Spectroscopic and Petrographic Investigations of Lunar Mg-Suite Meteorite Northwest Africa 8687
Abstract
:1. Introduction
- A new compilation of mineral chemistry of NWA 8687 is reported. Based on detailed analyses of mineral composition and spectral investigation, the sample NWA 8687 is confirmed as a lunar Mg-suite anorthositic norite.
- The coordinated reflectance spectra of NWA 8687 are acquired. Unlike the VNIR spectra of bulk samples collected in powder form, the measurement of NWA 8687 was performed on a chip, which facilitates spectral analysis of individual rocks and clasts.
- The VNIR spectroscopy is helpful for both the in situ characterization of lunar rocks and non-destructive laboratory characterization of returned samples and lunar meteorites.
2. Materials and Methods
2.1. Lunar Meteorite Northwest Africa 8687
2.2. Visible and Near-Infrared Reflectance Spectroscopy
2.3. Petrography and Mineralogical Analysis
2.3.1. Scanning Electron Microscope
2.3.2. Electron Probe Micro Analyzer
2.4. Spectral Analysis
2.4.1. Spectral Parameters
2.4.2. Spectral Similarity Measurement
2.4.3. Spectral Unmixing
3. Results
3.1. Petrography and Mineral Modal Abundance
3.2. Mineral Chemistry
3.2.1. Pyroxene
3.2.2. Olivine
3.2.3. Plagioclase and Maskelynite
3.2.4. Spinel
3.2.5. Impact Melt Veins
3.3. Minerlogy Inferred from VNIR Spectroscopy
3.3.1. Qualitative Analysis
3.3.2. Quantitative Analysis
4. Discussion
4.1. Lunar Origin
4.2. Classification of NWA 8687: A Mg-Suite Anorthositic Norite?
4.3. Connections between Lab Results and Remote-Sensing Interpretations
5. Conclusions
- NWA 8687 is an anorthositic norite mainly composed of plagioclase (67 vol.%) and mafic silicates (21 vol.% for pyroxene and 12 vol.% for olivine), with minor spinel and accessory minerals, such as Fe–Ni metals, troilites, ilmenites, and baddeleyites.
- The mineral composition is relatively uniform in NWA 8687, with plagioclase dominated by plagioclase (Ca-rich feldspar; An95.6–97.5), and olivine dominated by forsterite (Mg-rich olivine; Fo75.8–77.7). The main component of pyroxene is enstatite (low-Ca pyroxene; En65–78 Fs17–20 Wo3–20), followed by augite (high-Ca pyroxene; En43–50 Fs10–16 Wo38–43). A Mg-spinel (pink spinel) occurs in the sample, with Mg# > 65 and Cr# < 10.
- Mineral compositions and bulk chemistry imply that NWA 8687 has characteristics of lunar Mg-suite rock, and is likely paired with the NWA 5744 clan, although their petrological classification is slightly different.
- The mafic mineral compositions inferred from VNIR reflectance are consistent with the petrological result. However, it is challenging to determine plagioclase, since mafic minerals easily mask its spectral features.
- The mineral modal abundance of the NWA 8687 chip derived from linear unmixing confirms the noritic characteristics of the sample. It shows that spectral investigation has the potential to classify lunar highland rocks, although extended works of diverse lithologies are warranted.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korotev, R.L. Lunar geochemistry as told by lunar meteorites. Geochemistry 2005, 65, 297–346. [Google Scholar] [CrossRef]
- Mitchell, R.N. Chang’E-5 reveals the Moon’s secrets to a longer life. Innovation 2021, 2, 100177. [Google Scholar] [CrossRef] [PubMed]
- Shearer, C.K.; Hess, P.C.; Wieczorek, M.A.; Pritchard, M.E.; Parmentier, E.M.; Borg, L.E.; Longhi, J.; Elkins-Tanton, L.T.; Neal, C.R.; Antonenko, I. Thermal and magmatic evolution of the Moon. Rev. Mineral. Geochem. 2006, 60, 365–518. [Google Scholar] [CrossRef]
- Jolliff, B.L.; Gillis, J.J.; Haskin, L.A.; Korotev, R.L.; Wieczorek, M.A. Major lunar crustal terranes: Surface expressions and crust-mantle origins. J. Geophys. Res. Planets 2000, 105, 4197–4216. [Google Scholar] [CrossRef] [Green Version]
- Elkins-Tanton, L.T. Magma oceans in the inner solar system. Annu. Rev. Earth Planet. Sci. 2012, 40, 113–139. [Google Scholar] [CrossRef] [Green Version]
- Warren, P.H.; Wasson, J.T. The origin of KREEP. Rev. Geophys. 1979, 17, 73–88. [Google Scholar] [CrossRef]
- Gillis, J.J.; Jolliff, B.L.; Korotev, R.L. Lunar surface geochemistry: Global concentrations of Th, K, and FeO as derived from lunar prospector and Clementine data. Geochim. Cosmochim. Acta 2004, 68, 3791–3805. [Google Scholar] [CrossRef]
- Lawrence, D.; Elphic, R.; Feldman, W.; Prettyman, T.; Gasnault, O.; Maurice, S. Small-area thorium features on the lunar surface. J. Geophys. Res. Planets 2003, 108, 5102. [Google Scholar] [CrossRef]
- Papike, J.J.; Ryder, G.; Shearer, C.K. Lunar samples. In Planetary Materials; De Gruyter: Berlin, Germany, 1998; pp. 719–952. [Google Scholar]
- Wieczorek, M.A.; Jolliff, B.L.; Khan, A.; Pritchard, M.E.; Weiss, B.P.; Williams, J.G.; Hood, L.L.; Righter, K.; Neal, C.R.; Shearer, C.K.; et al. The Constitution and Structure of the Lunar Interior. Rev. Mineral. Geochem. 2006, 60, 221–364. [Google Scholar] [CrossRef]
- Taylor, S.R.; Norman, M.D.; Esat, T.M. The Mg-suite and the highland crust: An unsolved enigma. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 15–19 March 1993. [Google Scholar]
- Dowty, E.; Prinz, M.; Keil, K. Ferroan anorthosite: A widespread and distinctive lunar rock type. Earth Planet. Sci. Lett. 1974, 24, 15–25. [Google Scholar] [CrossRef]
- Shearer, C.K.; Elardo, S.M.; Petro, N.E.; Borg, L.E.; McCubbin, F.M. Origin of the lunar highlands Mg-suite: An integrated petrology, geochemistry, chronology, and remote sensing perspective. Am. Mineral. 2015, 100, 294–325. [Google Scholar] [CrossRef]
- Shearer, C.K.; Papike, J. Early crustal building processes on the moon: Models for the petrogenesis of the magnesian suite. Geochim. Cosmochim. Acta 2005, 69, 3445–3461. [Google Scholar] [CrossRef]
- Gross, J.; Hilton, A.; Prissel, T.C.; Setera, J.B.; Korotev, R.L.; Calzada-Diaz, A. Geochemistry and Petrogenesis of Northwest Africa 10401: A New Type of the Mg-Suite Rocks. J. Geophys. Res. Planets 2020, 125, e2019JE006225. [Google Scholar] [CrossRef]
- Treiman, A.H.; Maloy, A.K.; Shearer, C.K., Jr.; Gross, J. Magnesian anorthositic granulites in lunar meteorites Allan Hills A81005 and Dhofar 309: Geochemistry and global significance. Meteorit. Planet. Sci. 2010, 45, 163–180. [Google Scholar] [CrossRef]
- Takeda, H.; Yamaguchi, A.; Bogard, D.; Karouji, Y.; Ebihara, M.; Ohtake, M.; Saiki, K.; Arai, T. Magnesian anorthosites and a deep crustal rock from the farside crust of the moon. Earth Planet. Sci. Lett. 2006, 247, 171–184. [Google Scholar] [CrossRef]
- Prissel, T.C.; Gross, J. On the petrogenesis of lunar troctolites: New insights into cumulate mantle overturn & mantle exposures in impact basins. Earth Planet. Sci. Lett. 2020, 551, 116531. [Google Scholar]
- Klima, R.L.; Pieters, C.M.; Boardman, J.W.; Green, R.O.; Head, J.W., III; Isaacson, P.J.; Mustard, J.F.; Nettles, J.W.; Petro, N.E.; Staid, M.I.; et al. New insights into lunar petrology: Distribution and composition of prominent low-Ca pyroxene exposures as observed by the Moon Mineralogy Mapper (M3). J. Geophys. Res. Planets 2011, 116, E00G06. [Google Scholar] [CrossRef]
- Pieters, C.M.; Besse, S.; Boardman, J.; Buratti, B.; Cheek, L.; Clark, R.; Combe, J.; Dhingra, D.; Goswami, J.; Green, R. Mg-spinel lithology: A new rock type on the lunar farside. J. Geophys. Res. Planets 2011, 116, E00G08. [Google Scholar] [CrossRef] [Green Version]
- Prissel, T.C.; Parman, S.W.; Jackson, C.R.M.; Rutherford, M.J.; Hess, P.C.; Head, J.W.; Cheek, L.; Dhingra, D.; Pieters, C.M. Pink Moon: The petrogenesis of pink spinel anorthosites and implications concerning Mg-suite magmatism. Earth Planet. Sci. Lett. 2014, 403, 144–156. [Google Scholar] [CrossRef]
- Pieters, C. Compositional diversity and stratigraphy of the lunar crust derived from reflectance spectroscopy. In Remote Geochemical Analysis Elemental and Mineralogical Composition; Cambridge University Press: Cambridge, UK, 1993; pp. 309–339. [Google Scholar]
- Cahill, J.; Lucey, P.; Wieczorek, M. Compositional variations of the lunar crust: Results from radiative transfer modeling of central peak spectra. J. Geophys. Res. Planets 2009, 114, E09001. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Liu, D.; Liu, B.; Ren, X.; Liu, J.; He, Z.; Zuo, W.; Zeng, X.; Xu, R.; Tan, X. Chang’E-4 initial spectroscopic identification of lunar far-side mantle-derived materials. Nature 2019, 569, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xiao, Z.; Xiao, L.; Horgan, B.; Hu, X.; Lucey, P.; Xiao, X.; Zhao, S.; Qian, Y.; Zhang, H. Diverse rock types detected in the lunar South Pole–Aitken Basin by the Chang’E-4 lunar mission. Geology 2020, 48, 723–727. [Google Scholar] [CrossRef]
- Isaacson, P.; Liu, Y.; Patchen, A.; Pieters, C.; Taylor, L. Spectroscopy of lunar meteorites as constraints for ground truth: Expanded sample collection diversity. In Proceedings of the 41st Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 1–5 March 2010; p. 1927. [Google Scholar]
- Hiroi, T.; Kaiden, H.; Yamaguchi, A.; Kojima, H.; Uemoto, K.; Ohtake, M.; Arai, T.; Sasaki, S. Visible and near-infrared spectral survey of lunar meteorites recovered by the National Institute of Polar Research. Polar Sci. 2016, 10, 476–496. [Google Scholar] [CrossRef]
- Isaacson, P.; Liu, Y.; Patchen, A.; Pieters, C.; Taylor, L. Integrated analyses of lunar meteorites: Expanded data for lunar ground truth. In Proceedings of the 40th Annual Lunar and Planetary Science Conference, The Woodlands, TX, USA, 23–27 March 2009; p. 2119. [Google Scholar]
- Ruzicka, A.; Grossman, J.; Bouvier, A.; Agee, C.B. The meteoritical bulletin, No. 103. Meteorit. Planet. Sci. 2017, 52, 1014. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Zhang, G.; Zhu, X.; Zhang, X.; Xiong, Y.; Li, C. Petrography and Mineralogy of Northwest Africa 8687. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 18–22 March 2019; p. 2372. [Google Scholar]
- Robinson, K.; Kring, D. The Northwest Africa 5744 Group: A glimpse into Schrödinger-like lithologies? In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 19–23 March 2018; p. 1635. [Google Scholar]
- Kent, J.J.; Brandon, A.D.; Joy, K.H.; Peslier, A.H.; Lapen, T.J.; Irving, A.J.; Coleff, D.M. Mineralogy and petrogenesis of lunar magnesian granulitic meteorite Northwest Africa 5744. Meteorit. Planet. Sci. 2017, 52, 1916–1940. [Google Scholar] [CrossRef] [Green Version]
- Korotev, R.L.; Irving, A.J. Lunar meteorites from northern Africa. Meteorit. Planet. Sci. 2021, 56, 206–240. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, X.; Sun, X.; Sun, Y.; Cen, Y. Predicting nickel concentration in soil using reflectance spectroscopy associated with organic matter and clay minerals. Geoderma 2018, 327, 25–35. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. Solid Earth 1984, 89, 6329–6340. [Google Scholar] [CrossRef]
- Gaffey, M.J.; Bell, J.F.; Brown, R.H.; Burbine, T.H.; Piatek, J.L.; Reed, K.L.; Chaky, D.A. Mineralogical variations within the S-type asteroid class. Icarus 1993, 106, 573–602. [Google Scholar] [CrossRef]
- Cloutis, E.A.; Gaffey, M.J. Pyroxene spectroscopy revisited: Spectral-compositional correlations and relationship to geothermometry. J. Geophys. Res. Planets 1991, 96, 22809–22826. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, H.; Liu, Y.; Lin, Y.; Wei, Y.; Hu, S.; Yang, W.; Xu, R.; He, Z.; Zou, Y. The effects of viewing geometry on the spectral analysis of lunar regolith as inferred by in situ spectrophotometric measurements of Chang’E-4. Geophys. Res. Lett. 2020, 47, e2020GL087080. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.; Boardman, J.; Heidebrecht, K.; Shapiro, A.; Barloon, P.; Goetz, A. The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef] [Green Version]
- Heinz, D.; Chang, C.-I.; Althouse, M.L. Fully constrained least-squares based linear unmixing [hyperspectral image classification]. In Proceedings of the IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No. 99CH36293), Hamburg, Germany, 28 June–2 July 1999; pp. 1401–1403. [Google Scholar]
- Lucey, P.; Korotev, R.L.; Gillis, J.J.; Taylor, L.A.; Lawrence, D.; Campbell, B.A.; Elphic, R.; Feldman, B.; Hood, L.L.; Hunten, D. Understanding the lunar surface and space-Moon interactions. Rev. Mineral. Geochem. 2006, 60, 83–219. [Google Scholar] [CrossRef]
- Haggerty, S. Luna 24-Systematics in spinel mineral chemistry in the context of an intrusive petrogenetic grid. In Proceedings of the Mare Crisium: The View from Luna 24, Houston, TX, USA, 1–3 December 1977; pp. 523–535. [Google Scholar]
- Papike, J.; Hodges, F.; Bence, A.; Cameron, M.; Rhodes, J. Mare basalts: Crystal chemistry, mineralogy, and petrology. Rev. Geophys. 1976, 14, 475–540. [Google Scholar] [CrossRef]
- Keil, K.; Prinz, M.; Bunch, T. Mineral chemistry of lunar samples. Science 1970, 167, 597–599. [Google Scholar] [CrossRef]
- Anderson, A. The texture and mineralogy of lunar peridotite, 15445, 10. J. Geol. 1973, 81, 219–226. [Google Scholar] [CrossRef]
- Ridley, W.; Hubbard, N.; Rhodes, J.; Weismann, H.; Bansal, B. The petrology of lunar breccia 15445 and petrogenetic implications. J. Geol. 1973, 81, 621–631. [Google Scholar] [CrossRef]
- Prinz, M.; Dowty, E.; Keil, K.; Bunch, T. Spinel troctolite and anorthosite in Apollo 16 samples. Science 1973, 179, 74–76. [Google Scholar] [CrossRef]
- Baker, M.B.; Herzberg, C.T. Spinel Cataclasites in 15445 and 72435: Petrology and Criteria for Equilibrium; Pergamon Press: Oxford, UK, 1980. [Google Scholar]
- Marvin, U.B.; Carey, J.W.; Lindstrom, M.M. Cordierite-spinel troctolite, a new magnesium-rich lithology from the lunar highlands. Science 1989, 243, 925–928. [Google Scholar] [CrossRef] [PubMed]
- Snyder, G.; Ruzicka, A.; Taylor, L.; Patchen, A. Journey to the center of the regolith: A spinel troctolite and other clasts from drive tube 68001. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 16–20 March 1998; p. 1144. [Google Scholar]
- Daubar, I.J.; Kring, D.A.; Swindle, T.D.; Jull, A.T. Northwest Africa 482: A crystalline impact-melt breccia from the lunar highlands. Meteorit. Planet. Sci. 2002, 37, 1797–1813. [Google Scholar] [CrossRef]
- Gross, J.; Treiman, A.H. Unique spinel-rich lithology in lunar meteorite ALHA 81005: Origin and possible connection to M3 observations of the farside highlands. J. Geophys. Res. Planets 2011, 116, E10009. [Google Scholar] [CrossRef] [Green Version]
- Cheek, L.C.; Pieters, C.M. Reflectance spectroscopy of plagioclase-dominated mineral mixtures: Implications for characterizing lunar anorthosites remotely. Am. Mineral. 2014, 99, 1871–1892. [Google Scholar] [CrossRef]
- McKay, D.; Bogard, D.; Morris, R.; Korotev, R.; Johnson, P.; Wentworth, S. Apollo 16 regolith breccias: Characterization and evidence for early formation in the mega-regolith. J. Geophys. Res. Solid Earth 1986, 91, 277–303. [Google Scholar] [CrossRef]
- Treiman, A.H.; Drake, M.J. Origin of lunar meteorite ALHA 81005: Clues from the presence of Terrae clasts and a very low-titanium mare basalt clast. Geophys. Res. Lett. 1983, 10, 783–786. [Google Scholar] [CrossRef]
- Klima, R.L.; Dyar, M.D.; Pieters, C.M. Near-infrared spectra of clinopyroxenes: Effects of calcium content and crystal structure. Meteorit. Planet. Sci. 2011, 46, 379–395. [Google Scholar] [CrossRef]
- Cloutis, E.A.; Gaffey, M.J.; Jackowski, T.L.; Reed, K.L. Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra. J. Geophys. Res. Solid Earth 1986, 91, 11641–11653. [Google Scholar] [CrossRef]
- Karner, J.; Papike, J.; Shearer, C. Comparative planetary mineralogy: Pyroxene major-and minor-element chemistry and partitioning of vanadium between pyroxene and melt in planetary basalts. Am. Mineral. 2006, 91, 1574–1582. [Google Scholar] [CrossRef]
- Karner, J.; Papike, J.; Shearer, C. Olivine from planetary basalts: Chemical signatures that indicate planetary parentage and those that record igneous setting and process. Am. Mineral. 2003, 88, 806–816. [Google Scholar] [CrossRef]
- Taylor, S.R. Solar System Evolution: A New Perspective; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Papike, J.J. Comparative planetary mineralogy; chemistry of melt-derived pyroxene, feldspar, and olivine. Rev. Mineral. Geochem. 1998, 36, 701–712. [Google Scholar]
- Papike, J.; Karner, J.; Shearer, C. Determination of planetary basalt parentage: A simple technique using the electron microprobe. Am. Mineral. 2003, 88, 469–472. [Google Scholar] [CrossRef]
- Warner, J.; Simonds, C.; Phinney, W. Genetic distinction between anorthosites and Mg-rich plutonic rocks: New data from 76255. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 15–19 March 1976. [Google Scholar]
- Haskin, L.; Shih, C.-Y.; Bansal, B.; Rhodes, J.; Wiesmann, H.; Nyquist, L. Chemical evidence for the origin of 76535 as a cumulate. In Proceedings of the Lunar and Planetary Science Conference Proceedings, Houston, TX, USA, 18–22 March 1974; pp. 1213–1225. [Google Scholar]
- Lindstrom, M.M.; Lindstrom, D.J. Lunar granulites and their precursor anorthositic norites of the early lunar crust. J. Geophys. Res. Solid Earth 1986, 91, 263–276. [Google Scholar] [CrossRef]
- Warren, P.H. Lunar anorthosites and the magma-ocean plagioclase-flotation hypothesis; importance of FeO enrichment in the parent magma. Am. Mineral. 1990, 75, 46–58. [Google Scholar]
- Stöffler, D.; Knöll, H.-D.; Marvin, U.; Simonds, C.; Warren, P. Recommended classification and nomenclature of lunar highland rocks-a committee report. In Proceedings of the Lunar Highlands Crust, Houston, TX, USA, 1 October 1980; pp. 51–70. [Google Scholar]
- Korotev, R.; Irving, A. Not quite keeping up with the lunar meteorites—2016. In Proceedings of the Lunar and Planetary Science Conference, The Woodlands, TX, USA, 21–25 March 2016; p. 1358. [Google Scholar]
- Wieczorek, M.A.; Zuber, M.T. The composition and origin of the lunar crust: Constraints from central peaks and crustal thickness modeling. Geophys. Res. Lett. 2001, 28, 4023–4026. [Google Scholar] [CrossRef] [Green Version]
Method 3 | NWA 8687 | NWA 5744 1 | NWA 10401 2 | ||
---|---|---|---|---|---|
NanoMin | BSE | BSE | XMapTool | IDRISI Selva | |
Plagioclase * | 67.10 | 71.8 | 67 | 59 | 65 |
Olivine | 11.80 | 11.6 | 26.3 | 26 | 23 |
Total pyroxene * | 20.77 | 16.5 | 6.6 | 15 | 12 |
High-Ca pyroxene | 1.03 | - | - | - | - |
Low-Ca pyroxene | 19.74 | - | - | - | - |
Spinel/chromite | 0.18 | 0.1 | 0.1 | 0.001 | 0.001 |
Metal | 0.07 | - | - | - | - |
Troilite | 0.04 | - | - | - | - |
Ilmenite | 0.04 | - | - | - | - |
Baddeleyite | 0.0002 | - | - | - | - |
Total | 100 | 100 | 100 | 100 | 100 |
n | Olivine | Pyroxene | Plagioclase | Spinel | Vein | Bulk 1 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Grain | Matrix | Vein | Low-Ca | High-Ca | Grain | Matrix | Mg-Al | Cr-Fe | |||
17 | 9 | 5 | 14 | 12 | 8 | 6 | 5 | 4 | 6 | ||
SiO2 | 38.73 | 38.69 | 38.65 | 53.96 | 51.31 | 45.03 | 44.78 | 0.46 | 0.45 | 46.03 | 46.16 |
TiO2 | 0.04 | 0.08 | 0.06 | 0.69 | 1.30 | 0.02 | 0.03 | 0.46 | 5.41 | 0.29 | 0.20 |
Al2O3 | 0.08 | 0.12 | 0.02 | 1.34 | 2.09 | 34.84 | 35.04 | 57.36 | 19.53 | 23.41 | 22.36 |
Cr2O3 | 0.04 | 0.04 | 0.04 | 0.40 | 0.67 | 0.01 | 0.04 | 8.93 | 37.78 | 0.15 | 0.17 |
V2O3 | - | - | - | - | - | - | - | 0.23 | 0.51 | - | 0.001 |
FeO | 20.98 | 21.15 | 20.60 | 12.52 | 7.77 | 0.13 | 0.18 | 15.59 | 26.85 | 5.40 | 5.82 |
MnO | 0.23 | 0.23 | 0.23 | 0.23 | 0.18 | 0.01 | 0.01 | 0.13 | 0.30 | 0.08 | 0.09 |
MgO | 39.26 | 38.94 | 39.83 | 27.47 | 16.31 | 0.12 | 0.08 | 16.42 | 8.44 | 10.28 | 11.66 |
CaO | 0.12 | 0.17 | 0.08 | 2.64 | 19.81 | 19.17 | 19.03 | 0.07 | 0.12 | 13.65 | 12.85 |
NiO | 0.01 | 0.01 | 0.01 | - | - | - | - | - | - | - | 0.001 |
CoO | 0.04 | 0.04 | 0.04 | - | - | - | - | - | - | - | 0.01 |
Na2O | 0.01 | 0.02 | 0.02 | 0.02 | 0.08 | 0.36 | 0.37 | - | - | 0.27 | 0.24 |
K2O | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | - | - | 0.01 | 0.01 |
P2O5 | 0.01 | 0.02 | 0.01 | 0.02 | 0.02 | 0.01 | 0.02 | - | - | 0.03 | 0.02 |
Total | 99.56 | 99.53 | 99.62 | 99.31 | 99.55 | 99.72 | 99.61 | 99.66 | 99.39 | 99.59 | 99.57 |
A | B | C | D | E | |
---|---|---|---|---|---|
Clinopyroxene | 0 | 1.51 | 0 | 0 | 1.71 |
Orthopyroxene | 58.20 | 50.33 | 55.30 | 63.55 | 42.73 |
Plagioclase | 35.24 | 28.49 | 20.83 | 24.82 | 24.53 |
Olivine | 6.08 | 6.12 | 9.58 | 7.55 | 6.08 |
Ilmenite | 0.49 | 0.50 | 14.28 | 4.07 | 1.69 |
Maskelynite | 0 | 13.05 | 0 | 0 | 23.27 |
Total | 100 | 100 | 100 | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, L.; Wu, X.; Huang, L.; Liu, Y.; Zou, Y. Spectroscopic and Petrographic Investigations of Lunar Mg-Suite Meteorite Northwest Africa 8687. Remote Sens. 2022, 14, 2952. https://doi.org/10.3390/rs14122952
Qin L, Wu X, Huang L, Liu Y, Zou Y. Spectroscopic and Petrographic Investigations of Lunar Mg-Suite Meteorite Northwest Africa 8687. Remote Sensing. 2022; 14(12):2952. https://doi.org/10.3390/rs14122952
Chicago/Turabian StyleQin, Lang, Xing Wu, Liying Huang, Yang Liu, and Yongliao Zou. 2022. "Spectroscopic and Petrographic Investigations of Lunar Mg-Suite Meteorite Northwest Africa 8687" Remote Sensing 14, no. 12: 2952. https://doi.org/10.3390/rs14122952
APA StyleQin, L., Wu, X., Huang, L., Liu, Y., & Zou, Y. (2022). Spectroscopic and Petrographic Investigations of Lunar Mg-Suite Meteorite Northwest Africa 8687. Remote Sensing, 14(12), 2952. https://doi.org/10.3390/rs14122952