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Abstract: The determination of the land geoid and the marine geoid involves different data sets and
calculation strategies. It is a hot issue at present to construct the unified land–ocean quasi-geoid by
fusing multi-source data in coastal areas, which is of great significance to the construction of land–
ocean integration. Classical geoid integral algorithms such as the Stokes theory find it difficult to deal
with heterogeneous gravity signals, so scholars have gradually begun using radial basis functions
(RBFs) to fuse multi-source data. This article designs a multi-layer RBF network to construct the
unified land–ocean quasi-geoid fusing measured terrestrial, shipborne, satellite altimetry and airborne
gravity data based on the Remove–Compute–Restore (RCR) technique. EIGEN-6C4 of degree 2190 is
used as a reference gravity field. Several core problems in the process of RBF modeling are studied in
depth: (1) the behavior of RBFs in the spatial domain; (2) the locations of RBFs; (3) ill-conditioned
problems of the design matrix; (4) the effect of terrain masses. The local quasi-geoid with a 1′

resolution is calculated, respectively, on the flat east coast and the rugged west coast of the United
States. The results show that the accuracy of the quasi-geoid computed by fusing four types of gravity
data in the east coast experimental area is 1.9 cm inland and 1.3 cm on coast after internal verification
(the standard deviation of the quasi-geoid w.r.t GPS/leveling data). The accuracy of the quasi-geoid
calculated in the west coast experimental area is 2.2 cm inland and 2.1 cm on coast. The results
indicate that using RBFs to calculate the unified land–ocean quasi-geoid from heterogeneous data
sets has important application value.

Keywords: fusion of heterogeneous data; unified land–ocean quasi-geoid; radial basis functions;
Remove–Compute–Restore; EIGEN-6C4

1. Introduction

The geoid is a fundamental element in determining the shape of the Earth [1]. The
calculation of a high-quality geoid requires firstly constructing the Earth’s gravity field with
high precision and resolution. With the enrichment of measurement means, the breadth
and depth of geospatial data are being continuously improved by terrestrial, shipborne,
airborne and satellite gravity surveys, etc. [2–7]. The unified land–ocean quasi-geoid can
be constructed by fusing heterogeneous data sets in the boundary areas between land
and ocean, which is beneficial to advance the construction of land–ocean integration. At
present, calculation methods of the gravimetric geoid are mainly divided into analytical
methods and statistical methods. Analytical methods include the classical Stokes, Hotine,
Molodensky and Helmert integral algorithms [8–12]. The defects of analytical methods
lie in the strict requirement of the boundary surface and the difficulty fusing multi-source
gravity signals. Statistical methods represented by the least-squares collocation (LSC)
have significant advantages in fusing heterogeneous data sets. LSC is first introduced into
the study of local gravity field approximation by Krarup and Moritz. Tscherning, Rapp,
Hwang and other scholars have performed a lot of later research [13–17]. The defect of
LSC is that it is difficult to construct an appropriate and accurate local covariance model.
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However, as a statistical algorithm, LSC is still a good choice. This article mainly focuses
on analytical methods.

Radial basis functions have been widely used in local gravity field modeling in recent
years due to their simple function forms and the ability to fuse multi-source data. RBFs
are first proposed as a function approximation theory in mathematics [18]. The Multi-
quadric (MQ) kernel function proposed by Hardy and the point mass function are first
introduced into Earth’s gravity field approximation [19]. Weightman is one of the first
scholars to apply the point mass function in physical geodesy. This new method can replace
the classical spherical harmonic function to express the Earth’s gravity field. Reilly and
Herbrechtsmeier apply the point mass model to the fusion of multi-source data earlier.
They use simulated altimetry data to invert marine gravity anomalies and combine the
measured gravity anomalies on land to construct a unified local gravity field, whose
accuracy reaches 20 mGal after being verified [20]. Barthelmes designs a free-positioned
point mass optimization algorithm based on the least-squares adjustment by setting four
free parameters on each mass point, which effectively reduces the number of mass points
and significantly improves the calculation efficiency [21]. Lehmann further studies the
free-positioned algorithm, which can be used more flexibly to determine the local geoid
with measured gravity data [22]. These studies lay the foundation of radial basis function
modeling. Then, a series of high-order RBFs such as radial multipoles and Poisson wavelets
are derived from the point mass function [23,24]. In addition, some scholars introduce the
classical Blackman kernel, the Shannon kernel and the spherical spline function into the
RBF model [25,26]. After years of development, scholars have performed a lot of research
on the application of various RBFs in local gravity field modeling. The research contents
mainly focus on the selection of RBF types, the treatment of ill-conditioned problems and
the determination of the spatial position of RBFs.

Tenzer and Klees carry out experiments in the plain area to compare the performance
of the point mass kernel, the Poisson kernel, radial multipoles and Poisson wavelets.
According to the results, they conclude that these RBFs can obtain almost the same accuracy
of gravity field modeling when the depth of RBFs is chosen properly [27]. Bentel et al. use
simulated data to model the local gravity field based on the Shannon low-pass kernel, the
Shannon high-pass kernel, the Blackman low-pass kernel, the cubic polynomial kernel, the
Poisson multipoles kernel, the Abel–Poisson kernel truncated and the Abel–Poisson kernel.
The experimental results show that the Blackman low-pass kernel, the cubic polynomial
kernel and the Abel–Poisson kernel truncated perform best [28]. In the process of RBF
modeling, the design matrix may be ill conditioned due to the uneven distribution of
observations and excessive number of RBFs. Tikhonov regularization is currently the
mainstream method to deal with ill-conditioned problems. Wu et al. adopt zero-order
and first-order Tikhonov regularization to solve ill-posed equations and prove that first-
order regularization has better performance [29]. Based on the Tikhonov regularization,
Liu et al. analyze the defects of the L-curve method and variance component estimation
(VCE) in determining regularization parameters and then propose two combined methods,
VCE-Lc and Lc-VCE, which are proven to be superior to traditional methods [30,31]. The
spatial positions of RBFs have a great influence on the modeling result. Eicker uses various
spherical grids to place RBFs such as the Reuter grid, the Triangle-Center grid and the
Triangle-Vertex grid, which are more evenly distributed than the geographical grid [32].
Klees and Witter propose an adaptive selection of RBFs before parameter estimation
according to the distribution, signal variation and noise of observations [33]. Tenzer and
Klees, respectively, use the GCV and RMS minimization methods to determine the optimal
depth of RBFs and establish a linear functional relationship between the depth and the
correlation length of RBFs. Experiment results prove that the optimal depth is related to
the type of RBFs [27]. Tenzer et al. subsequently find in the study of mountainous areas
that the RBF model solution is very sensitive to change in depth of even several hundred
meters when regional shape fluctuation and gravity signals vary greatly [34]. To sum up
the current research by scholars, the main problems are as follows: (1) the selection of RBF
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types and the determination of spatial positions have not been standardized, which needs
further research; (2) the studies carried out using real gravity data and the experiments
carried out in the land–ocean boundary areas are still too few.

Considering the above problems, we propose a multi-layer RBF model to fuse het-
erogeneous data sets for the unified land–ocean quasi-geoid. In Section 2, two coastal
areas and relevant experiment data are detailed. The modeling workflow is given, and
the modeling methodologies are introduced in detail, including (1) the characteristics of
RBFs in the spatial domain; (2) the spatial position of RBFs, i.e., the resolution and depth of
spherical grids; (3) Tikhonov regularization to deal with ill-conditioned problems of the
model design matrix; (4) residual terrain model (RTM) to represent the impact of terrain
mass. The local quasi-geoid with a 1′ resolution is calculated by setting up multi-layer RBF
networks, respectively, on the flat east coast and the rugged west coast of the United States
in Section 3. In Section 4, we discuss the results and shortcomings of the above research
and propose an outlook for future work. Section 5 summarizes the main research content
and conclusions of this article.

2. Data and Method

This article studies the RBF model to fuse multi-source gravity data. Numerical exper-
iments are carried out in the land–ocean junction areas. The experiments are conducted
in two topographically different areas, one on the east and the other on the west coast of
the United States. The east coast of the United States is relatively flat, expending inland
from the coastline into a broad plain. On the west coast, under the influence of the Rocky
Mountains, the land elevation begins to rise rapidly not far from the coastline. Details of the
relevant experiment data are described in this section. In addition, the general modeling
process is summarized, and the core modeling methodologies are studied in depth.

2.1. Data Preparation

The east coast experiment area is located in North Carolina, USA, with an average
elevation of approximately 8 m. The target area range is between 34◦ and 37◦ latitude and
between −78◦ and −74◦ longitude. The west coast experiment area is in the border area of
Oregon and Washington State in the northwest of the United States. Its land part is rugged
with an average elevation of approximately 334 m. The target area range is between 44◦

and 47◦ latitude and between −126◦ and −122◦ longitude. The regional topography is
shown in Figure 1.

Figure 1. Regional terrain in two coastal areas of the United States: (a) east coast; (b) west coast.

The gravity data used in the experiments include measured terrestrial, shipborne,
airborne gravities and gravity anomalies derived from satellite altimetry. Terrestrial and
shipborne gravity data come from the NGS99 gravity data set provided by the National
Geodetic Survey (NGS). NGS99 is a compilation of the measured terrestrial and shipborne
gravity data across the USA (data source: https://www.ngdc.noaa.gov/mgg/gravity/19

https://www.ngdc.noaa.gov/mgg/gravity/1999/data/regional/ngs99
https://www.ngdc.noaa.gov/mgg/gravity/1999/data/regional/ngs99
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99/data/regional/ngs99, accessed on 1 March 2021). The product provides free-air gravity
anomalies (FAA), Bouguer anomalies, etc., after a series of preprocessing. In the east coast
experiment area, we use 2860 terrestrial gravity points and 1678 shipborne gravity points,
which are shown in Figure 2a. The distribution of shipborne gravity points is uneven,
which is reflected in the dense distribution of data on the shipping route but many gaps
outside the route. The shipborne gravity signals vary greatly, while the terrestrial gravity
signals vary more gently and are densely distributed in most areas. In the west coast
experiment area, there are 2814 terrestrial gravity points and 2288 shipborne gravity points,
as shown in Figure 2b. Different from the east coast experiment area, the distribution of
shipborne gravity points in the west coast area is more even.

Figure 2. Distribution of terrestrial and shipborne gravity points: (a) east coast; (b) west coast.

Due to the data gaps between ship lines, satellite altimetry and airborne gravities
with more uniform distribution are needed as supplements. Satellite altimetry used in this
article are DTU15 gravity anomalies with a 2′ resolution (data source: https://ftp.space.dtu.
dk/pub/DTU15, accessed on 1 March 2021). Under the influence of the complex terrain on
the ground, the accuracy of gravity anomalies inversed from satellite altimetry in inshore
areas is not so good, but their high resolution and uniform distribution can make up for
the deficiency of shipborne gravity to a certain extent. The distribution of DTU15 on sea is
shown in Figure 3.

Figure 3. Distribution of DTU15 gravity points: (a) east coast; (b) west coast.

Airborne gravity data come from the GRAV-D project, which is developed by the NGS
to redefine the vertical datum of the USA. GRAV-D currently covers most areas of the USA,
providing full-field gravity data, which can be turned into free-air gravity disturbances
(FAD) or free-air gravity anomalies (data source: https://www.ngs.noaa.gov/GRAV-D,
accessed on 1 March 2021). In the east coast experiment area, 5367 airborne gravity points
are selected, and their average flight altitude is approximately 5460 m. In the west coast

https://www.ngdc.noaa.gov/mgg/gravity/1999/data/regional/ngs99
https://www.ngdc.noaa.gov/mgg/gravity/1999/data/regional/ngs99
https://ftp.space.dtu.dk/pub/DTU15
https://ftp.space.dtu.dk/pub/DTU15
https://www.ngs.noaa.gov/GRAV-D
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experiment area, the number of airborne gravity points is 7458, and the average flight
altitude is approximately 6938 m. The distribution of airborne gravity data is shown in
Figure 4. Airborne gravity data have high resolution and uniform distribution, so they are
not limited by ground terrain conditions. The shortcoming of airborne data is that the high
flight altitude leads to low data accuracy, thus it is difficult to simulate the full-band gravity
signal on ground points.

Figure 4. Distribution of airborne gravity points: (a) east coast; (b) west coast.

GPS/leveling data are used to verify the accuracy of the unified land–ocean quasi-
geoid (data source: https://geodesy.noaa.gov/GPSonBM, accessed on 1 March 2021). In
the east coast experiment area, due to the flat land terrain, there are many measured
GPS/leveling points with a total of 807, which is 177 in the west coast experiment area,
as shown in Figure 5. GPS and leveling surveys are impossible to be carried out offshore.
So, this article uses GPS/leveling points along the coast to check the accuracy level of the
unified land–ocean quasi-geoid on sea.

Figure 5. Distribution of GPS/leveling points: (a) east coast; (b) west coast.

2.2. RBF Modeling Strategies

In this article, the local quasi-geoid is calculated based on the RBF model following
the basic framework of the RCR technique [35]. After removing GGM and terrain effects
from gravity observations, the residual gravity is included in the RBF model as input data.
Helmert VCE is used to evaluate various observations [36]. Tikhonov regularization is used
to solve ill-conditioned problems that may occur in the design matrix. A small number of
points are selected from GPS/leveling data as control points, and the remaining data are as
internal checkpoints. Under the constraint of control points, the optimal RBF network is
determined to construct the model. The quasi-geoid calculated is compared with internal
checkpoints, and the standard deviation (STD) of the difference between them is taken as
the accuracy indicator. The flowchart is shown in Figure 6.

https://geodesy.noaa.gov/GPSonBM
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Figure 6. Flowchart of RBF modeling.

When the spherical grid is used to place the RBFs, not all grid points should be
included in the model, which is because the RBFs have strong localization characteristics,
and their energies are mainly concentrated around the center. So, the observations near
RBFs are the main contribution to the simulated gravity signal. If the RBFs without
enough observations around are included in the model, the local gravity field will be
over-parameterized, and the reliability of the model solution will be reduced. In order
to locate and eliminate the redundant RBFs, it is usually necessary to introduce a filter
radius RI :

RI = χ·ν0.5 (1)

where I is the number of RBFs; ν0.5 denotes the correlation length of RBFs, which specifically
refers to the straight-line distance between the RBFs and observations when the absolute
value of RBFs decays to half of the maximum value. χ represents correlation length
parameter. With the center of RBFs as the spherical center, if the number of all observations
within the radius RI is greater than q, the RBFs will remain; otherwise, they will be excluded.
χ and q need to be determined based on the actual situation. In this article, we specify
q = 0. RI ranges between 50 and 90 km. We determine the suitable value of χ through some
trial calculations, ensuring RI meets the modeling requirements. The general adaptive
screening process is shown in Figure 7.
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Figure 7. Processing flow of adaptive screening technique.

Considering the altitude of airborne gravity data is much higher than the terrestrial,
shipborne and satellite altimetry data, the one-layer RBF network cannot simulate the full
gravity signals well. Therefore, we design a multi-layer RBF network to fuse these four
types of data, which are shown in Figure 8. We are currently only using two layers, and
more layers are of course encouraged to be used.

Figure 8. Multi-layer RBF networks.

In Figure 9, surface gravity denotes terrestrial, shipborne and satellite altimetry data;
dA and dB denote the depth of grid A and B. The specific modeling process is as follows:

1. GGM and RTM are removed from the terrestrial, shipborne and satellite altimetry
observations to obtain residual gravity anomalies, ∆gA = ∆g−∆gGGM −∆gRTM. The
RBF network A is determined by the STD minimization. After the three kinds of
gravity data are fused to calculate the RBF model parameters, the airborne gravity



Remote Sens. 2022, 14, 3015 8 of 23

points are taken as prediction points and the corresponding model gravity disturbance
δgA will be calculated.

2. Remove GGM and δgA from the airborne gravity to obtain residual gravity dis-
turbances, δgB = δg − δgGGM − δgA. The RBF network B is determined by STD
minimization and then the corresponding RBF model parameters will be calculated.

3. Based on the RBF networks A and B, the height anomalies on unknown points are
computed, respectively, and added together. Then GGM and RTM signals are restored
then to obtain the final quasi-geoid.

Figure 9. Behavior of RBFs in the spatial domain: (a) the IMQ kernel; (b) the Poisson kernel; (c) radial
multipoles of order 1; (d) Poisson wavelets of order 1.

2.3. RBF Modeling Methodology

RBF is a nonlinear function with the local characteristic and radial symmetry. In
essence, the RBF model only depends on the relative position relationship between the com-
puted points and the center of RBFs. Represent the spatial position of RBFs as y(y1, y2, y3),
which is usually placed on a sphere inside the Earth such as the Bjerhammar sphere.
The point x(x1, x2, x3) outside the sphere is used to represent the spatial position of the
observations. RBFs can be expressed as:

Ψ(x, y) =
∞

∑
m=0

ψm(2m + 1)
(

RB
|x|

)m+1
Pm

(
x̂T ŷ

)
, |y|〈RB, |x|〉RB (2)

where RB denotes the radius of the Bjerhammar sphere; Pm denotes the Legendre poly-
nomial of degree m; ψm is the Legendre coefficient, which is the shape factor of RBFs,
determining their properties in the spatial and frequency domain; x̂ and ŷ are the unit
vector of x and y. Define the depth of RBFs as: ds = RB − |y|.

According to the Runge–Krarup principle, the external disturbing potential T can be
approximated by a harmonic function completely embedded inside the Earth. So, the linear
combination of RBFs can be used to approximate T:

T(x) =
GM
RB

K

∑
i=1

βiΨ(x, yi) (3)
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where K denotes the number of RBFs; βi denotes the unknown coefficient of the RBF model.
Based on the RCR technique, T can be decomposed into three components:

T = TGGM + TTerrian + Tres (4)

where TGGM denotes long-wave signals represented by GGM; TTerrian denotes high-frequency
gravity information implied by terrain masses, used to represent short-wave signals; Tres
denotes residual disturbing potential. According to the functional relationship between
the observations and T, the linear combination of RBFs can be further used to simulate
the observations:

∆gres(x) =
K
∑

i=1
µi

(
− ∂

∂|x|Ψ(x, yi)− 2
|x|Ψ(x, yi)

)
δgres(x) = −

K
∑

i=1
µi

∂
∂|x|Ψ(x, yi)

ζres(x) =
K
∑

i=1
µi

Ψ(x,yi)
γ

(5)

where µi =
GM
RB

βi; ∆gres(x) denotes residual gravity anomaly; δgres(x) denotes residual
gravity disturbance; ζres(x) denotes residual height anomaly. In this article, all geoid undu-
lations have been converted to height anomalies (GPS/leveling observations), ensuring the
unity of elevation datum:

ζ ≈ N − ∆gB
γ

H (6)

where ∆gB denotes bouguer gravity anomaly; γ denotes mean normal gravity; H denotes
the topographic height. It is worth noting that the above formula is an approximate formula.

Equation (5) can be abstracted as a linear observation model:

yp = Apx + εp (7)

where yp denotes the observation vector of class p; x is the vector of model coefficients; εp
is the error vector. The equation can be solved using the least-squares estimation. Due to
the lack of the prior information related to the error of observations, the weight of all kinds
of observations can be determined by the VCE technique.

2.3.1. Characteristics of RBFs in the Spatial Domain

Several types of RBFs widely used in local gravity field modeling are as follows: the
IMQ kernel, the Poisson kernel, the radial multipoles kernel and the Poisson wavelets
kernel, represented by ΨIMQ, Ψpk, Ψrm and Ψpw respectively. We use these RBFs’ analytical
expressions to construct the model. See the related research for their specific formulas [37].
Convert the analytical formula of RBFs to the unit sphere, and then, respectively, draw their
pictures in the spatial domain when ds = 300 km, as shown in Figure 9. It can be seen from
the figure that RBFs have obvious localization characteristics. In the position far from the
center of RBFs, the signals’ energies rapidly decay, which is conductive to the concentration
of local gravity signals.

2.3.2. RBF Networks

The design of the RBF network is divided into the determination of the sphere position
and the buried depth. There are mainly two strategies to determine the sphere position
of RBFs. One is to directly place RBFs under observations, which is extremely dependent
on the spatial distribution of observations. The other is to place RBFs on the regular grid,
which can make RBFs evenly distributed in the computation areas. At present, the second
strategy is more commonly used, which is also adopted in this article. The simplest regular
spherical grid is a geographical grid, which is one kind of isogonal grids. Geographical
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grid nodes space along the longitude circle and latitude circle with equal-angle intervals.
Figure 10 shows its distribution globally and in the Arctic.

Figure 10. Distribution of the geographical grid.

It can be clearly seen from Figure 11 that the geographical grid is very unevenly
distributed in high-latitude regions. The higher the latitude is, the denser the grid dots
are. In a slightly large area, such a defect will become more obvious. In view of this
phenomenon, scholars propose a kind of spherical isometric grid, the Reuter grid, which
ensures that the spherical distances between grid dots in meridian and latitude direction
are equal, so that RBFs can be distributed evenly in high-latitude regions, as shown in
Figure 11. The specific formulas can be found in the relevant articles [32].

Figure 11. Distribution of the Reuter grid.

The determination of the optimal RBF network is always the focus and difficulty in
RBF modeling. When RBFs are buried deep, the gravity signals simulated by the model are
mainly concentrated at low frequencies. This kind of model has strong stability but leads to
the simulated gravity signals being coarse due to omission errors. The shallower the buried
depth of RBFs is, the more sensitive they are to the high-frequency signals such as terrain
masses. The stability of the model will be reduced, and ill-conditioned problems may
occur. When the number of RBFs is too large caused by high grid resolution, the overlap
between RBFs will increase, which leads to the RBFs model being over-parameterized. On
the contrary, too few RBFs are insufficient to simulate full gravity signals.

When the RBF model is constructed using discrete gravity points, it is difficult to
uniquely determine the appropriate position of RBFs by theories before modeling. Scholars
generally use posterior statistical methods such as GCV, RMS or STD minimization tech-
nique to screen out the optimal RBF network [27]. In this article, the STD minimization
technique is adopted to design the RBF network. This method is simple and efficient, but it
lacks strict a theoretical basis. The STD minimization technique divides a certain range of
grid resolutions and depths into different combinations according to a certain step. These
combinations are, respectively, used for modeling and compared with the control points.
The combination achieving the smallest standard deviation is determined as the optimal
RBF network.



Remote Sens. 2022, 14, 3015 11 of 23

2.3.3. Tikhonov Regularization Technique

When directly using discrete data for modeling, the ill condition of the design matrix
may occur due to the uneven distribution of observations and the excessive number of
RBFs. Considering the lack of the sufficient prior information of observations, Tikhonov
regularization is introduced to deal with the ill-conditioned problems [38]. Tikhonov
regularization meets the following estimation criteria:

min
x

: Φ(x) = ‖y− Ax‖2
P + α‖x‖2

Q (8)

The general estimation formula is written as:

x̂α =
(

AT PA + αQ
)−1

AT Py (9)

where Q is the regularization matrix; α is the regularization parameter. In this article, Q is
assumed to be the identity matrix, i.e., Q = I. After singular value decomposition (SVD),
the regularization solution can be obtained as:

x̃α =
n

∑
i=1

σ2
i

σ2
i + α

uT
i ỹ
σi

vi (10)

The regularization parameter is determined by the following two methods: the MSE
and L-curve techniques. The basic principle of the MSE technique is as follows:

min
α

: Tr(MSE) =
n

∑
i=1

σ2
0 σ2

i + α2zi
2(

σ2
i + α

)2 (11)

where zi = vT
i x. x denotes the truth value of unknown parameter x. We usually use the

estimated result x̂ to replace x, which will affect the optimality of regularization parameter
α to some extent.

The L-curve technique is used to find the best one from different regularization
parameters to achieve the optimal balance between the residual sum of squares VT PV and
the smoothness of regularization function x̂TQx̂. Construct a curve with µ(α) as abscissa
and λ(α) as ordinate. The point with maximum curvature (inflection point) corresponds to
the optimal regularization parameter.

µ(α) = log(‖y− Ax‖P), λ(α) = log
(
‖x̂‖Q

)
(12)

2.3.4. Residual Terrain Model

The high-frequency gravity signals implied by the terrain mass have an important
influence on local gravity field modeling, especially in mountainous areas [39]. RTM can be
used to represent terrain effects [40–42]. The RTM technique is essentially the differences
between the real terrain and the reference terrain, as shown in Figure 12. The real terrain
surface usually denotes digital terrain model (DEM) with a high resolution. The reference
terrain is relatively smooth with a lower resolution, which can be computed from the
spherical harmonic terrain model such as RET2014 [43]:

zRET2014(φ, λ) =
nmax

∑
n=0

n

∑
m=0

(
HCnm cos mλ + HSnm sin mλ

)
Pnm(sin φ) (13)

where nmax = 2160;
(

HCnm, HSnm
)

denotes full normalized height coefficients. Based on
Forsberg’s classic TC program, RTM results can be well calculated.
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Figure 12. Residual terrain model.

3. Results

This section describes in detail the experiment process and the results of calculating the
unified land–ocean quasi-geoid from heterogeneous data sets based on RBFs. Compared
with the results of the Stokes integral, the advantages of RBFs in multi-source data fusion
are proved.

3.1. The East Coast Experiment Area of the USA

Based on the RCR technique, EIGEN-6C4 (degree 2190) gravity anomalies are removed
from the measured terrestrial, shipborne and DTU15 data, as shown in Figure 13. Detailed
statistics of the residual gravity anomalies are shown in Table 1, which shows that the
residual terrestrial gravity signals are the smoothest. The amplitude of shipborne residual
gravity anomalies is the largest, whose STD reaches 5.261 mGal. The terrain of the experi-
ment area is quite flat, so the impact of terrain masses can be ignored, seen from the value
of ∆gterrestrial −∆gEIGEN−6C4 and ∆gterrestrial −∆gEIGEN−6C4 −∆gRTM in Table 1.

Figure 13. Distribution of residual gravity anomalies in the east coast experiment area: (a) terrestrial
and shipborne; (b) DTU15.

Table 1. Residual gravity anomalies in the east coast experiment area (mGal).

Mean Min Max Std Rms

∆gterrestrial − ∆gEIGEN−6C4 0.579 −7.563 9.946 1.982 0.579
∆gterrestrial − ∆gEIGEN−6C4 − ∆gRTM 3.697 −5.449 12.058 2.109 4.257

∆gshipborne − ∆gEIGEN−6C4 2.385 −26.723 30.875 5.261 2.385
∆gDTU15 − ∆gEIGEN−6C4 −0.314 −14.073 14.717 2.724 −0.314

Firstly, we use terrestrial and DTU15 gravity anomalies for modeling, considering the
shipborne data in this zone are few and unevenly distributed. Set the grid resolution range
to 0.1◦~0.9◦ and the step size be 0.1◦; set the depth range to 10~50 km and the step size be
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1 km. The (part of) condition number of the design matrix is counted as shown in Figure 14.
It can be seen from the figure that the lower the grid resolutions and the deeper the depths
are, the smaller the condition number is. Otherwise, the condition number will be larger,
making the ill condition more serious.

Figure 14. Condition number of the design matrix.

Taking the combination with resolution of 0.1◦ and depth of 11 km as an example, the
number of RBFs is 2324 and the condition number of the design matrix is 4.35× 106. The
accuracy of the ill-conditioned model is 2.454× 104 m checked by control points. Use the
MSE method and the L-curve method, respectively, to determine the regularization param-
eter, as shown in Figure 15. The results show that the optimal regularization parameters
determined by the MSE and L-curve methods are all 1.995× 10−4, and the accuracy of the
geoid calculated using this parameter is 6.9 cm, which is a great improvement compared
with the original modeling result.

Figure 15. Determination of the optimal regularization parameter: (a) MSE; (b) L-curve.

The calculation results of all combinations of resolutions and depths are shown in
Figure 16. Figure 16a shows the accuracy of original modeling without regularization;
the accuracy of RBF modeling using Tikhonov regularization is shown in Figure 16b. As
can be seen in Figure 16, when the condition number is greater than 1000, the serious
ill-conditioned problems lead to the gradual deviation of the modeling results from the
normal values. In particular when the grid resolution is over 0.3◦, the accuracy of the
model geoid is lower than the meter level. Using the Tikhonov regularization technique,
the accuracy of the ill-conditioned model is greatly improved to the centimeter level, which
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improves that Tikhonov regularization can effectively solve ill-conditioned problems in the
RBF model.

Figure 16. Accuracy of RBF modeling: (a) without regularization; (b) with regularization.

Then shipborne gravities are added to terrestrial and DTU15 data sets. The weight
ratio of terrestrial, DTU15 and shipborne data is 1:0.9410:0.0989 determined by the Helmert
VCE technique. Fuse the three data sets to construct the RBF model with a grid resolution
of 0.4◦ and a depth of 45 km, calculating regional gravity field at airborne points.

The distribution of airborne gravity disturbances after removing EIGEN-6C4 values is
shown in Figure 17a. The fluctuation of airborne gravity signals is relatively stable. Gravity
disturbances δgA at airborne points are calculated based on the network A determined by
terrestrial, DTU15 and shipborne data. Then δgA are removed from the residual gravity in
Figure 17a and as input data for the RBF modeling, as shown in Figure 17b. The statistical
information of the two residual gravity disturbances is shown in Table 2.

Figure 17. Distribution of residual airborne gravity disturbances in the east coast experiment area:
(a) δgairborne − δgEIGEN−6C4; (b) δgairborne − δgEIGEN−6C4 − δgA.

Table 2. Residual airborne gravity disturbances in the east coast experiment area (mGal).

Mean Min Max Std Rms

δgairborne − δgEIGEN−6C4 2.040 −13.427 11.490 3.184 3.781
δgairborne − δgEIGEN−6C4 − δgA 1.679 −14.825 11.158 3.022 3.457

Based on the STD minimization technique, the network B is determined with a resolu-
tion of 0.8◦ and a depth of 16 km using δgairborne − δgEIGEN−6C4 − δgA as input data. The
spatial distribution of networks A and B is shown in Figure 18, where the bottom blue dots
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refer to the network A; the red dots in the middle refer to the network B; the top yellow
dots refer to the geoid grid points computed by the RBF model.

Figure 18. Distribution of networks A and B.

The RBF model is then constructed based on the network B, which is added together
with the modeling result calculated by terrestrial, DTU15 and shipborne data based on the
network A to obtain the final quasi-geoid, as shown in Figure 19a.

Figure 19. The unified land–ocean quasi-geoid from heterogeneous data sets in the east coast
experiment area: (a) terrestrial + shipborne + DTU15 + airborne gravity; (b) terrestrial + shipborne +
airborne gravity.

The quasi-geoid calculated by the RBF model is essentially a gravimetric geoid. It
has a different datum than the GPS/leveling geoid, resulting in significant systematic
errors. We use simple polynomial fitting to convert the datum of the gravimetric geoid to
GPS/leveling geoid. The formula is as follows:

∆N = α0 + α1(ϕ− ϕm) + α2(λ− λm) + α3(ϕ− ϕm)
2 + α4(ϕ− ϕm)(λ− λm) + α5(λ− λm)

2 + · · · (14)

where α0, α1, α2 · · · denote fitting coefficients, i.e., bias parameter and tilt parameter; ∆N de-
notes the differences between the gravimetric geoid and the GPS/levelling geoid. (ϕm, λm)
denotes the center longitude and latitude. The order of the formula can be taken very high,
but generally two orders is enough.
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Considering the DTU15 data have already been introduced by the EIGEN-6C4 model,
we also calculate the results without DTU15 gravity data, shown in Figure 19b. The
calculation methods of the two geoids are the same.

The accuracy of the two quasi-geoids shown in Figure 19 is checked by the GPS/leveling
data, respectively, on inland and coast, as shown in Table 3. On inland, the accuracy of
the quasi-geoid fusing terrestrial, shipborne, DTU15 and airborne data is 1.9 cm, which
is 1.3 cm on sea. After the DTU15 gravities are removed, the modeling accuracy is 1.9 cm
inland and 1.2 cm on coast, not much different from the previous result.

Table 3. Accuracy of the unified land–ocean quasi-geoid in the east coast experiment area (cm).

Mean Min Max Std Rms

inland
Terrestrial + DTU15 + shipborne + airborne −0.2 −6.3 6.6 1.9 1.9

Terrestrial + shipborne + airborne −0.3 −7.2 6.4 1.9 2.0

coast
Terrestrial + DTU15 + shipborne + airborne −0.3 −3.8 3.5 1.3 1.4

Terrestrial + shipborne + airborne −0.2 −4.1 3.1 1.2 1.2

3.2. The West Coast Experiment Area of the USA

The west coast of the USA has quite different topographic features from the east coast.
Affected by the overall terrain high in the west and low in the east, the mountains in the
west extend to the coastal zone, making the land–ocean boundary areas rugged, which
brings many difficulties to the geoid calculation. Based on the RCR technique, EIGEN-6C4
gravity anomalies are removed from the measured terrestrial and shipborne gravity, as
shown in Figure 20a. It can be seen from the figure that after the EIGEN-6C4 value is
removed, shipborne gravity signals become relatively flat. There are serious omission
errors in EIGEN-6C4 on terrestrial gravity points affected by the topographic relief. This
article calculates RTM based on the prism integral to simulate high-frequency gravity
signals and compensate for the omission errors existing in GGM.

Figure 20. Distribution of residual terrestrial and shipborne gravity anomalies in the west coast
experiment area: (a) without RTM; (b) with RTM.

In the calculation of RTM, the DEMs are usually expanded by approximately 2◦ from
the edge of the gravity data area to avoid edge effects, as shown in Figure 21. The calculation
efficiency can be improved by setting inner and outer computing regions. For example,
the inner region within a 100 km radius uses high-resolution DEMs and the outer region
within a 200 km radius uses low-resolution DEMs. The impact of terrain mass outside the
outer region can be ignored due to the oscillating nature of RTM elevations [42].
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Figure 21. DEMs for the RTM technique: (a) SRTM15+; (b) RET2014.

The residual gravity anomalies obtained by removing RTM from the terrestrial obser-
vations are shown in Figure 20b, and their STD is reduced from 15.983 mGal to 4.134 mGal,
indicating that the compensation for EIGEN-6C4 omission errors by RTM reaches approxi-
mately 74%. The residual DTU15 gravity anomalies are shown in Figure 22. The statistical
information of various residual gravity data is shown in Table 4, which indicates that
the variation range of residual DTU15 gravity anomalies is the smallest. The variation
amplitude of residual terrestrial gravity anomalies is close to shipborne data.

Figure 22. Distribution of residual DTU15 gravity anomalies in the west coast experiment area.

Table 4. Residual gravity anomalies in the west coast experiment area (mGal).

Mean Min Max Std Rms

∆gterrestrial −∆gEIGEN−6C4 −7.663 −78.808 50.652 15.983 −7.663
∆gterrestrial −∆gEIGEN−6C4 −∆gRTM 1.585 −22.311 33.455 4.134 1.585

∆gshipborne −∆gEIGEN−6C4 4.591 −8.221 23.001 4.009 4.591
∆gDTU15 −∆gEIGEN−6C4 0.049 −6.878 9.645 2.354 0.049

Firstly, terrestrial and shipborne gravity data are used for modeling. The weight ratio
of the two observations is 1:1.004 computed by the Helmert VCE technique, which shows
that their accuracy level is close. Based on the STD minimization technique, the optimal
RBF grid resolution is determined as 0.6◦ and the optimal depth is 22 km. Then we add
residual DTU15 gravity anomalies to the terrestrial and shipborne gravity to construct the
RBF model with an optimal grid resolution of 0.8◦ and an optimal depth of 26 km.
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The distribution of airborne gravity disturbances after removing the EIGEN-6C4 value
is shown in Figure 23a. The variation amplitude of residual airborne gravities is relatively
small. Based on the RBF network A determined by terrestrial, shipborne and DTU15 data,
the model gravity disturbances are calculated on airborne points. Then δgA are removed
from the residual gravities in Figure 23a and as input data for the RBF modeling, as shown
in Figure 23b. The statistical information of the two kinds of residual gravity disturbances
is shown in Table 5.

Table 5. Residual airborne gravity disturbances in the west coast experiment area (mGal).

Mean Min Max Std Rms

δgairborne − δgEIGEN−6C4 2.126 −5.884 14.753 2.321 3.147
δgairborne − δgEIGEN−6C4 − δgA −0.190 −7.867 11.710 2.394 2.402

Figure 23. Distribution of residual airborne gravity disturbances in the west coast experiment area:
(a) δgairborne − δgEIGEN−6C4; (b) δgairborne − δgEIGEN−6C4 − δgA.

Based on the STD minimization technique, network B is determined with a resolution
of 0.8◦ and a depth of 16 km. The RBF model is then constructed based on the network
B, which is added with the modeling result based on the network A to obtain the final
quasi-geoid, as shown in Figure 24a. We also calculate the results without DTU15 gravity
data, shown in Figure 24b.

Figure 24. The unified land–ocean quasi-geoid from heterogeneous data sets in the west coast
experiment area: (a) terrestrial + shipborne + DTU15 + airborne gravity; (b) terrestrial + shipborne +
airborne gravity.

Check the accuracy of the three quasi-geoids shown in Figure 24 by 64 GPS/leveling
points inland and 36 GPS/leveling points on coast, as shown in Table 6. The accuracy of
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the RBF model quasi-geoid is 2.2 cm inland, which is 2.1 cm on coast. After the DTU15 data
are removed, the modeling accuracy is 2.0 cm inland and 2.1 cm on coast.

Table 6. Accuracy of the unified land–ocean quasi-geoid in the west coast experiment area (cm).

Mean Min Max Std Rms

inland
Terrestrial + DTU15 + shipborne + airborne 0.0 −6.6 5.1 2.2 2.2

Terrestrial + shipborne + airborne −0.2 −6.9 4.0 2.0 2.0

coast
Terrestrial + DTU15 + shipborne + airborne −0.3 −4.2 5.8 2.1 2.0

Terrestrial + shipborne + airborne −0.5 −4.6 5.6 2.1 2.1

According to the results of the two experiments on the east and west coast, we
consider that the accuracy of the unified land–ocean quasi-geoid can be improved by
fusing heterogeneous data sets. Fusing terrestrial, shipborne, DTU15 and airborne gravities
based on a multi-layer RBF network achieves great modeling accuracy both inland and
on coast.

4. Discussion

Due to the complex topography of land–ocean junction areas, terrestrial and shipborne
gravity measurements cannot be fully carried out. As it is also affected by the terrain, the
accuracy of satellite altimetry data inshore is reduced. The airborne gravity is not limited
by the terrain, but its accuracy will be lost with downward continuation. Therefore, the
important premise of constructing a high-precision unified land–ocean quasi-geoid is to
effectively fuse heterogeneous data sets. Considering the shortcomings of the commonly
used integral algorithm, we use the RBFs to calculate the unified land–ocean quasi-geoid,
the accuracy of which is improved by fusing more types of data sets. However, there are
still some problems to be discussed and further studied, as follows:

(1) The RBF used to calculate the land–ocean quasi-geoid in this article is the IMQ kernel,
which has simpler function forms than the Poisson kernel, the radial multipoles kernel
and the Poisson wavelets kernel. It can be seen from Figure 9 that the first-order
Poisson wavelets kernel has the strongest localization characteristics when the depth
is 300 km. However, the buried depth of RBFs will not be so deep generally when
dealing with the measured data. When the buried depth is less than 100 km, the
localization characteristics of various RBFs are all strong and their differences are
quite small. By further analyzing the spectrum characteristics of RBFs, as shown
in Figure 25, it can be seen that the Poisson kernel, the radial multipoles kernel
and the Poisson wavelets kernel all have band-pass characteristics, while the IMQ
kernel presents the characteristics of low-pass filtering. We have carried out some
experiments to compare the modeling accuracy of the four RBFs. We preliminarily
find that the low-pass characteristics of the IMQ kernel can help it filter out more
high-frequency noise when dealing with the terrestrial gravity, making its modeling
results slightly better than the other RBFs. The specific experimental results will not
be presented in this article. Theoretically, the band-pass characteristics can help the
RBFs simulate gravity signals more accurately. In this paper, the IMQ kernel is used
to calculate the quasi-geoid for the time being, and the modeling differences between
various RBFs will be more comprehensively analyzed in the future.

(2) The STD minimization technique used to determine the optimal RBF network lacks a
strictly theoretical basis, which is a compromise method in view of the lack of other
more effective strategies. The reason why it is difficult to determine the RBF networks
is that it is difficult to directly determine the appropriate positions of RBFs based
on the prior information of discrete observations. If the gravity signals are gridded
before modeling, we may directly determine the spatial position of the RBF points
according to the resolution and height of the gravity grid. However, our goal is
to model using discrete observations. The STD minimization technique can obtain
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good modeling results by screening lots of RBF networks, but it increases too much
redundant calculations, which hinders the solution efficiency of the RBF model to
a great extent. So, it is very important to develop a rigorous and logical method to
determine the RBF networks.

(3) The accuracy of the quasi-geoid fusing terrestrial, shipborne and DTU15 data is
quite high, but the improvement is not obvious after adding airborne gravity. The
main reason is that the gravity signals on airborne points simulated by network A is
insufficient, resulting in little change in residual gravity disturbances after removing
δgA, as shown in Tables 2 and 5. Theoretically, if the result of δgB = δg− δgGGM− δgA
is significantly reduced, the function of the network B will be more obvious. In the
future, we can further improve the multi-layer RBF network and try to set more layers
of RBF grids, simulating the gravity signals more accurately.

Figure 25. Behavior of RBFs in the spectral domain: (a) the IMQ kernel; (b) the Poisson kernel;
(c) radial multipoles of order 1; (d) Poisson wavelets of order 1.

5. Conclusions

This article designs a multi-layer RBF model to construct the unified land–ocean quasi-
geoid fusing the measured terrestrial, shipborne, satellite altimetry and airborne gravity
data in coastal areas. Several core problems in the process of RBF modeling are studied in
depth. The local quasi-geoid with a 1′ resolution is calculated, respectively, on the flat east
coast and the rugged west coast of the United States. Several conclusions are summarized
as follows:

(1) The behavior of four types of RBFs—the IMQ kernel, the Poisson kernel, radial
multipoles and Poisson wavelets—is analyzed in the spatial domain. The figures show
that RBFs have significant localization characteristics in the spatial domain, which
is helpful to concentrate more gravity signals in local gravity field approximation.
Placing RBFs on the geographic or the Reuter grid, the optimal RBF network, i.e., the
optimal grid resolution and depth can be effectively determined based on the STD
minimization technique.
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(2) The ill condition of the design matrix may occur due to the uneven distribution of
observations and the excessive number of RBFs. Using the Tikhonov regularization
technique, the accuracy of the ill-conditioned model is greatly improved to the cen-
timeter level. The regularization parameters determined by the MSE and L-curve
methods are basically the same. RTM calculated based on the prism integral algorithm
can effectively simulate the high-frequency gravity signals implied by terrain masses
and compensate for the omission errors existing in EIGEN-6C4. In the west coast
experiment area, the compensation effect can reach approximately 74%. Therefore, in
areas with large topographic relief, it is necessary to consider the influence of terrain
masses on geoid calculations.

(3) The local gravity quasi-geoids with a 1′ resolution are calculated by setting up multi-
layer RBF networks based on the IMQ kernel, respectively, on the east and west coast
of the United States. The results show that the accuracy of the quasi-geoid computed
by fusing the terrestrial, shipborne, satellite altimetry and airborne gravity data in
the east coast experimental area is 1.9 cm inland and 1.3 cm on coast after internal
verification. The accuracy of the quasi-geoid calculated in the west coast experimental
area is 2.2 cm inland and 2.1 cm on coast.

Through the above research results, we can roughly summarize the advantages of
RBFs compared with other geoid calculation methods: (a) RBFs are simple and easy for
multi-source data fusion; (b) RBFs can directly deal with discrete observations without
gridding or downward continuation; (c) RBFs have a strong adaptive ability. In general,
the RBF model has an important application value to calculate the unified land–ocean
quasi-geoid from heterogeneous data sets.
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