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Abstract: The space-borne microwave radiometers and scatterometers can effectively measure global
sea surface winds under non-precipitation. However, the measurements in rainy conditions signifi-
cantly degrade, which are usually flagged as poor quality or invalidated for some scientific purposes.
This paper develops a combined active–passive wind vector retrieval model for rainy conditions
based on the HY-2B radiometer and scatterometer measurements. In our model, the polarization
ratio of brightness temperatures at 6.925 GHz (PR06) is used as an indicator to implicitly represent
the rain effect. For wind speed retrieval, a statistical regression model is trained as a function of PR06
and brightness temperatures of the radiometer. Moreover, two new geophysical model functions,
including rain effect, are developed for wind direction inversion. Comparisons between HY-2B
retrieval results and ERA5 wind products indicate that the retrieval model performs well under
all rainy conditions. The overall root mean squared errors (RMSEs) of wind speed and direction
retrievals are 1.60 m/s and 20.60◦, respectively. With an increase in the rain rate, the wind retrieval
performance degrades slightly and still provides a reliable retrieval result.

Keywords: sea surface wind speed; rain; HY-2B; active–passive; retrieval

1. Introduction

Sea surface wind vectors make up an essential parameter in the ocean–atmosphere
system. The measurement of sea surface winds is very important in understanding global
climate change, exploring air–sea interactions, and improving extreme weather forecasts.
Nowadays, the space-borne microwave scatterometers and radiometers are the main
devices used to measure global sea surface wind vectors [1,2].

The microwave scatterometer measures sea surface wind by emitting microwave
radiation and measuring its backscattering signal (the normalized radar cross-section)
from the sea surface [3,4]. Under rain-free conditions, the measured backscattering signal
strongly depends on surface wind speed, wind direction, azimuth angle, and incidence
angle [5]. On the other hand, the microwave radiometer is a passive sensor measuring
surface winds by observing the surface emission in terms of brightness temperature (TB),
which is related to surface roughness, and thus to the wind speed [6,7]. Validations with
buoy data and numerical weather prediction products have suggested that the rain-free
retrieval algorithm can obtain the sea surface wind vector with an accuracy of about 1 m/s
for passive radiometers [8], and less than 1.5 m/s and 16◦ for scatterometers [9]. However,
the accuracy tends to degrade very rapidly when the rain occurs. A common perception is
that the wind retrieval performance of the scatterometer degrades moderately under rainy
conditions, but the measurements of the radiometer are unusable even in light precipitation.
Rain mainly affects the microwave measurements by three mechanisms [10,11]. Firstly, rain
can increase the atmospheric attenuation and thus decrease the signal-to-noise ratio of the
measurements. Secondly, the rain drops can induce the rain volume backscatter, impacting
the real measurements. Moreover, rain alters ocean surface roughness by the rain “splash”
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effect. The net effect of rain on microwave measurements depends on wind speed, rain rate,
rain drops size distribution, and rain type. For these reasons, it is difficult to model the rain
influence and distinguish the signal coming from rain and sea surface wind. This influence
of rain leads to highly erroneous retrievals, invalid measurements, and less coverage of
satellite wind measurements.

To quantitatively understand the microwave signal caused by rain, there are many
studies focused on the effect of rain on radar backscattering and microwave emissivity
from the ocean, including the scattering and emissivity mechanisms causing the signatures
of rain [12–15]. For radar backscatter measurements, several wind/rain backscatter and
attenuation models have been proposed to simultaneously retrieve the wind velocity and
rain rate. When rain data are available, wind retrieval is performed by correcting the wind
geophysical model functions. The wind/rain backscatter model is usually a function of
wind speed, relative wind direction, incidence angle, rain rate, and other rain information
(such as the distribution of rain drop sizes and rain height information) [11,16,17]. The main
issue associated with this kind of model is the accurate rain information, which is cannot
be obtained synchronously most of the time. Moreover, as a mitigating approach, some
researches corrected rain effect on surface backscatter by simultaneously using passive
measurements [12,18,19]. However, the retrieval performance of wind vector under rainy
conditions is not ideal because the passive noise measurements from the scatterometer are
noisy with large error. Unfortunately, only a few of satellites carried both the microwave
scatterometer and radiometer, such as the Advanced Earth Observing Satellite-II and HY-
2A, but most of them are terminated early or with less accuracy compared to passive
measurements. For microwave radiometer measurements, Meissner and Wentz made the
first attempt to retrieve accurate wind speed under rainy conditions using the WindSat
radiometer with C-and X-band channel combinations to statistically reduce the influence
of rain on brightness temperatures, but without decreasing the wind speed signal too
much [15]. Recently, the algorithm was extended to apply to the measurements of tropical
cyclone wind speed for the AMSR-2, AMSR-E, and WindSat radiometers [20,21]. Because
the sensitivity of linearly polarized brightness temperature to wind direction is weak,
multichannel radiometer usually cannot retrieve surface wind direction. Fortunately, to
enhance the wind direction signal in linear polarization measurements, a modified second
Stokes brightness AVH approach for rain-free conditions was proposed using a linear
combination of H- and V-polarization brightness temperatures, which can mitigate the
influence of the atmospheric state on brightness temperature and increase the dependence
on sea surface wind direction [22–26]. The AVH method is favored to improve the retrieval
performance of the wind direction.

The HY-2B satellite, which aimed to measure the sea surface temperature (SST) and the
sea surface wind vector globally, was launched on October 2018, simultaneously carrying a
conically scanning scatterometer operating on Ku band (13.256 GHz) and a multichannel
scanning microwave radiometer operating on C, X, K, and Ka bands [27,28]. A comparison
with buoy data and other sources of data indicates that both the two sensors have good
performance in surface wind inversion in non-precipitation [28,29]. Therefore, HY-2B
measurements provide an opportunity for us to study and correct the rain effect on active
and passive measurements, and thus to retrieve the sea surface wind vector under rainy
conditions. In this paper, we focus on developing the retrieval model using the active and
passive HY-2B measurements, and testing its performance in sea surface wind inversion.

Our paper is organized as follows. Section 2 introduces the datasets used in model
development and validation. Section 3 describes the new geophysical model functions
(GMF) developed under rainy conditions and the active–passive retrieval method for wind
vector retrieval. The model performance on ocean wind vector inversion is discussed in
Section 4 by comparing HY-2B wind retrieval results with ECMWF ERA5 wind products.
Section 5 concludes and summarizes our work.
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2. Materials

We intend to develop a new wind retrieval model under rainy conditions and test its
performance. The basis of such a study is the match-up datasets between HY-2B measured
data, GPM rain data, ECMWF ERA5 wind vectors, and sea surface temperature products.

2.1. HY-2B Data

The brightness temperatures and the normalized radar cross-section σ0, measured
with SMR and HSCAT onboard HY-2B satellite, respectively, from 1 March 2019 to 31 May
2020, are used. We use the match-up dataset from 2019 to 29 February 2020 for training
the rain–wind model and the residual data in 2020 to test the model and evaluate the
wind retrieval performance. Data are provided by the Chinese National Satellite Ocean
Application Service (NSOAS, https://osdds.nsoas.org.cn (accessed on 5 December 2020)).
A histogram of the collocated GPM rain rate for HSCAT is shown in Figure 1. The matchups
allow analysis of rain impact for rain rates up to about 100 km mm/h and most of the data
ranging from 0.001 to 5 mm/h.

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 21 
 

 

2. Materials 
We intend to develop a new wind retrieval model under rainy conditions and test its 

performance. The basis of such a study is the match-up datasets between HY-2B measured 
data, GPM rain data, ECMWF ERA5 wind vectors, and sea surface temperature products. 

2.1. HY-2B Data 
The brightness temperatures and the normalized radar cross-section 𝜎଴, measured 

with SMR and HSCAT onboard HY-2B satellite, respectively, from 1 March 2019 to 31 
May 2020, are used. We use the match-up dataset from 2019 to 29 February 2020 for train-
ing the rain–wind model and the residual data in 2020 to test the model and evaluate the 
wind retrieval performance. Data are provided by the Chinese National Satellite Ocean 
Application Service (NSOAS, https://osdds.nsoas.org.cn (accessed on 5 December 2020)). 
A histogram of the collocated GPM rain rate for HSCAT is shown in Figure 1. The match-
ups allow analysis of rain impact for rain rates up to about 100 km mm/h and most of the 
data ranging from 0.001 to 5 mm/h. 

 
Figure 1. The histogram of the collocated rain rate data. 

The SMR sensor is a conical-scanning microwave radiometer operating at 6.925, 10.7, 
18.7, 23.8, and 37 GHz. Except for 23.8 GHz, with only vertical polarization measurement, 
other frequencies measure both the horizontal (H) and vertical (V) polarization brightness 
temperatures. In this paper, the SMR L2A 6.925 GHz, 10.7 GHz, 18.7 GHz, and 37 GHz 
brightness temperatures are spatially resampled to a resolution of 6.925 GHz using a 
Backus–Gilbert-type optimum interpolation scheme. 

HY-2B HSCAT is a Ku-band (13.256 GHz) conically scanning scatterometer with an 
inner beam and an outer beam sweeping at an incidence angle of 41.5° and 48.6°, respec-
tively. The inner beam operating at horizontal polarization generates a swath of about 
1350 km. The outer beam operating at vertical polarization results in a swath of about 1750 
km. The instrument specifications of SMR and HSCAT are listed in Table 1. The HSCAT 
backscatter measurements 𝜎଴ have an approximate original resolution of 25 km × 32 km 
and are reported on a 25 km × 25 km earth grid with L2A data. This 25 km × 25 km grid 
can be called a wind vector cell (WVC). 

  

Figure 1. The histogram of the collocated rain rate data.

The SMR sensor is a conical-scanning microwave radiometer operating at 6.925, 10.7,
18.7, 23.8, and 37 GHz. Except for 23.8 GHz, with only vertical polarization measurement,
other frequencies measure both the horizontal (H) and vertical (V) polarization brightness
temperatures. In this paper, the SMR L2A 6.925 GHz, 10.7 GHz, 18.7 GHz, and 37 GHz
brightness temperatures are spatially resampled to a resolution of 6.925 GHz using a
Backus–Gilbert-type optimum interpolation scheme.

HY-2B HSCAT is a Ku-band (13.256 GHz) conically scanning scatterometer with
an inner beam and an outer beam sweeping at an incidence angle of 41.5◦ and 48.6◦,
respectively. The inner beam operating at horizontal polarization generates a swath of
about 1350 km. The outer beam operating at vertical polarization results in a swath of
about 1750 km. The instrument specifications of SMR and HSCAT are listed in Table 1.
The HSCAT backscatter measurements σ0 have an approximate original resolution of
25 km × 32 km and are reported on a 25 km × 25 km earth grid with L2A data. This
25 km × 25 km grid can be called a wind vector cell (WVC).

https://osdds.nsoas.org.cn
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Table 1. Main specifications for SMR and HSCAT.

Parameter Value

Orbital altitude 971 km
Inclination angle 99.34◦

SMR frequency: spatial resolution

6.925 GHz: 150 km × 90 km
10.7 GHz: 110 km × 70 km
18.7 GHz: 60 km × 36 km
23.8 GHz: 52 km × 30 km
37 GHz: 35 km × 20 km

SMR polarization Vertical and horizontal polarization, except 23.8 GHz
(vertical polarization only)

SMR incidence 53◦

SMR swath width 1600 km
HSCAT frequency: spatial resolution 13.25 GHz: 25 km × 3.2 km

HSCAT peak power 120 W
HSCAT polarization/incidence angle HH/41.5◦ (inner beam) and VV/48.6◦ (outer beam)

HSCAT swath width 1350 km (inner beam) and 1750 km (outer beam)

The time window of SCA and SMR is within about several seconds, which is effectively
simultaneous. The spatial resolution of HSCAT and SMR data is different. To jointly use
the active and passive data, the brightness temperatures are collocated into the HSCAT
WVC grid via bilinear interpolation, since sea surface wind and other oceanic geophysical
parameters are usually continuous. Moreover, because the ice can affect the SMR and
HSCAT measurements, we only use the data for sea surface temperatures larger than zero
degree Celsius and latitude ranging from 60◦ N to 60◦ S to avoid the ice influence. The
number of the matchup under rainy conditions is approximately 200 million.

2.2. GPM IMERG_F Rain Data

To identify the HY-2B measurement data under rainy or rain-free conditions, accu-
rate rain information is needed. The Global Precipitation Measurement (GPM) mission,
consisting of an international network of satellites, can provide a new generation of global
precipitation observations [30]. IMERG final run (IMERG_F) [31] is one of its various pre-
cipitation products at a high spatial and temporal resolution of 0.1◦ and 0.5 h, respectively.
These data merge and interpolate several satellite microwave and infrared precipitation
measurements. Moreover, monthly gauge data correction is applied in IMERG_F to reduce
error and perform better accuracy. Here, the latest version (V06B) data are used by averag-
ing rain data falling within the grid of HSCAT measurements. The IMERG_F rain data are
available at https://gpm.nasa.gov/data/directory (accessed on 8 May 2021). The GPM
rain rates are linearly interpolated in time and bilinearly interpolated in space to match up
with the HY-2B SCA measurements.

2.3. ECMWF ERA5 Data

The European reanalysis 5 (ERA5) dataset produced by the European Centre for
Medium-Range Weather Forecasts (ECMWF, https://www.ecmwf.int/ (accessed on 8
May 2021)) is used to build and train the new geophysical model functions and validate
the retrieval results of ocean wind vector. In this paper, ERA5 0.25◦ gridded products,
including sea surface temperature (SST), sea surface wind speed (WS), wind direction, are
interpolated into the grid of HSCAT measurements temporally and spatially.

To clearly illustrate the datasets used in this paper, Table 2 summarizes all the data
sets with the sources and downloads URLs.

https://gpm.nasa.gov/data/directory
https://www.ecmwf.int/
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Table 2. Summary of the datasets.

Source Dataset Download URL

HY-2B data
(swath data)

SMR L2A brightness
temperature data https://osdds.nsoas.org.cn/

(accessed on 5 December 2020)SCA L2A backscatter data

GPM IMERG_F Data
(0.5 h and 0.1◦ global gridded

data)
Rain rate data

https://gpm.nasa.gov/data/
directory

(accessed on 8 May 2021)

ECMWF ERA5 Data
(3 h and 0.25◦ global gridded

data)

Sea surface wind vector data https://www.ecmwf.int/en/
forecasts/datasets/

reanalysis-datasets/era5
(accessed on 8 May 2021)

Sea surface temperature data

3. Results
3.1. Geophysical Model Functions (GMFs)
3.1.1. Backscatter GMF under Rainy Conditions

Rain affects the measured σ0 of the scatterometer in three ways: (1) rain drops cause
two-way attenuation along the wave propagation path, and thus reduce the transmission
of radar signal, (2) rain drops increase the volume backscatter in the air, and (3) rain
drops alter the roughness of the sea surface and affect the backscatter measured by the
scatterometers. In general, the appearance of rain overestimates the surface wind speed
when the rain volume backscatter effect dominates and underestimates rain attenuation in
dominance. The backscatter measurements under rainy conditions can be expressed as a
simple phenomenological form:

σmeas = (σswind + σsrain)αr + σrv (1)

where σmeas is the backscatter measured by HSCAT, σswind represents the surface backscatter
caused by wind-induced roughness, σsrain is the surface backscatter from the raindrop
splash effect, αr is the two-way rain attenuation, and σrv is the volume scattering coming
from rain drops in the air. Because rain-free geophysical model functions are very mature,
we are only interested in the changed backscatter due to the rain. Theoretically, these three
rain-related parameters are functions of the rain rate, rain height, and rain drop size, which
usually are complicated. Moreover, it is difficult to distinguish the contribution of rain
attenuation and surface backscatter caused by rain individually. For the sake of simplicity
and independence on external rain information, we combine the rain effect into a lumped
integrated parameter, and (1) simplifies to:

σmeas = σswind + σrain = σnscat−4 + σrain (2)

where σrain represents all backscatter influence coming from rain. σswind can be calculated
using the existing GMF NSCAT-4 for rain-free conditions. The NSCAT-4 model [32] is a
function of wind speed, wind direction, incidence angle, and azimuth direction, which has
been applied and validated in several space-borne scatterometers. The input wind speeds
and wind directions are obtained from the collocated ERA5 wind products, whereas the
incidence angles and azimuth directions are provided by HSCAT L2A data. Thus, σrain can
be acquired by subtracting σswind from the backscatter data measured by HSCAT (σswind).

Previous researches have demonstrated that the linear polarization brightness temper-
atures are highly correlated with the atmospheric precipitation environment [33]. To model
σrain without rain information as the input, a parameter based on brightness temperatures
is required to represent the rain effect. The parameter is possible due to the difference of
frequency and polarization in the sensitivity of TB to the rain effect. Generally, the TB at
vertical polarization is insensitive to ocean surface wind speed but sensitive to rain, whereas
the horizontally polarized TB is sensitive to both wind speed and rain [12]. Our correlation

https://osdds.nsoas.org.cn/
https://gpm.nasa.gov/data/directory
https://gpm.nasa.gov/data/directory
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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analysis suggests that the rain backscatter σrain correlates with the surface wind speed,
the relative wind direction, and the polarization ratios (PRs) of brightness temperature at
different frequencies. Therefore, σrain can be modeled as σrain_m.

σrain_m = c0(Ws, PR) + c1(Ws, PR) cos(ϕ) + c2(Ws, PR) cos(2ϕ) (3)

where c0, c1, and c2 are the coefficients that are related to wind speed Ws and the polar-
ization ratio of brightness temperature PR = TBV−TBH

TBV+TBH
(where TBH and TBV represent

the brightness temperature at horizontal and vertical polarization, respectively). ϕ is the
relative wind direction (RWD) defined as the difference of the SMR scanning azimuth angle
and wind direction. The matchup data and regression analysis are used to obtain the c
coefficients for different wind speeds and PR values.

Figure 2 presents the relationship between the coefficient c0 and the PR at 6.925 GHz
(PR06), 10.7 GHz (PR10), 18.7 GHz (PR18), and 37 GHz (PR37) for different wind speeds.
The left column is for VV polarization and the right column is for HH polarization. It is seen
that c0 is more sensitive to PR06 than PR10, PR18, and PR37, especially for low wind speeds
where rain severely affects the measurements. The sensitivity reflects the PR dependence
of σrain. We want to find a parameter to express the rain effect, whereby the parameter with
a strong dependency is desired. Therefore, the PR06 is selected to implicitly account for
the rain effect on backscatter measurements, and is used to fit the coefficients c0, c1, and c2.
The absolute value of c0 at HH polarization is larger a little than that at VV polarization,
which implies that the HH measurements are easily affected by the rain. Furthermore, it is
obvious that c0 decreases gradually alongside an increase in wind speed and tends to be
insensitive at high wind speed. For a wind speed of 4 m/s, the rain backscatter σrain can be
up to 12 dB at low PR06, while the absolute values for a high wind speed of 22 m/s are less
than 2 dB. The c0 coefficient reflects the net effect of rain on surface backscatter. For low
wind speed and low PR06, the changed backscatter due to rain is positive, while the net
effect is usually negative for high wind speed and high PR06. Here, it is worth noting that
some data are missing for the high wind speed curves in Figure 2 because PR is usually
small at high wind speeds, and there is no match-up data for high wind speeds and high
PR values, as shown in Figure 3 for example. The color scale in the figure represents the
density of data, with the reddest color indicating the maximum density.

Figure 4 shows the sample GMF regression fits versus the relative wind direction for
both polarizations at different wind speeds, in which the PR06 ranges from 0.280 to 0.286. To
validate the fits, the measured data in Figure 4 are taken from the testing dataset. Visually,
the rain backscatter model follows the data very well. There are several statistical techniques
for analyzing the estimation uncertainty of a model [34–36]. Here, we quantify the fitting
performance using the root mean squared (RMS) difference between the measured data
and the fitting results. The RMS differences are shown in each panel indicate that the
fitting performance is better at a high wind speed than that at a low wind speed. One
possible reason is the low signal-to-noise ratio of SCA backscatter measurements at low
wind speeds. Furthermore, there is a clear dependence of σrain_m on the relative wind
direction for wind speeds lower than 13 m/s, with the peak-to-peak variations of about
3.5 dB, 3.3 dB, and 1.5 dB at 4 m/s, 8 m/s, and 13 m/s for HH polarization, respectively, and
about 3.0 dB, 4.6 dB, and 1.7 dB for VV polarization, respectively. With an increase in the
wind speed, the directional harmonics become weak. The phenomenon of wind directional
dependence confirms that the striking interaction of rain drops to the sea surface, including
rings, stalks, turbulences, and crowns, can obviously alter the wind-induced capillary wave
field, especially for a low wind speed. After obtaining these coefficients, a new GMF used
to retrieve wind vector under rainy condition can be established:

σgm f _rain = σnscat-4 + σrain_m (4)

where σnscat-4 represents the NSCAT-4 model.
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(blue line) versus the relative wind direction for VV (top row) and HH polarization (bottom row):
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Several examples of the new GMF are shown in Figure 5 for four wind speeds and
two values of PR06. To compare with the GMF for rain-free conditions, the corresponding
results estimated from NSCAT-4 are also displayed. It is apparent that rain suppresses the
wind/backscatter directional dependence for low wind speeds. The directional dependence
remains for wind speeds larger than 8 m/s, suggesting the possibility of wind direction
retrieval under rainy conditions.
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To effectively understand the performance of the new GMF, the RMS differences
between model results σgm f _rain and backscatter measurements σmeas are calculated for
different wind speeds and PR06 values, and listed in Table 3. Since the GMF will be used
for wind direction retrieval in the next section, the peak-to-peak values of the backscatter
with wind direction are also estimated and given in Table 3. The peak-to-peak value can
reflect the sensitivity of surface backscatter to wind direction. It is seen that the RMS
differences are larger than the peak-to-peak values when the wind speed is below 8 m/s,
which infers that the estimation uncertainty of the model is large, and the wind direction
signal is too small to be retrieved at low wind speed. With an increase in the wind speed,
the wind direction dependence becomes stronger, larger than the model uncertainty, which
makes it possible to retrieve wind direction at high wind speeds under rainy conditions.



Remote Sens. 2022, 14, 3016 10 of 20

Table 3. RMS difference between model results and backscatter measurements (model RMS differ-
ence), and peak-to-peak value of the backscatter with wind direction (peak-to-peak value).

Polarization
Wind Speed

and PR06
Intervals

4 m/s 8 m/s 13 m/s 15 m/s 22 m/s

VV polarization:
Model RMS difference
(dB) and peak-to-peak

value (dB)

0.280~0.286 2.45 and 0.65 1.62 and 2.24 1.04 and 3.35 0.83 and 3.51 0.43 and 2.62
0.292~0.298 2.90 and 0.72 1.79 and 2.96 0.95 and 4.42 0.70 and 4.23 0.40 and 3.38
0.304~0.310 3.10 and 1.22 1.80 and 4.44 0.75 and 4.95 0.71 and 4.49 \
0.316~0.322 3.20 and 2.35 1.46 and 5.92 1.56 and 4.89 1.92 and 4.92 \

HH polarization:
Model RMS difference
(dB) and peak-to-peak

value (dB)

0.280~0.286 2.98 and 0.62 1.95 and 1.58 1.31 and 3.36 1.07 and 3.84 0.52 and 3.22
0.292~0.298 3.42 and 0.93 1.97 and 2.27 1.11 and 4.49 0.82 and 4.64 0.32 and 2.69
0.304~0.310 3.54 and 1.15 1.74 and 3.66 0.85 and 5.00 0.84 and 4.78 \
0.316~0.322 3.38 and 2.41 1.32 and 4.72 1.33 and 3.76 1.74 and 3.83 \

3.1.2. AVH Model Function under Rainy Conditions

By enhancing the wind directional signal in linear polarization brightness temperature
with a passive microwave radiometer, Meissner and Wentz proposed a technique using a
modified second Stokes brightness AVH approach [22,23]. The AVH is defined as a linear
combination of H and V polarization brightness temperatures [24].

AVHmeas = A× TBV − TBH (5)

For SMR frequencies, especially for lower frequencies, the atmospheric transmission
is usually large, and then the parameter A can be simply expressed as follows.

A ≈ TBH − SST
TBV − SST

(6)

where TBH and TBV are the brightness temperatures at H and V polarization, and SST is
the sea surface temperature in Kelvins. This linear combination can mitigate the influence
of the atmospheric state and may depend on the sea surface temperature, sea surface
wind speed, and direction. The application of AVH in inversion of wind direction under
rain-free conditions has been successfully conducted. To improve the retrieval performance
of wind direction under rainy conditions, we expect that the AVH method can be used to
help retrieve wind direction under rainy conditions by combining the HSCAT backscatter
measurements. Given the measured H and V polarization brightness temperature, and
the corresponding sea surface temperature, the AVHmeas at different frequencies can be
derived.

Referring to [24], the geophysical model function of AVH can be expressed as follows:

AVHgm f = A0 + A1 × cos(ϕ) + A2 × cos(2ϕ) (7)

where A0, A1, and A2 are the coefficients that are related to wind speed and sea surface
temperature, and ϕ is the relative wind direction. A0 describes the isotropic property,
and the A1 and A2 terms represent the wind direction dependence. Since the brightness
temperatures of 37 GHz are easily affected by atmospheric state and are attenuated severally
under rainy conditions, we do not take account for the AVH at 37 GHz in wind inversion.

From the analysis results in the previous section, it is known that the PR of brightness
temperature is a good indicator to implicitly describe the rain impact on backscatter
measurements. Due to the suppression of the AVH approach to atmospheric affection and
the strong penetration of C and X bands, we find that the AVH variations of C and X bands
with PR06, PR10, PR18, and PR37 are similar and small, but the change in AVH at 18.7 GHz
versus PR06 is obvious. For the constant SST of 15 ◦C and the relative wind direction of
45◦, Figure 6 presents an AVH of 18.7 GHz (AVH18) versus a PR value for wind speeds
at 6 m/s, 12 m/s, and 18 m/s, respectively, whereby red, blue, black, and green represent
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the AVH18 versus PR06, RR10, PR18, and PR37, respectively. Furthermore, the scatters are
the AVH measurements acquired from SMR brightness temperatures, and the solid lines
denote the corresponding fitting curves. Obviously, AVH18 under rainy conditions varies
faster with PR06 than with PR10, PR18, and PR37, sequentially. Therefore, in addition to
wind speed, wind direction, and SST, PR06 is required in the development of the AVH
model under rainy conditions. Based on the match-up data, we analyzed the relationship of
wind directional dependence of AVH versus wind speed, SST, as well as PR06. Compared
to wind speed, the modulation of SST and PR06 to wind direction dependence can be
neglected, which allows us to model the AVH as:

AVHgm f = A0x(SST) + F(Ws, ϕ) + A0z(Ws, PR06) (8)

F(Ws, ϕ) = A0y(Ws) + A1(Ws)× cos(ϕ) + A2(Ws)× cos(2ϕ) (9)

where A0x is only the function of SST; A0y, A1, and A2 are the functions of wind speed; and
A0z relates to PR06 and wind speed.
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Next, the procedure of deriving the function coefficients is described, and the coef-
ficients are provided. Firstly, we acquire the coefficient A0x by assuming the surface is
smooth to eliminate the contribution of wind speed and wind direction approximately,
where the matched wind speeds are less than 1 m/s. Then, we can obtain the overall fitting
tends of AVH versus SST via regression analysis. The contribution of PR06 is not considered
by fitting on all PR06s. Figure 7 shows the dependence of AVH on SST for three frequencies,
in which the blue solid lines represent the corresponding fitting curves at each frequency.
The AVH18 measurements varying with SST are more scattered than other two frequencies,
which infers that the rain correction is required at a high frequency. Secondly, using A0x
function and subtracting its results from the measurements of AVH, we can derive the
A0y, A1, and A2 coefficients via a linear regression method, and the results are shown in
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Figure 8. Finally, subtracting the results estimated by A0x(SST) and F(Ws, ϕ) from the
AVH measurements allows us to obtain the function of the A0z coefficient, which is derived
by linear fitting PR06 at various wind speeds. Figure 9 presents the coefficients A0z versus
PR06 at 6.925 GHz, 10.7 GHz, and 18.7 GHz, respectively. The PR06 dependence is very
strong for high frequency, with the dynamic range of A0z larger than 80 K approximately
at 18.7 GHz. The dependence at low frequencies is relatively small, but still cannot be
neglected. Figures 8 and 9 indicate that the AVH at high frequency is very sensitive to wind
vector and rain effect; thus, if we can model the contribution of wind vector and rain well,
AVH is very helpful to retrieve the sea surface wind vector under rainy conditions.
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To clearly illustrate the wind directional dependence, the AVH measurements after
subtracting the estimates of A0x and A0z, the corresponding fitting results calculated from
F(Ws, ϕ) function varying with relative wind direction are presented in Figure 10 for wind
speeds at 6 m/s, 12 m/s, and 18 m/s, respectively. The first, middle, and last row is for
6.925 GHz (AVH06), 10.7 GHz (AVH10), and 18.7 GHz (AVH18), respectively. The AVH
measurements and the model results are in good agreement for all wind speeds. Compared
to the wind directional dependence at a high frequency, the variation of AVH at a low
frequency is smaller, and the scatter of the AVH points (i.e., the geophysical noise) is smaller,
mainly due to the reduced impact from the rain. Moreover, similar with the results under
rain-free conditions [24], for low wind speeds, the AVH anisotropy is weak and almost
comparable with the geophysical noise of the model, and the dynamic ranges at 6 m/s are
about 1.0, 1.5, and 2.2 K for the three frequencies, respectively, which makes it difficult to
only use passive measurements for wind direction retrieval. For high wind speeds, the
anisotropy caused by surface wind direction is improved, with a peak-to-peak value of
about 4.4 K, 6.0 K, and 10.2 K for wind speed at 12 m/s, and about 7.2 K, 9.0 K, and 13.8 K
for 18 m/s, respectively. Thus, it is possible to obtain good wind direction retrievals at a
high wind speed.
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3.2. Wind Vector Retrieval Model
3.2.1. Statistical Linear Regression for Wind Speed

The strong impact of rain on backscatter measurements makes it difficult to retrieve
wind speed at a low wind speed using scatterometer measurements. Fortunately, the
combination of the measurements from SMR at multiple frequencies can mitigate the rain
contamination since the lower frequencies have relatively small atmospheric attenuation
and scattering [15,20,21]. The spectral differences of brightness temperature are different
for wind-induced surface emissivity and the rain-induced contribution. Therefore, the
combinations between the C- and X-band channels have been successfully used in wind
speed inversion under rainy conditions because they are insensitive to rain but sensitive to
wind speed. Based on this principle, we retrieve wind speed under rainy conditions with a
similar regression form proposed in [20]. Differently, we replace the parameter of rain rate
with PR06 to avoid the reliance on external rain information. Thus, the regression has the
following form:

Ws = B0(PR06) + ∑i,p Bi,p
1 (PR06)·

(
TBi,p − 150

)
+ ∑i,p Bi,p

2 (PR06)·(
TBi,p − 150

)2 (10)

In the expression, the index i represents the frequency and runs over C and X bands
in the sum, the index p represents the polarization of H-pol and V-pol, and TBi,p is the
corresponding brightness temperature measured by SMR. We train ten models for ten
different PR06 intervals based on the PR06 distribution. The coefficients are listed in
Table 4.
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Table 4. The coefficients of Equation (10) for the wind speed retrieval model.

PR06 Interval B0 BC,V
1 BC,H

1 BX,V
1 BX,H

1 BC,V
2 BC,H

2 BX,V
2 BX,H

2

0.200~0.280 63.4998 0.7273 −0.5065 −0.3073 1.2236 −0.0099 −0.0135 −0.0138 0.0146

0.280~0.286 30.2937 −0.1421 −2.1581 0.2069 1.3784 0.0004 −0.0325 −0.0172 0.0185

0.286~0.292 26.7480 −0.5484 −2.6971 0.5210 1.8160 0.0094 −0.0379 −0.0227 0.0233

0.292~0.298 −5.3135 −0.8931 −4.2596 0.7864 2.3520 0.0188 −0.0512 −0.0283 0.0283

0.298~0.304 −72.3653 −1.3605 −7.4698 1.1681 3.4433 0.0317 −0.0781 −0.0367 0.0387

0.304~0.310 −202.8874 −2.0352 −13.2763 1.7080 5.2163 0.0548 −0.1246 −0.0513 0.0539

0.310~0.316 −250.7017 −2.1427 −16.1397 1.6320 6.5187 0.0672 −0.1452 −0.0588 0.0621

0.316~0.322 −247.5439 −1.9890 −16.7695 1.2410 7.0538 0.0720 −0.1474 −0.0600 0.0624

0.322~0.328 −220.3869 −1.6669 −15.7192 0.8394 6.9067 0.0661 −0.1353 −0.0542 0.0577

0.328~0.360 −116.1451 −0.5278 −7.5864 −0.0672 2.7349 0.0286 −0.0643 −0.0213 0.0211

Note that the superscript F, P in BF,P
1 and BF,P

2 coefficients denotes frequency and
polarization.

3.2.2. Wind Direction Retrieval Model

The sea surface wind direction retrieval is based on the backscatter measurements
of HSCAT and the passive AVH measurements from SMR. The retrieval is performed by
minimizing the following cost function χ, consisting of the residues between measurements
and model results, as shown in (11).

χ =
N

∑
i=1

(
σi

meas − σi
gm f _rain

)2

var(σ)
+

M

∑
j=1

(
AVHmeas

j − AVHgm f
j

)
var(AVH)

(11)

where i = 1, . . . , N represents the number of the HSCAT measured data in each WVC,
and j = 1, . . . , M represents the three SMR frequencies. var(σ) and var(AVH) are the
corresponding variance measurements. var(σ) can be acquired from the HSCAT L2B data
file. var(AVH) is determined by the comparison of measurements data and the results
calculated from the model; 1.5 K, 1.8 K, and 2.5 K correlate with 6.925 GHz, 10.7 GHz,
and 18.7 GHz, respectively. Note that the wind speed inputs to the geophysical model
functions in Equation (11) are from the statistical regression results in Section 3.2.1. In
the minimization procedure, the solutions of wind direction can be searched. Because the
dependence of σ0 on wind direction is bi-harmonic, a set of 2 to 6 possible resolutions can
be obtained. The median-filter-based ambiguity removal algorithm introduced in [37] is
used to select the best wind direction from several ambiguous results.

4. Discussion

Taking ocean wind measurements using satellite microwave instruments under rainy
conditions has long represented a challenging problem. Sea surface wind retrieval algo-
rithms for rain-free conditions are effective but degrade very quickly when precipitation
occurs. For many applications such as weather forecasting, accurate wind retrievals un-
der rainy conditions is highly desirable. In the above section, based on HY-2B satellite
measurements, we developed a combined active–passive wind retrieval model for rainy
conditions. The major difference from previous studies is that we use the polarization ratio
of C-band (PR06) rather than the rainfall rate to implicitly account for the rain effect on
sea surface backscatter and passive measurements. Validating the developed geophysical
model functions demonstrates that the PR06 can effectively characterize the rain effect.
Next, we will discuss the retrieval performance of the developed model.
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The active–passive models for wind vector retrieval under rainy conditions are tested
with the testing matchups, which are not used for the model training. The retrieval results
are compared to the collocated ECMWF ERA5 wind products. The overall root mean
squared errors of their differences under all rainy conditions are estimated, approximately
1.60 m/s and 20.6◦ for wind speed and direction, respectively. The corresponding mean
biases are 0.15 m/s and 1.43◦, respectively.

Figure 11 shows the density scatterplots of HY-2B wind retrievals versus the collocated
ECMWF ERA5 wind vectors in three different rain rate regimes. The first row is for
wind speed retrieval, and the second row is for wind direction retrieval. The color scale
represents the density of the comparison data—the redder the color, the greater the data
density. Overall, good agreement can be seen between the HY-2B wind vectors and the
ECMWF winds. The statistical results for mean bias and standard deviation listed in each
panel also suggest that the retrieval model performs well under all rainy conditions. In light
rain (<4 mm/h), where most of the matchup datasets are located, the standard deviation
of wind speed and direction is 1.55 m/s and 20.51◦, respectively, and the mean biases are
small. Moreover, compared to the results in moderate and heavy rain, the comparison
data seem more scattered, but the percentage of those retrievals with large errors is low
actually, i.e., only about 4% for the absolute value of the difference between the HY-2B wind
vector and ERA5 for data larger than 5 m/s and 50◦. After excluding these retrievals with
large errors, the standard deviation of wind speed and wind direction retrievals reduce
to 1.40 m/s and 15.88◦, respectively. With an increase in the rain rate, the wind direction
retrieval performance keeps stable with a constant standard deviation of near 21◦ and
does not significantly decrease even in heavy rain. On the other hand, the wind speed
retrieval degrades slightly with increasing rain rate, but nevertheless still provides a reliable
result in heavy rain, with an RMS difference of about 2.9 m/s. In heavy rain, the small
signal-to-noise ratio of the passive measurements and the strong atmospheric scattering by
rain lead to the large wind speed retrieval errors. The above statistical results demonstrate
the capability of the active–passive wind retrieval model to retrieve usable and realistic sea
surface wind vectors under rainy conditions.

In the procedure of developing the retrieval model, it is implied that the rain impact
on wind inversion is more severe for low wind speeds. Here, we calculated the RMS errors
of the retrievals for wind speeds below and above 8 m/s, respectively. The RMS errors for
wind speed retrievals are 1.81 m/s and 1.39 m/s, and those for wind direction retrievals
are 27.26◦ and 12.31◦, respectively, which indicates that this is indeed the case. To better
illustrate the results, Figure 12 displays the RMS errors of wind speed and wind direction
as a function of wind speed, which is estimated from wind speed bins with a bin width of
2 m/s. As expected, the performance of the model degrades with reducing wind speeds.
For wind speeds lower than 4 m/s, the wind retrieval error is large, up to near 38◦ and
3.1 m/s for wind speed and direction, respectively. Then, following an increase in the wind
speed, the RMS error of wind direction retrievals decreases gradually until the wind speed
exceeds 17 m/s. On the other hand, the wind speed retrieval performs best at the wind
speed of about 10 m/s, and then tends to degrade approximately linearly as the wind speed
increases. These results indicate that the rain effects on wind vector retrievals are not only
related with the rainfall intensity, but also with the wind speed.
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Figure 11. The density scatterplots of HY-2B wind retrievals versus the collocated ECMWF ERA5
wind vectors in three different rain regimes. (a) Wind speed retrievals under light rain (GPM rain rate
below 4 mm/h); (b) wind speed retrievals under moderate rain (GPM rain rate above 4 and below
8 mm/h); (c) wind speed retrievals under heavy rain (GPM rain rate larger than 8 mm/h); (d) wind
direction retrievals under light rain; (e) wind direction retrievals under moderate rain; (f) wind speed
retrievals under heavy rain.
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Moreover, under rain-free conditions, the wind vector retrievals from the conical-
scanning type of scatterometer suffer some degradation in near nadir- and outer-swath
region due to the poor diversity of observing azimuth angles [9]. Figure 13 presents the
RMS differences between ECMWF winds and our retrieval results as a function of the
cross-track WVC index. The WVCs with an index ranging from 1 to 38 are in the left swath,
while those with an index ranging from 39 to 76 are in the right swath. Both the RMS curves
of wind speed and wind direction exhibit the obvious shape of “W” with cross-track index,
which is similar with those results in rain-free conditions.
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This study provides an approach to retrieve sea surface wind speed and wind direction
under rainy conditions for wind speeds below 22 m/s, and its retrieval results are reliable
and usable.

5. Conclusions

In this paper, we focused on developing an active–passive wind retrieval model under
rainy conditions based on HY-2B measurements and tested this model by comparing its
retrieval results with the collocated ECMWF wind products.

The active–passive model is based on the difference of frequency and polarization in
the sensitivity of brightness temperatures to rain effect, which makes it possible to find
a parameter from brightness temperatures at different polarizations as the indicator to
represent the rain effect on microwave measurements. Our analysis suggests that the
polarization ratio of the linear polarization brightness temperatures at low frequency is
sensitive to the rain effect. Therefore, the polarization ratio at 6.925 GHz (PR06) is included
in our new geophysical model functions and our statistical regression model to implicitly
consider the rain effects.

The wind speed and wind direction are retrieved separately. For wind speed retrieval,
we follow the previous model proposed by Meissner and Wentz [15], which suggests that
the combinations between the C- and X-band channels are useful in wind speed inversion
under rainy conditions because they are insensitive to rain but sensitive to wind speed.
In order to avoid relying on the external rain rate data, we replace the rain rate in the
model with PR06. In wind direction inversion, in addition to using the HSCAT Ku-band
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backscatter measurements, we also utilize the combinations of brightness temperatures at
C, X, and K bands, i.e., AVH, to help retrieve wind direction, since the AVH can enhance
the wind direction signal and mitigate the atmospheric influence.

This study demonstrates the procedure of developing the new model functions for
the HSCAT backscatter and SMR AVH which are used in wind direction inversion, and
presents how to train a wind speed retrieval model under rainy conditions from the match-
up datasets. Moreover, by utilizing the testing dataset, we retrieved sea surface wind
vectors based on this active–passive wind retrieval model under rainy conditions and
compared the results with the collocated ECMWF wind products. The comparisons show
that the model performs very well both with light and heavy rain, with an overall retrieval
RMS error of about 1.60 m/s and 20.6◦ for wind speed and wind direction, respectively.
The wind vector accuracy degrades lightly with increasing rain, with wind speed ranging
from about 1.55 m/s in light rain to 2.67 m/s in heavy rain, and from about 20.51◦ to 21.32◦

for wind direction.
In future, the model can be further improved using resolution enhancement of SMR

measurements to reduce the sampling mismatch error between SMR and HSCAT data due
to the different footprint. It is also desired that the retrieval model can be extended to
tropical cyclones wind retrievals and other sensors.
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