the slopes of the embankment by heat conduction,
heating the air in the block-stone layer. Because the warmer air is in the upper part of the
block-stone layer and the cold air is in the lower part, there is no convective heat transfer in
the stone layer. The reduced heat exchange between the upper part and lower part of the
block-stone layer happens only by conduction, which equivalently forms a layer of a heat
insulation barrier at the bottom in summer (Figure 4b). This “thermal diode” effect takes
place to cool the underlying permafrost [24,67].

2.3. Factors Leading to Block-Stone Embankment Damage

The stability of the block-stone highway embankment and the underlying permafrost
is influenced by the surrounding environmental factors which may be summarized as
natural or human factors.
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2.3.1. Natural Factors

Natural factors are the main reasons for damages in block-stone embankments. They
are climatic conditions and the properties of the underlying permafrost.

The natural environment on the QTP is harsh with a cold and dry climate, a freezing
period for 7–8 months a year, strong solar radiation, unevenly distributed precipitation,
and strong winds. This harsh environment causes severe damage to the highway, greatly
reducing its service life [22,66]. In addition, the strong wind has a weathering effect on
the block-stone layer, reducing the strength of the block-stones themselves and warming
the permafrost under the embankment [27]. Moreover, the high ground temperature and
ice content of the underlying permafrost are the main factors controlling the stability of
highway embankments. Additionally, the sunny–shady effect along the QTH is another
important factor leading to embankment damage [13].

2.3.2. Human Factors

Human factors, mainly including engineering construction, vehicle driving, and
highway maintenance and replacement, are also important factors influencing the stability
of the block-stone embankment.

Human activities destroy the thermal balance of the original ground, change the
environmental and engineering geological conditions of the permafrost, and decrease the
stability of the embankment [5–11]. In addition, the construction quality also affects the
service life of the block-stone embankment to a great extent [24]. The traffic vehicles on the
QTH are mainly heavy trucks whose long-term rolling and frequent braking lead to severe
damage to the highway. Because of the harsh natural environment, highway maintenance
is not immediate, which leads to gradual damage development.
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3. Data and Methods
3.1. Working Principle of GPR

GPR is a geophysical method of detecting underground mediums by the reflection and
refraction of electromagnetic waves in the medium [34–36]. Figure 5 shows the classical
GPR process for detecting subsurface targets. The electromagnetic waves emitted by the
transmitting antenna are reflected by the layers under the highway and then return to the
receiving antenna (Figure 5b). The two-way travel time t of the electromagnetic wave is
calculated from

t =

√
4h2 + x2

v
(1)

where h is the depth of the target (m) and x is the offset between the transmitting antenna
and the receiving antenna (m). When the transmitting and receiving antenna are shielded,
x is ignored. v is the velocity of electromagnetic wave propagation in the medium, which is
given by

v =
C√

ε
(2)

where C is the propagation velocity in free space (3 × 108 m/s) and ε is the dielectric con-
stant of the medium. Therefore, the buried depth of the target can be calculated if the two-
way travel time and dielectric constant are known. The use of this method can accurately
calculate the depth of, for example, underground pipes, wires, and tombs [37,41,42], etc.
The dielectric constant can be calculated if the buried depth of the target and the two-way
travel time of the electromagnetic wave is known [68]. This method is mostly used in
practice to estimate the dielectric constant of the mixture of actual surveys; for example, the
dielectric constant of permafrost and active layer calculated by this method can inversely
deduce the ice content of permafrost and the water content of the active layer [50,54,55,57].
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In addition, the frequency for GPR detection should be selected in combination with
the actual situation: a low-frequency signal has a deeper penetration but a poorer resolution,
and a high-frequency antenna gives a shallower penetration depth and a better resolu-
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tion [37]. At present, the GPR of many companies shield two sets of antennas with different
frequencies, which can meet the requirements of depth and accuracy at the same time.

3.2. Data Acquisition

With the financial support of a Chinese research project, named the Second Tibetan
Plateau Scientific and Research Expedition, XPRT Crossover CO730 two-dimensional GPR
(Impulse Radar, Sweden) was used to conduct a field survey in the whole permafrost
section of the QTH in October 2020 (Figure 6). This GPR system shielded antennae with
frequencies centered around 70 and 300 MHz to measure different depths at different
precisions. The GPR parameter settings are listed in Table 1. During the survey, the
abnormal highway conditions and surrounding conditions were recorded in detail, and
GPS positioning was used to locate the start and end positions of each dataset, providing
references for subsequent image interpretation.
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Table 1. Parameter setting of GPR.

Parameters and Device Setting A Setting B

Antenna frequency (MHz) 300 70
Antenna offset (m) 0.23 0.6
Time window (ns) 93 375
Sampling rate (m) 0.05 0.05

Samples 300 300
Trigger device Wheel Wheel

3.3. Data Processing and Presentation

The purpose of the data processing was to suppress noise, enhance the signal, and
improve the signal-to-noise ratio of the data, extracting useful information about GPR
data [69].
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Data processing software Reflexw (Sandmeier Geophysical Research, Karlsruhe, Ger-
many) was used to process raw GPR data as follows (Figure 7) including 6 steps [35,70,71],
i.e., input data, removing direct waves (static correction), exponential gain, 2-D filtering
(average path extraction), 1-D filtering (band-pass Butterworth filtering), and 2-D filtering
(moving average). The GPR data profile processing is shown in Figure 7f, and the reflection
of the target horizon is clearer. In addition, the steps and methods of data processing
should be adjusted according to the requirements of image interpretation to achieve the
best processing effect.
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The radargrams were presented in the form of two-dimensional images. The horizontal
axis was determined by highway mileage. The left-hand vertical axis shows the two-way
travel time of the electromagnetic signal. The right-hand vertical axis converts the time to
depth using v = 0.11 m/ns.

3.4. GPR Data Interpretation

The interpretation of GPR data not only needs to understand all aspects of data
acquisition and processing, but also needs to combine other data and methods. In addition,
due to the clear structure and materials of the block-stone embankment, it can focus
more effort on the abnormal changes of different layers when interpreting the GPR data,
which greatly reduces the difficulty. Therefore, the interpretation of GPR data is based
on the following points: (1) field survey data, (2) effective permittivity and wave velocity,
(3) reflection coefficient, (4) attenuation, and (5) GPR data analogy.

3.4.1. Field Survey Data

Detailed pavement damages, repairs, cracks, and whether the embankment settlement
and block-stone layers are blocked and weathered, can provide important references for
the interpretation. The condition of the embankment can directly reflect the occurrence
and degree of the damage, so for the GPR data, the interpretation should consider whether
or not the embankment settlement occurred in reality in the block-stone layer settlement.
In addition, the environmental factors, such as vegetation conditions around the highway
and thermokarst lakes, should also be fully considered.
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3.4.2. Effective Permittivity and Wave Velocity

The damages to the sand-gravel and block-stone layers, whether loose or dense, will
cause changes in their electrical parameters, which are largely caused by the changes in
the air volume. Therefore, the Rayleigh model [72,73] introduces the calculated effective
permittivity of the mixed medium, which is generally considered to be a function of the
permittivity of each component and its volume content, and it can be calculated from

εe f f − ε1

εe f f + 2ε1
= f

ε2 − ε1

ε2 + 2ε1
(3)

where ε1 and ε2 represent the dielectric constant of the matrix medium and air in the
mixture, respectively, εe f f is the dielectric constant of the two-phase mixture, and f is the
volume fraction of air in the mixed medium. According to the Rayleigh model, as the
volume of air increases from the mixed medium, the effective permittivity will decrease,
and the wave velocity will increase. Since the radargrams convert the time to the depth at a
certain velocity, the increase or decrease in the wave velocity makes the same layer of the
radargrams locally elongated or shortened. We need to pay attention to such changes in
GPR data interpretation.

3.4.3. Reflection Coefficient

A component of the propagating GPR waves are reflected when they encounter layers
composed of different mediums. The strength of the reflection from two mediums is
expressed as the reflection coefficient R calculated from

R =

√
ε1 −

√
ε2√

ε1 +
√

ε2
(4)

where ε1 and ε2 are the dielectric constants of the medium. According to the reflection
coefficient, the reflection is more obvious when the difference in the dielectric constants of
the two layers is larger. (Figure 5c,d). In addition, when R > 0, the phase of the interface
reflection wave is the same as that of the incident wave. When R < 0, the phase of the
interface reflection wave is opposite to that of the incident wave [69].

The block-stone embankment is composed of multiple layers which are made up of
different mediums, and the dielectric constant of each layer is also different. Therefore,
different layers can be divided by the reflection of electromagnetic waves. A strong
reflection interface, which will generate multiples, will be generated due to the large
difference in the dielectric constant between the air and the block-stone. The generation of
multiples is also an important method to recognize the block-stone layer.

3.4.4. Attenuation

GPR was used in the lossy medium which can cause signal attenuation. The attenua-
tion of electromagnetic waves is related to the conductivity, dielectric, frequency scattering,
and geometric spreading losses of the medium. The loss tangent, which measures the loss
characteristics, can be calculated from [68]

tanδ =
σ

ωε
(5)

where δ is the loss angle, σ is the conductivity of a medium (S/m), ω is the angular
frequency (rad/s), and ε is the permittivity (F/m).

In general, the air is a lossless medium, and another medium, whether a base course or
a block-stone layer, will cause the attenuation of electromagnetic waves. Therefore, when
the sand-gravel layer or the block-stone layer becomes loose, its attenuation will decrease.
On the contrary, when the block-stone layer becomes dense, its attenuation will increase.
This is also one of the methods to judge the abnormality of the sand-gravel layers and
block-stone layers.
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3.4.5. GPR Data Analogy

The comparison of GPR profile characteristics in similar studies is also an important
method of GPR data interpretation, especially when there is a lack of certain data or
controversy over the interpretation of the targets, and a comparison with previous research
results can help us make judgments.

4. Results
4.1. Interpreted Results of GPR Profiles

Based on the structural characteristics of the block-stone embankment and the GPR
data interpretation methods in 3.4, the damages were divided into: loosening of the upper
sand-gravel layer; loosening of the block-stone layer; settlement of the block-stone layer;
and dense filling of block-stone layer.

4.1.1. Loosening of the Upper Sand-Gravel Layer

Figure 8 shows the GPR images of the loosening of the upper sand-gravel layer at
several different locations, and the sand-gravel layers were located at a depth of about
0.4–0.8 m. Figure 8a,b, and c all show the local weakening of the reflections at depths
around 0.8-m (yellow dashed box), which was due to the damage of the geotextile. The
damaged geotextile caused the upper sand-gravel to fall into the block-stone layer, which
has been well-documented, and the low reflection area appeared in the block-stone layer
(depth of about 0.8–2.2 m) in Figure 8c, which was the reason. From the analysis of the
parameters of the GPR profile, the waveform showed low-frequency oscillation without a
local strong amplitude, which was different from the waveform in the surrounding area.
In general, the main reason for the loosening of the upper sand-gravel was the damage of
the geotextile, which made the sand-gravel layer lack constraints.
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4.1.2. Loosening of the Block-Stone Layer

Figure 9 shows two GPR images with the loosening of the block-stone layers, with a
depth of about 0.8–2.4 m, which were mainly manifested as disordered electromagnetic
waveforms in the block-stone layers, with a large number of short, discontinuous, and
irregularly arranged reflections. This was significantly different from the GPR profile of the
regularly arranged block-stone layers [74]. An abnormal signal was seen in the lower part of
the block-stone layer (Figure 9a,b, red dashed box) of a strong reflection, and the amplitude
increased significantly and was located in the abnormal area under the embankment, which
may have been the reason leading to the loosening of the block-stone layer.
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4.1.3. Settlement of the Block-Stone Layer

Figure 10 shows the GPR images of the block-stone layer at two locations, indicating
the settlement of the block-stone layer. Figure 10a shows that the block-stone layer settled
from a depth of 0.8-m on the left-hand side to a depth of 1.2-m on the right-hand side,
and the sand-gravel layer also became loose with the settlement, and the geotextile was
damaged on the right-hand side (yellow dashed box). Figure 10b shows that the whole
block-stone layer had a settlement of about 0.2–0.4 m compared with other locations, and
the settlement in the middle part was the largest. This settlement will lead to the loosening
or settlement of the upper layers of the block-stone layer, which was also represented in
the waveform diagram. Two irregular stone layers will be formed. The “wave” pavement
will form due to these two irregular block-stone layer settlements (Figure 2c).

4.1.4. Dense Filling of Block-Stone Layer

Figure 11 shows the GPR images of the dense filling of the block-stone layer. The most
notable feature is the large area of low reflection (yellow dashed box). The sand-gravel layer
in both figures was abnormal, especially in Figure 11b. It is difficult to directly observe
this layer in the GPR image. Only the embankment structure and GPR parameters (wave
velocity, waveform, etc.) can determine the existence of this layer (shown by the red dotted
line, with the bottom at a depth of about 1-m). In addition, the electromagnetic wave Rao
arc generated by the block-stone was visible in the radar image.
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GPR images cannot exhibit low reflections due to the different data processing steps,
which are verified as follows (Figure 12). Figure 12a is an image processed according to
the normal steps. In Figure 12b, only gain processing was performed on the image after
direct wave removal. In Figure 12c, only horizontal signals were removed based on the last
step. In Figure 12d, only moving-average processing was performed based on the last step.
These results show that the different processing steps did not affect the results.

4.2. Distribution of Damages to the Block-Stone Embankment

The distribution of different types of damage, the overall condition of the embankment,
and the relationship between various damages were studied in the K3024 to K3025 section
of the block-stone embankment to further study the damage properties.

Figure 13 shows the basic properties of the embankment damage in the study section.
Figure 13a shows the distribution of different types of damage. Loosening of the upper
sand-gravel layer occurred most frequently. The densely filled block-stone layer occurred
the least. The overall properties of the damage in the study section (Figure 13b) indicated
that the damage ratio in this section was high, and the highway condition was poor.
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block-stone embankment. Note: the unit (five meters as a unit) was considered damaged if the unit
was damaged more than half, otherwise, it was a normal unit. (b) overall damage situation of the
embankment. Note: The degree of embankment damage was based on the number of damaged
species on each unit.
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Figure 14 shows the distribution length of the different types of damage and the
relationships between them. Figure 14a shows the damage length and damage ratio of
the different types of damages. The damage of the loosening of the upper sand-gravel
layer was the longest one, accounting for 40.9%. The damage of the dense filling of the
block-stone layer was the shortest one, accounting for 7.39%. Figure 14b shows the length
and proportion of highway sections with different damage ratios. The proportions of the
normal area, slightly damaged area, and moderately damaged area were similar, accounting
for 32.38%, 35.2%, and 31.25%, respectively. The proportions of the highly damaged area
were equal, accounting for 1.14% of the study section.
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Figure 14. Relationship of different types of damage in the block-stone embankment: (a) shows the
damaged length and rate of the different types of damage; (b) shows the length and proportion of
highway sections with different degrees of damage; (c) shows the relationship between the different
types of damage and the abnormality of the lower part of the embankment; (d) shows the relationship
between the different types of damage and the loosening of the upper sand-gravel layer.

Figure 14c shows the relationship between the different types of damage and the
anomaly of GPR images in the lower part (indicated by the red arrow in Figure 9) of the
embankment. The damage of the loosening of the block-stone layers was the greatest
one, accounting for about half. Figure 14d shows a very high correlation (92.3%) between
the loosening of the upper sand-gravel layer and the dense filling of the block-stone
layer, indicating that the primary reason for the dense filling was the falling and filling of
the sand-gravel.
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5. Discussion

The block-stone embankment is widely used in permafrost regions. However, studies
to date have mainly focused on the design and optimization of the structure of block-stone
embankments [28–32], with little research on their damages. The study on its damage
reasons and properties is of great significance. In this study, GPR was used to conduct a
relatively complete study on these damages.

GPR is a geophysical method for revealing underground medium details utilizing the
reflection and refraction of electromagnetic waves within the medium [34–36]. Different
parts and types of damages on the block-stone embankment have different characteristics
of GPR signals, which can be observed in GPR images. For example, Figure 8 shows that
the GPR images of the loosening of the upper sand-gravel layer were mainly manifested as
the local weakening of the reflections at depths around 0.8-m, and the waveform showed
low-frequency oscillation without local strong amplitude. Figure 9 shows GPR images of
the loosening of the block-stone layers at depths of about 0.8–2.4 m, which were mainly
manifested as disordered electromagnetic waveforms in the block-stone layers, with a
large number of short, discontinuous, and irregularly arranged reflections. In this way,
GPR imagery, together with the other data and methods (structural characteristics, field
survey data, GPR parameters, etc.), indicated categories of damages. According to the
above results, the distribution of different types of damages and the overall damages of the
study section can be drawn (Figure 13).

The relationship between the different damages in a block-stone embankment was
highly significant. The development process and causes of damages were roughly inferred
according to their relationships. For example, Figure 14b shows that 50% of the loosening of
the block-stone layer was related to the abnormality of the lower part of the embankment.
Figure 14d shows that 92.3% of the dense filling of the block-stone layer was related to the
loosening of the upper sand-gravel layer, indicating that most of the dense filling of the
block-stone layer was caused by the falling and filling of the overlying sand-gravel soil. In
addition, there were complex relationships between the damages and causes. For example,
the thawing settlement of the permafrost under the embankment is the first prerequisite for
the damage of block-stone embankment damages. These in turn cause the deterioration of
the structure and function of the block-stone embankment, which leads to a breakdown in
the engineering conditions of the permafrost beneath the embankment, thus completing a
vicious cycle.

Based on the above research, this study has revealed a preliminary account of the
formation processes of the damages (Figure 15), which are more complex and diverse
in practice than the following simplified description. Figure 15a shows that the action
of various influencing factors caused the thawing of the permafrost beneath the block-
stone embankment, creating the hidden danger of embankment instability. Figure 15b
shows that active layer changes affected the embankment, which was mainly manifested
as the local loosening of the block-stone layer and local damage to the top sand-gravel
layer, and partial longitudinal cracks then appeared on the pavement. These changes
were exacerbated by the rolling action of vehicles on the damaged highway embankment.
Figure 15c shows the worsening damage to the embankment as the block-stone layer was
loosened in many places, and some of the block stones settled with the settlement of the
embankment, further accelerating the local fragmentation of the top sand-gravel layer,
with some of the material falling into the block-stone layer. The number and width of
longitudinal cracks on the pavement increased, and transverse cracks began to appear [75].
Figure 15d shows that the interlayer space between each structural layer was further
enlarged as the damage progressed, the cracks in the asphalt pavement further increased,
and the embankment structure was greatly damaged. In addition, the uneven settlement
of the embankment formed a “wavy” pavement, which severely affected the safety and
comfortability of driving.
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Figure 15. Progressive formation of block-stone embankment damage: (a) shows that the action of
various influencing factors causes the thawing of the permafrost beneath the embankment; (b) shows
the active layer changes that affected the embankment; (c) shows the worsening damage to the
embankment; (d) shows that as the damage progressed, the embankment structure was greatly
damaged. The red arrows indicate the influence of the external environment on the embankment
(such as sun exposure and vehicle rolling), and the other dotted boxes and arrows are used to
facilitate reading.

6. Conclusions

This study investigated the types, distribution, formation processes, and influencing
factors of damage to block-stone embankments and their relationships using GPR imagery.
The findings of the study led to the following conclusions:

(1) GPR efficiently and quickly detected and identified the damages in the study area of
the block-stone embankment. Four categories of damage were determined: (i) loosen-
ing of the upper sand-gravel layer; (ii) loosening of the block-stone layer; (iii) settle-
ment of the block-stone layer; and (iv) dense filling of the block-stone layer. Of these,
(i) and (ii) were widely distributed, but (iii) and (iv) less so;

(2) Due to the complex structure of the block-stone embankment, in particular the block-
stone layer itself, the attenuation of the electromagnetic wave signals was more
noticeable than in the other embankment materials. Therefore, it was difficult to
detect and study the deeper parts of the embankment. The quality of GPR data
processing also played a very important role in image interpretation;

(3) Loosening of the sand-gravel layer was found to be the most widely distributed,
and the least was the dense filling of the block-stone layer. However, the primary
reason for the dense filling of the block-stone layer was the falling of the overlying
sand-gravel soil. The studied section of the embankment was in the primary stage
of deterioration. With further development of the damage, more of the block-stone
layers will be filled with sand gravel soil;
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(4) The formation of block-stone embankment damages is a complex process resulting
from various factors that have close relationships with each other. The block-stone
layer was put in the highway embankment to protect the underlying permafrost from
the thaw. Once the damage occurs in the block stone embankment, it will weaken its
cooling effect leading to worse damages.
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