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Abstract: Forests are crucial in carbon sequestration and oxygen release. An accurate assessment of
forest carbon storage is meaningful for Chinese cities to achieve carbon peak and carbon neutrality.
For an accurate estimation of regional-scale forest aboveground carbon density, this study applied a
Sentinel-2 multispectral instrument (MSI), Advanced Land Observing Satellite 2 (ALOS-2) L-band,
and Sentinel-1 C-band synthetic aperture radar (SAR) to estimate and map the forest carbon density.
Considering the forest field-inventory data of eastern China from 2018 as an experimental sample,
we explored the potential of the deep-learning algorithms convolutional neural network (CNN) and
Keras. The results showed that vegetation indices from Sentinel-2, backscatter and texture characters
from ALOS-2, and coherence from Sentinel-1 were principal contributors to the forest carbon-density
estimation. Furthermore, the CNN model was found to perform better than traditional models.
Results of forest carbon-density estimation validated the improvements effectively by combining the
optical and radar data. Compared with traditional regression methods, deep learning has a higher
potential for accurately estimating forest carbon density using multisource remote-sensing data.

Keywords: carbon density; biomass; deep learning; multisource remote sensing; regression models

1. Introduction

The subtropical-forest coverage rate of Zhejiang Province reaches 61.17%, ranking
among the top five in China [1], and it is crucial in regional carbon cycles and ecosystems.
The area has a subtropical monsoon climate, which is suitable for the growth of forest
vegetation. Accordingly, the assessment of forest aboveground carbon storage in the region
is essential to learn the carbon cycle, mitigate global warming, and scientifically manage
the abundant forest resources [2].

As forests account for a major part of terrestrial ecosystems, they regulate the re-
gional ecological environment [3] and provide the largest proportion of water in all land
uses [4]. The carbon-sequestration capacity of forests accounts for 76–98% of the entire
terrestrial ecosystem [5] and is vital for reducing global warming caused by carbon dioxide
concentration [6]. According to Sixth Assessment Report (AR6) of Intergovernmental Panel
on Climate Change (IPCC), the temperature of the Earth has already increased by 1.2 ◦C
compared to the average in 1850–1900 [7]. Under such severe conditions, increasing forest
carbon storage is an effective and low-cost method to deal with global warming. As forests
are the largest terrestrial carbon pool, any increase or decrease in forest carbon storage
may cause changes in the global atmospheric CO2. Thus, increasing forest carbon storage
can significantly contribute to maintaining global carbon balance and mitigating climate
change [8,9], and is a rapid, accurate, and macro-scale method to understand forest spatial
distribution and carbon storage.
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The estimation of forest carbon storage primarily includes the biomass-plot-inventory,
carbon-flux-detection, and stable-isotope methods. However, the most common method is
based on forest biomass calculation, which measures the production and biomass of forest
vegetation directly or indirectly, and then multiplies the percentage of carbon content of
the corresponding tree species [10]. This method is easy to operate, has high precision,
and is extensively used; therefore, the determination of aboveground biomass is the vital
parameter to estimate forest carbon storage.

Remote-sensing data are cost-effective and spatiotemporally comparable, which has
been used in researching forest aboveground biomass (AGB) [11]. Combining multispectral
instrument (MSI) imagery with synthetic aperture radar (SAR) can improve estimation
accuracy [12]. Optical images provide abundant canopy spectral and textural information,
and frequently used variables from optical sensors for estimating forest parameters include
band information, vegetation indices, texture features, etc. Additional information can be
obtained through image conversions such as principal component analysis and tasseled cap
transformation [13]. Common predictors from radar data include backscatter coefficient,
interference coefficient, texture characteristics, etc. SAR has a certain penetration depth of
forest vegetation, which increases with wavelength and reflects the vertical information of
forest [14]. Interferometric Synthetic Aperture Radar (InSAR) techniques are increasingly
being used for earth observations [15–17] and can provide forest height information [18] in
forest parameter inversion, and AGB is obtained indirectly using tree height substitution
into the growth equation [19]. The use of multiple variables and techniques in estimating
forest AGB reduces errors in forest inversion [20]. Sentinel-2 is equipped with a new
multispectral imager with high spatial resolution, and contains three red-edge bands, which
are used to detect the distribution and parameter inversion of forest resources. The Sentinel-
1 C-band SAR acquires images under all light and weather conditions and has served
with forest vegetation research [21]. The ALOS-2 L-band SAR has a better penetration
of branches and leaves than the C-band and has greater potential for forest-resource
monitoring [22,23]. Thus, different remote sensing data have contributed significantly to
forest-resource management and research [24].

Currently, multiple linear regression is often used to estimate forest AGB, but this
method cannot effectively represent nonlinear relationships, and does not always capture
the relationship between the observable and AGB [25]. Therefore, machine learning is used
to improve estimation accuracy [26]. In [27], three classical machine-learning approaches
(multiple linear regression, support-vector regression, and random forest) were selected
to predict forest parameters from Sentinel-1 data, which showed that support-vector re-
gression and random-forest methods had better performance over the parametric multiple
linear-regression method. Machine learning involves the selection of parameters that
are related to unclear physical mechanisms. Owing to the complex spatial heterogeneity
and dynamic changes in forest ecosystems, studies on remote-sensing predictors, model
construction, and accuracy of forest AGB estimation continue to face many challenges.
Deep-learning (DL) algorithms have been developed to identify complex nonlinear rela-
tionships in data [28]. Ref. [29] proposed and evaluated the use of deep-learning-based
methods and unmanned aerial-vehicle-based RGB images to estimate the value of biomass
yield in the models, which were able to establish a high correlation between the images and
the biomass value measured in the field. DL models can use multiple successive hidden
layers, and the learning process involves determining the parameter values of each layer.
In recent years, various geospatial analytic projects have used DL algorithms [30,31]. A
study [32] proposed a deep-learning-based water-body-extraction model that exploited
sentinel-1 data and flood-related geospatial datasets. Through validation, the DL model
improved the accuracy of image water-body extraction by 7.68 percent. DL has been
extensively studied with image processing and classification; however, few studies have
been conducted on its application in estimating forest carbon storage and AGB, particularly
using the different models and types of DL. In this study, Keras and convolutional neural
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network (CNN) methods were used to calculate forest AGB, and the results were compared
with those of other methods.

The purpose of this study was to (1) use different satellite data to explore the relation-
ship of different variables and their combinations with AGB and carbon storage of subtrop-
ical forests in China; (2) compare different regression-learning models to analyze whether
DL methods could increase the accuracy of forest AGB; and (3) develop a carbon-storage
map for the study region to support spatial analysis and forest-resource management.

This paper includes five sections. Section 2 presents information on the characteristics
of the study area, climate, ground data, and remote-sensing data, and also describes the
principles of five experimental methods for estimating forest AGB. Section 3 shows the
results. Section 4 is a discussion, and finally Section 5 provides the main conclusions of
the article.

2. Materials and Methods
2.1. Description of Study Area

Lin’an district (118◦51′–119◦52′E, 29◦56′–30◦23′N), Hangzhou City, Zhejiang Province
in eastern China was chosen as the study area of this study (Figure 1). Zhejiang Province
has a subtropical monsoon climate, with an average annual temperature of 16.4 ◦C and
1500.0–1628.6 mm of precipitation. The region is sparsely covered by hills with a high forest-
coverage rate and high species richness. The dominant species are Pinus massoniana and
Cunninghamia lanceolate, and the main forest types include coniferous mixed and broadleaf
mixed forests.
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2.2. Data Collection and Processing
2.2.1. Field Data

The goal of a national forest-resource continuous inventory is to acquire the quantity,
quality, growth, and extinction patterns of forest resources. This is a significant component
of the comprehensive detection of environmental conditions and forest resources in China.
Forest inventory data are the most systematic, comprehensive, and accurate data that reflect
the status of forest resources, and include forest types, stock, growth, and harvesting [33].

The ground data of this study were obtained from the ninth forest-resource inventory
in 2018. The data included 160 forested plots covering an area of 0.067 hectare (ha). The
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data comprised the location, date of measurement, origin, and forest species composition
of the plots. For each plot, the main investigation parameters were tree species, tree age,
tree height, and diameter at breast height (DBH).

Forest AGB were calculated using DBH and tree height, which were from field studies
at different sampling sites. Based on the growth models and parameters of various tree
species or tree groups reported in literature, the AGB of individual living trees was esti-
mated for each tree species (Table 1). According to the forest distribution statistics of the
study area, the dominant tree species were divided into four types: Cunninghamia lanceolata,
Pinus massoniana, hard broad leaves, and soft broad leaves. After calculating the forest
AGB, the carbon storage of a certain tree species (forest type) was obtained by multiplying
the AGB by the carbon content [34]. In numerous forest carbon-storage estimation studies,
the internationally commonly used tree carbon-content rates such as 0.45 [35], 0.5 [36],
or 0.55 [37] are usually used to convert forest AGB to carbon storage. In this paper, the
carbon-content rate of the main dominant tree species in the study area is 0.5 [38], so the
conversion coefficient of this study was set at 0.5 [3,39]. The carbon storage of aboveground
parts of each tree was directly converted from the estimated AGB of the tree. The carbon
storage was calculated as follows:

C = W × CF (1)

where C is the carbon storage, W is the forest AGB, and CF is the carbon content.

Table 1. Allometric growth equations of major tree species in the study region, where W is the AGB,
D is the DBH, and H is the tree height.

Tree Species Model Expression and the Parameters

Cunninghamia lanceolata group W = 0.0492Power(D, 2.660)
Pinus massoniana group W = 0.1309Power(D, 2.4367)
Hard broadleaf group W = 0.0710Power(D2H, 0.9117)
Soft broadleaf group W = 0.1351Power(D2H, 0.8020)

The carbon density of the quadrats and the number of related stands were obtained
according to the conversion relationship (Figure 2). Most of the quadrats exhibited carbon
density at 30–45 Mg/ha with fewer quadrats having high (>60 Mg/ha) carbon density.
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Figure 2. Graphs depicting the carbon-density range and frequency of plots in the study area.

2.2.2. Optical and Radar Data Processing

We used optical (Sentinel-2) and radar (ALOS-2 PALSAR-2 and Sentinel-1) remote-
sensing data.
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Based on the ground survey time and the location of the study area, two Sentinel-2
Level-1C multispectral optical images with good imaging quality were downloaded. The
imaging times were 29 October and 10 November 2018, which were consistent with the
field-investigation times. The atmospheric-correction processor SEN2COR was used for
atmospheric correction, which was based on the radiative-transfer model. Installing the
SEN2COR plugin in SNAP software (version 8.0, European Space Agency, Paris, France) and
level-2A products were obtained [40]. After cropping and mosaicking the Sentinel-2 images,
eight texture features were acquired using a gray-level co-occurrence matrix (GLCM) with
a window size of 5 × 5.

We used data from two synthetic-aperture radar satellites: the ALOS-2 PALSAR-2
L-band SAR data from the Japan Aerospace Exploration Agency and Sentinel-1 C-band
data of the European Aviation Agency. Four ALOS-2 single-look complex (SLC) images
for 8 November 2018, were captured in fine-beam double-polarization (FBD) mode at a
Level-1.1. In addition, we downloaded two images of C-band Sentinel-1A Level-1 IW
SLC products from Copernicus Sentinel Scientific Data Hub on 1 October and 13 October
2018. The procedures were completed using SNAP software, combined with 30 m spatial
resolution DEM data. The processing of ALOS-2 data consisted of the following steps:
radiometric correction, coherent speckle filtering by Lee filter to suppress speckle and noise,
with a window size of 5 × 5, and terrain correction by Range–Doppler method. Sentinel-1
data were subject to orbit correction in addition to the above steps [41]. Then, the backscatter
intensity was normalized by radiometric calibration to obtain the backscatter coefficient
in decibels. In addition, the SNAP toolbox was applied to Sentinel-1 image processing
by coherent interference; the main procedures included co-registration, interferogram
formation, topographic-phase removal, phase filtering by Goldstein phase filtering, and
terrain correction by Range–Doppler method. The acquisition data and basic information
of the remote-sensing data used in the paper are shown in Table 2.

Table 2. The remote-sensing data sources used in study area.

Data Sources Acquisition Data Processing Level Spectral/Polarization Used

Sentinel-2 29 October 2018
10 November 2018 Level-1C 10 multispectral bands

Sentinel-1 1 October 2018
13 October 2018 Level-1 IW SLC C-band, VV and VH

polarizations

ALOS-2 PALSAR-2 25 October 2018
8 November 2018 Level 1.1 L-band, HH and HV

polarizations
Note: VV, transmitting and receiving both with vertical polarization; VH, transmitting with vertical polarization
and receiving with horizontal polarization; HH, transmitting and receiving both with horizontal polarization; HV,
transmitting with horizontal polarization and receiving with vertical polarization.

2.3. Characteristic Variables Selection

We selected and calculated 67 variables, and 29 variables were derived from Sentinel-
2 images, including band reflectance (excluding three atmospheric bands 1, 9, and 10),
vegetation index, texture feature, tassel-cap transform factor, and principal-component-
analysis factor. In addition, 20 variables of VV, VH backscattering coefficient, texture
features, and coherence were extracted from the Sentinel-1 images. Based on the ALOS-2
images, 18 variables were extracted, including HH, HV backscattering coefficients, and
texture feature parameters (Table 3).

2.4. Experimental Models

Remote-sensing predictor variables and forest AGB have a nonlinear relationship, and the
AGB is commonly estimated in a data-driven manner by using nonlinear models. Experiments
are necessary to determine the most suitable machine-learning algorithm. A comparison of
different algorithms can discover the complex nonlinear relationship. Therefore, this study
used multiple linear regression (MLR) analysis, support-vector machine (SVM), random forest
(RF), and DL (including Keras and CNN) to predict the AGB regression.
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Table 3. Description of different indices from remote-sensing data.

Data Characteristic Type Indices Description

Sentinel-2

Bands B2, 3, 4, 5, 6, 7, 8, 8a, 11, and 12 Three “atmospheric” bands B1, 9, and 10 were removed

Vegetation
indices

NDVI Normalized difference vegetation index,
NDVI = (B8 − B4)/(B8 + B4)

DVI Difference vegetation index, DVI = B8 − B4

GNDVI Green normalized difference vegetation index,
GNDVI = (B7 − B3)/(B7 + B3)

NDI45 Normalized difference vegetation index with band 4
and 5,NDI45 = (B5 − B4)/(B5 + B4)

REIP Red-edge infection point index,
REIP = 700 + (40 × ((B4 + B7)/2 − B5))/(B6 − B5)

RVI Ratio vegetation index, RVI = B8/B4

S2REP Sentinel-2 red-edge position index,
S2REP = 705 + (35 × ((B4 + B7)/2 − B5))/(B6 − B5)

Biophysical
variables

SBI
Tasseled cap transformation, SBI = 0.3037 × B2 + 0.2793
× B3 + 0.4743 × B4 + 0.5585 × B8 + 0.5082 × B11 +

0.1863 × B2

GVI GVI = −0.2848 × B2 − 0.2435 × B3 − 0.5436 × B4 +
0.7243 × B8 + 0.084 × B11 − 0.18 × B12

WET WET = 0.1509 × B2 + 0.1973 × B3 + 0.3279 × B4 + 0.3406
× B8 − 0.7112 × B11 − 0.4572 × B12

PCA Principal component analysis

Texture Mean, variance, contrast,
dissimilarity, homogeneity

8 texture features extracted Texture by GLCM of 5 × 5
window size

ALOS-2

Backscatter
coefficients HH_db, HV_db

Backscatter coefficient of the horizontal
transmit-horizontal and transmit-vertical receive

channel in dB

Texture

HH or HV_Contrast Contrast, local variations

HH or HV_Dissimilarity Dissimilarity, degree of similarity

HH or HV_Homogeneity Homogeneity, uniformity of color tone

HH or HV_Angular
second moment

Angular second moment, degree of order of
texture distribution

HH or HV_Mean Mean, average of grayscale values

HH or HV_Variance Variance, change of grayscale values

HH or HV_Correlation Correlation, linear correlation between the
image elements

HH or HV_Entropy Entropy, disorder of texture distribution

Sentinel-1

Backscatter
coefficients VV_db, VH_db Backscatter coefficient of the vertical transmit-vertical

and transmit-horizontal receive channel in dB

Texture

VV or VH_Contrast,
VV or VH_Dissimilarity,
VV or VH_Homogeneity,

VV or VH_Angular
second moment,
VV or VH_Mean,

VV or VH_Variance,
VV or VH_Correlation,

VV or VH_ ntropy

The texture feature of VV and VH. Same as
mentioned above

InSAR VV_InSAR, VH_InSAR Interference coherence of VV and VH
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2.4.1. Multiple Linear Regression

MLR is a regression-analysis method that applies multiple independent variables to
estimate unknown variables to describe the linear relationship between independent and
dependent variables [42,43]. In this study, MLR was applied to establish a linear function
between the measured AGB and the information parameters, and then estimated the
AGB using the model without the requirement of measured data. The model is relatively
simple and easy to understand and does not require highly processed remote-sensing
data [44]; therefore, it is widely used in forest AGB estimation. The model is mathematically
represented as follows.

y = b0 + b1x1 + b2x2 + · · ·+ bnxn + ε (2)

where y is the predicted forest AGB, x1 · · · xn are the information parameters, ε is the error
term, b0 is a constant, and b1 · · · bn are the regression coefficients.

2.4.2. Support Vector Machine

No assumption is required of the SVM model for the underlying data distribution
and dimensions of the input space and provides a group of classified data samples [24]. In
addition, SVM is applied to regression, which is known as support-vector regression (SVR).
Numerous existing studies have applied SVR to remote-sensing quantitative estimation,
such as ocean chlorophyll-concentration inversion [45], biomass estimation [46], etc.

In this study, we adopted an SVR algorithm based on MATLAB (The MathWorks,
Inc., Natick, MA, USA) and selected a radial-basis kernel function. SVR optimization is
primarily based on c and g [47], which are the most important components of SVM; c is the
penalty coefficient, which refers to the error tolerance range; and g is the internal parameter
of the kernel function used to determine the distribution of the data after mapping to the
new feature space. Parameter settings of SVR algorithms are quite important. Therefore,
c and g were tested within certain value intervals for each characteristic set for the algorithm
to determine the most accurate value.

2.4.3. Random Forest

RF consists of multiple decision trees selected according to certain conditions to achieve
a goal, and is used for classification and regression prediction [48,49]. The bootstrap-
sampling method was applied in this study to conduct random sampling with replacement
of the samples. Each sampling result was used to construct a regression tree, and multiple
decision trees were combined to form an RF model. The variables were screened and
classified using the model to predict the unknown parameters. RF does not require the
assumption of a prior probability distribution; therefore, it has good flexibility and stability,
as well as high computation speed and accuracy [14].

We used TreeBagger in MATLAB to implement the RF model construction. The
number of decision trees (n) and the number of variables preselected by the tree nodes
(m) were two important parameters that must be determined in the algorithm. The results
were determined through multiple iterations; m was set to 5 and n to 500, and the error
was stable.

2.4.4. Keras

TensorFlow (Google Inc., Menlo Park, CA, USA) is the most extensively used and
popular low-level framework [30]. Keras is a well-known advanced DL framework with
TensorFlow as its backend engine [50]. Keras was written in Python in this study, and the
sample data were randomly split into a training part and a testing part. Three hidden layers
were added to the model. The first two were set with eight neurons, and the last one with
one neuron, and a rectified linear unit (ReLU) was selected as the activation function. The
loss function was used as an index to measure the learning performance, which was set as
the mean-square error in this regression problem. Adaptive-moment estimation (Adam)
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was set the weights of different neural corrections as the optimization function [51]. An
early stop function was set to prevent the model from overfitting, and 50 as a patience
value, implying that the loop automatically ends if the accuracy does not improve after
50 operations.

2.4.5. Convolutional Neural Network

The CNN algorithm reduces the processing of a large number of parameters by sharing
a convolution kernel within each layer, and the convolution algorithm can improve high-
level abstract features from spatial information [52]. The specific equation is as follows:

mapx,y
l,j = f

(
∑
δ

hi−1

∑
h=0

wi−1

∑
w=0

kh,w
i,j,δmap(x+h),(y+w)

(i−1),δ + bi,j

)
(3)

where f (x) is an activation function; kh,w
l,j,δ are the values of the kernel at the position (h, w)

associated to the δth feature map in the (i − 1)th layer; hi are the height of the kernel; wi are
the width of the kernel; and bi,j is the bias of the jth feature map in the ith layer.

In the process of backpropagation, the derivative is propagated back along the calcu-
lated path, and the derivative of the loss for each parameter is calculated according to the
chain derivative equation [53]. The Adam algorithm was used for optimization [54]. The
Adam optimizer combines momentum and adaptive learning rate with the advantages of
stable optimization, and the adaptive learning rate does not easily fall into the local optima.
The iterative equations for the Adam algorithm are as follows:

Y1 = α1 ×Y1 + (1− α1)× gradw (4)

Y2 = α2 ×Y2 + (1− α2)× (gradw)
2 (5)

b1 =
Y1

1− αt
1

(6)

b2 =
Y2

1− αt
2

(7)

ω = ω− b1 ×
lr√

b2 + θ
(8)

where gradw is the influence of parameter w in each neural network on the best loss; Y1 and
Y2 are the first and second momenta, respectively; b1 and b2 are the Y1 and Y2 adjustments
to prevent a longer step at the start of the training; α1 and α2 are the rates of the momentum
decrease; t is the number of training epochs; lr is the learning rate; and θ is used to avoid
the error of dividing by 0.

We adopted a simplified CNN structure to facilitate multiple repetitions, reduce the
impact of the samples, and experiment the input-window size. The CNN included two
fully connected layers with a window size of 3 × 3. The Adam algorithm was used for
optimization, the activation function was ReLU, and the loss function was the root-mean-
square error (RMSE).

2.5. Model Accuracy Evaluation

The RMSE and determinant coefficient (R2) were chosen as model evaluation param-
eters to compare the depth-regression model with the other models [55]. The R2 range
is [0, 1]; generally, the closer it is to 1, the better the model performance. Because the
number of observations (n) is limited in practical applications, the RMSE can better reflect
the maximum and minimum errors of a set of data and reflect the precision of the data
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estimation. As a rule, the model that has a high R2 and a low RMSE fits well with the
sample, and the model exhibits good performance.

RMSE =

√
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (9)

R2 = 1− ∑n
i=1
(
Yi − Ŷi

)2

∑n
i=1
(
Yi −Yi

)2 (10)

where Yi is the measured forest AGB, Ŷi is the calculated forest AGB by models, and Yi is
the average observer forest AGB.

3. Results
3.1. Predicted Variables

According to SPSS (version 24.0, IBM, Armonk, NY, USA) experiment of Pearson’s
product-moment correlation, feature parameters with significant correlations were selected,
r values indicted the relationship between predictors and AGB. For the analysis, if all
relevant feature parameters were included in the model, the results would not be ideal [56].
Therefore, referring to existing research [57], information redundancy between the predic-
tors produces a large error, which occurs between model building and forecasting, and
by understanding each factor’s physical significance, we screened the variables and elimi-
nated the predictors with weak correlation with AGB in the same category of redundant
parameters. The 20 variables with high correlation coefficients with forest AGB are shown
in Figure 3, which also demonstrates the correlation coefficients between the variables.
Finally, 11 predicted variables for estimating forest AGB were obtained (Table 4).
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Table 4. Selected predictors derived from remote-sensing data and correlation coefficient with AGB
(“**” denotes that the p < 0.01).

Data Characteristic Type Predictor Variables r

Sentinel-2

Vegetation indices NDVI 0.282 **

Biophysical variables WET 0.420 **
SBI −0.368 **

Texture Mean −0.405 **

Sentinel-1

Backscatter VH_db 0.072 **
Interference
coherence VH_InSAR 0.212 **

Texture
VH_Contrast −0.079 **
VH_Variance −0.083 **

ALOS-2
Backscatter HV_db 0.079 **

Texture
HV_Mean 0.082 **

HV_Entropy −0.077 **

3.2. Model Test Results
3.2.1. MLR Model

To discover the quantitative relationships between multiple variables, regression
analysis is used in this study. According to the correlation-analysis experiments of the
independent variables and AGB of the sample plots, 11 characteristic variables were
extracted from different data sources in SPSS, and the MLR model was constructed based on
different data sources. Figure 4 showed the obtained regression models and their accuracies.
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3.2.2. Machine-Learning Model

A total of 20% of the samples were randomly drawn to validate the accuracy of
different machine-learning model. The data were divided into two parts for training and
validation first, and the validation dataset was the same for each model. The results with
optimal parameter were chosen for each model after repeating test. The scatter diagrams
of different machine experiments are presented in Figure 5, showing the RMSE and R2

values were performed based on Sentinel-2, Sentinel-1, ALOS-2, and the combination of all
three sources. The result of a higher R2 and a lower RMSE proves that the modeling effect
was satisfactory. The combination of MSI and SAR showed a stronger ability of prediction
accuracy than single sources.
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using the four models. The figures depict the different predictors, including (a,e,i,m) Sentinel-2 data;
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blue dots indicate a pair of corresponding predicted and observed values. The red line indicates the
trend line.

Figure 5 shows the R2 and RMSE values of the four models. In all four models, better
performance was found with increasing data sources, followed by the performance using
the Sentinel-2 data. This indicated that the vegetation index and biophysical predictors from
Sentinel-2 were more helpful than those from other datasets. The SAR-derived predictors
showed fewer effects than MSI predictors on the AGB predicted by the four models. In
addition, compared to ALOS-2, Sentinel-1 performed slightly better. The L-band is known
to be more sensitive than the C-band in AGB estimation. Nevertheless, we added SAR
interference coherence to Sentinel-1 predicted variables, which increased the performance
of the models with Sentinel-1 variables.

Regardless of whether the model was based on a single dataset or combined data,
the CNN algorithm exhibited the highest prediction accuracy, while the MLR had the
lowest (Figure 6). All nonparametric models were more accurate than parametric model
represented by the linear regression model, indicating that the forest AGB and multisource
remote-sensing parameters have a complicated nonlinear relationship. In the machine-
learning models, the RF model performed better in prediction than that of the SVR model.
The RF algorithm has a high tolerance to outliers and noise, and rarely exhibits the overfit-
ting phenomenon; therefore, a high prediction accuracy could be achieved. Among the DL
models, the Keras algorithm had better prediction results than machine-learning models
for single SAR data source, while the accuracies of MSI and collaborative data were lower
than that of machine-learning models. The accuracy improvement was more evident in the
CNN model based on any data source.

3.3. Mapping Spatial Distribution of Forest

The CNN estimation model exhibited the highest accuracy among the abovementioned
methods. The regional forest AGB of the entire study area was obtained by applying the
optimal model. Carbon density was calculated by the abovementioned method using forest
AGB. Figure 5 shows a forest aboveground carbon-density map with spatial distribution
patterns. As shown in Figure 7, the average carbon-density value was 32.10 Mg/ha, and
most of that was concentrated at approximately 30–45 Mg/ha.
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4. Discussion
4.1. Forest-Resource Inventory Data and Satellite Data

In this study, we propose different methods for modeling and mapping forest carbon
density at a regional scale. As different environments and tree species exist in various
areas, establishing a specific regional-scale model could provide more detailed and pre-
cise information, as well as improve the model estimation accuracy. The forest-resource
inventory data contain information on various forest attributes, including not only DBH
and tree height, which are the two most related variables to forest AGB [58], but also age,
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canopy density, soil type, altitude, and slope aspect, which are important in analyzing the
influencing parameters of carbon spatial distribution.

In previous studies, forest AGB estimation using only optical data would reach sat-
uration and limit the estimation results [59]. Combining optical and radar data can raise
the upper limit and improve the estimation accuracy [22,60]. Optical data are effective for
the classification of forest types and estimation of forest characteristic parameters, whereas
radar data can penetrate the forest branches and leaves and predict the vertical structure
of forests. To improve the accuracy of forest AGB estimation, radar data can be used as a
supplement to optical data.

4.2. Variable Selection

Characteristic variables exhibiting a high correlation with AGB were chosen based on
the physical significance of the attributes and correlation coefficients; the predictors with a
weak correlation in the same category of redundancy parameters were eliminated. Optical
remote sensing was found to have a stronger predictive ability than radar remote sensing in
predicting AGB, and the characteristic variables showed a stronger correlation. This is pri-
marily caused by the saturation of radar remote-sensing backscattering. This also indicated
that the texture and interference information of radar data are more useful than backscat-
tering information in predicting forest AGB, and that the texture feature can reduce the
effect of spatial heterogeneity. The comparison of the Sentinel-1 and ALOS-2 data revealed
that the L-band is more sensitive to forest AGB than the C-band, and it is more suitable
for forest AGB prediction. This is consistent with the findings of previous studies [23,61],
since longer wavelengths could penetrate the canopy, they can provide more information
from the trunk and branches [62]. While interference coherence provides more vertical
information about the forest. Moreover, HV polarization is more sensitive to forest AGB
than HH, as cross-polarization is stronger than homo-polarization in vertical penetration.

In previous study, InSAR coherence is not commonly used as predictor variables
for forest AGB estimation [62,63], but coherence can be used as good predictors. This is
because the InSAR technique can obtain the interferometric phase and coherence coeffi-
cients that contain the information of the features, which improve the saturation point of
biomass [64,65]. This study demonstrated the advantages of combining multiple sensor
data sources for forest AGB prediction, and the limitations of using single remote-sensing
predictors. The vegetation index of optical data, and the texture and coherence variables of
radar data were the main variables of forest AGB estimation.

4.3. Model Comparison

This study proposed a DL model for estimating forest AGB and carbon storage. The
nonlinear property of the DL model made it more accurate in estimating the forest AGB and
performed better than the MLR model. The prediction of extreme forest AGB by the MLR
model was unsatisfactory, which is consistent with the results of previous studies [66,67].
The RF algorithm is not subject to the problems of sample size, distribution, or optimal-
model-parameter selection [34] and exhibited good performance in the estimation results.
Compared with the RF and SVR models, the CNN model was more suitable for forest AGB
estimation, while the estimation using Keras was less ideal, mainly because the experiment
was performed using only 160 samples, which was a relatively small number of samples
for achieving high prediction accuracy. The SVR model has more advantages in processing
small sample sizes for prediction [68], whereas the RF model is not affected by sample size.

The DL model is widely known to be sensitive in the process of mesh design, parameter
setting, and calculation. The algorithms can be difficult to handle, even though they have
been applied for decades [69]. Therefore, the uncertainties in the chosen structures and
input-window sizes were difficult to fully understand. In this study, we explored the
uncertainty that existed mainly in neuron-number selection and parameter settings.

Certainly, there are some limitations in this paper. Environmental factors such as
soil, climate, and hydrology have an impact on forest AGB estimation [67,70], which have
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not been considered in this paper, and this needs to be strengthened in future research.
Future work can experiment and compare more deep-learning models in order to generate
more complete and universal products for estimating forest AGB with multisource remote-
sensing data. Finally, the results of the deep-learning models used to estimate AGB in this
study suggest that further research is needed to better understand and apply deep learning
in forest mapping.

5. Conclusions

Based on Sentinel-2 optical data, Sentinel-1 C-band SAR, and ALOS-2 L-band SAR,
different algorithms, including MLR, SVR, RF, Keras, and CNN, were applied in this study
to estimate the forest carbon density based on AGB and generate a map of carbon density.
The performance of the results demonstrated that for the same predicted variables, the
traditional MLR model could not accurately represent the nonlinear relationship between
predictors and forest AGB, the accuracy of R2 reached 0.3794 with three remote-sensing
data, while the DL algorithm was found to be more efficient in carbon-density estimation
with an R2 of 0.7465. Thus, CNN can evidently be applied to carbon-density prediction
and achieve ideal results if suitably adjusted. Consequently, some aspects of CNN should
be further investigated in forest applications, and the development of DL may lead to a
convenient and improved prediction.
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