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Abstract: Conventional methods of crop mapping need ground truth information to train the classifier.
Thanks to the frequent acquisition allowed by recent satellite missions (Sentinel 2), we can identify
temporal patterns that depend on both phenology and crop management. Some of these patterns
are specific to a given crop and thus can be used to map it. Thus, we can substitute ground truth
information used in conventional methods with agronomic knowledge. This approach was applied
to identify irrigated permanent grasslands (IPG) in the Crau area (Southern France), which play
a crucial role in groundwater recharge. The grassland is managed by making three mows during
the May–October period, which leads to a specific temporal pattern of leaf area index (LAI). The
mowing detection algorithm was designed using the temporal LAI signal derived from Sentinel
2 observations. The algorithm includes some filtering to remove noise in the signal that might lead to
false mowing detection. A pixel is considered a grassland if the number of detected mows is greater
than 1. A data set covering five years (2016–2020) was used. The detection mowing number was
conducted at the pixel level, and then the results were aggregated at the plot level. An evaluation
data set including 780 plots was used to assess the performances of the classification. We obtained
a Kappa index ranging between 0.94 and 0.99 according to the year. These results were better than
other supervised classification methods that include training data sets. The analysis of land-use
changes shows that misclassified plots concern grasslands managed less intensively with strong
intra-parcel heterogeneity due to irrigation defects or year-round grazing. Time series analysis,
therefore, allows us to understand different management practices. Real land-use change in use can
be observed, but long time series are needed to confirm the change and remove ambiguities with
heterogeneous grasslands.
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1. Introduction

According to United Nations [1], water is a scarce resource; thus, its justifiable and
judicious use must remain a crucial and fundamental target for sustainable developments
across the globe, especially in a world with a constantly increasing populace that directly or
indirectly depends on this scarce resource for sustaining their activity and food production
system. Undoubtedly, agriculture remains an obvious focal point in water management as
the main water user [2], with irrigation accounting at world-scale for about 70% of global
freshwater withdrawals [3]. The effect of global changes is anticipated to heighten the issue
of water shortage and irrigation needs [4]. Thus, attention is needed on appraisals related
to irrigation activities to bolster water resource management, maximize water productivity,
and boost agricultural water sustainability [5]. To match water needs and resources, better
planning is needed for irrigation activities [6]. One of the key solutions to good irrigation
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planning is the provision of extensively detailed spatial delineations of croplands under
irrigation [7] and the description of irrigation systems and strategies that may lead to
various water needs across the year [8]. There is, therefore, a challenge to detect not only
the irrigated areas but also the associated production systems.

The classification of irrigated areas is widely discussed in the literature [8]. While
the use of medium resolution satellites has allowed the establishment of methodological
bases applicable to regional scales, there is a renewed interest in these methods with the
Sentinel satellites, which offer both good temporal repeatability (3–5 days) and good spatial
resolution (10 m), which is particularly relevant for crop monitoring. Classification methods
for irrigated surfaces are generally based on radar data providing a temporal series of
surface moisture, data in the optical domain with monitoring of vegetation dynamics, and
meteorological data. The use of optical data relative to separate irrigated and non-irrigated
areas is based on the green cover dynamic, which displays higher levels when additional
water is brought to the crop. Indices based on meteorological data enhance the quality of the
classification. In general, these indices are linked to climatic water stress, which allows for
a better characterization of irrigation periods [9–11]. In addition to the meteorological data,
thermal infrared observations enable the implementation of surface energy balance model
to infer the evaporative fraction that is found as a relevant classifier [12] complementary to
vegetation indices.

Supervised classification is the most common approach with the implementation of
different methods such as decision trees, random forest, support vector machine (SVM), or
neural network for the most frequently cited. The classifiers are in general based on the
remotely sensed quantities and/or the derived indices combining several measurements as
spectral indices in the optical domain or the radar polarization ratio. It is difficult to report
on the obtained accuracy in general terms, since the pedoclimatic conditions, the spatial
domain, and the type irrigated and non-irrigated crop differ considerably from one study
to another. For instance, the kappa index ranges between 0.36 [9] and 0.9 [13]. In recent
years many studies are based on Sentinel satellite observations [8] using either Sentinel-1
and -2 or both. The combined use of radar Sentinel-1 and optical Sentinel-2 has shown
a moderate improvement in classifications [5,13,14] when compared to method based on
using Sentinel-2 only. However, supervised classification has some limitations, such as the
need to collect training data or to deal with missing data. The latter can be an important
issue in the optical domain with the clouds. Therefore, when working over large spatial
domains, the selection of cloud-free images can considerably reduce the time series.

An alternative is to use temporal characteristics of the remotely sensed quantities. For
instance, in [10], a classification on the temporal characteristics of the vegetation signal
such as the maximum and the range of variation of the vegetation index is proposed. For
an 18-year period, training can be limited to a wet and dry year, while an excellent overall
accuracy was obtained (>0.95). The authors of [5] showed that it is possible to separate
irrigation systems between crops and orchards based on the variability of the radar signal
and the temporal autocorrelation length of this signal. Several studies [6,10,11,15] show
that the consideration of agronomic traits related to phenology and cropping interventions
can provide relevant information to characterize irrigated systems. In a broader context,
it is found that agronomic features can be extracted from multitemporal remote sensing
data [16] and apply to crop mapping as for instance with canola [17] and potatoes [18] with
an improved accuracy in comparison to classical supervised classification methods. These
encouraging results led us to take profit of the short revisit time of Sentinel-2 satellites
to map Irrigated Permanent Grasslands (IPG) using a temporal approach based on the
detection of agronomic traits. In the study site (the Crau area in south east France),
IPGs were irrigated using flooding techniques, which not only has a strong impact on
the regional water budget by consuming a very large amount of water (about 20,000
m3/ha/year [19]) but also provides important externalities such as groundwater recharge.
IPG is an interesting case as it provides very clear agronomic traits with several mowing
events across the year that can be used for the classification.
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The characterisation of grasslands has already been the subject of several studies. The
authors of [20] showed that, with a limited number of SPOT images (three in the study), one
can separate mown grasslands from grazed grasslands with a kappa = 0.82. In this study,
it was also found that LAI is the best indicator to make such a distinction. More recently,
the authors of [21] classify grassland use intensity with five rapid eyes images based on
the variability of the temporal signal. A similar approach was followed by [22] who used
a series of 14 Landsat dates to distinguish six classes of grassland reflecting different
management strategies. These results announce the potential of Sentinel-2, which was used
to detect mowing events [23–27]. All proposed methods are based on frequent temporal
sampling of vegetation index and local minimum detection. The proposed approaches
differ in the methods for filtering the vegetation indices time series and the algorithm for
detecting local minima associated with mowing. The quality of the results depends on
the scale of the work, with overall accuracies of about 70–80% for studies covering large
regional territories [24,27] and better than 90% for smaller territories [26]. The difficulties
mentioned by these studies concern the variability of management methods, such as the
quantities of grass removed during mowing, spatial heterogeneities (e.g., presence of
trees), and acquisition dates that are not always optimal for identifying mowing events.
The use of radar series that are not impacted by cloud covers is an alternative exploited
in [28,29]. However, the rate of detection errors remains significant due to errors that
are inherent to the measured quantities and its interaction with other factors as the plant
water content. The combination of optical and radar images was implemented in [25].
The authors used a deep learning algorithm and showed that combining radar quantities
(coherence and backscattering coefficient) and NDVI is the best option with an F1-score
obtained at regional scale of 0.88. It should be noted that these characterisations are
performed on known grassland areas and are not used for the classification of grassland
areas. The originality of the present study was then to explore the capabilities of mowing
event detection to map IPG and non-irrigated grassland (NIG).

The goal of the study was to develop a classification method to map IPG in South-East
France. The approach was developed in the context of the Crau area in Southern France in
the Mediterranean. IPG are both an emblematic crop of the areas and plays an important
role in the superficial aquifer water budget [19]. In this paper, we develop a mowing event
algorithm that is able to minimise false mowing event detection and account for temporal
sampling of Sentinel-2 data that may present missing observation dates during mowing
periods. The classification performance was compared to the traditional classification
method made directly on vegetation indices time series and the THEIA product, which is
an operational product implemented over France.

2. Materials and Methods
2.1. The Study Site

The Crau area (Figure 1) is located at 43◦38′N, 5◦00′E (5 m a.s.l) near the Rhône delta
in Southern France, which covers a surface area of 540 to 600 km2. The climate of the Crau
area is Mediterranean with an average annual rainfall of 600 mm (non-uniform) and a
potential evapotranspiration of 1100 mm. Mean air temperature of about 7–8 ◦C (in winter)
and 24 ◦C (in summer) [23,30,31]. The Crau area is characterised by native shallow soils of
about 60–80 cm with 90% stones, consequently rendering its water retention very low. Soils
irrigated using flooding technics present a loamy surface soil layer thanks to sediments
transported via irrigation water with a layer depth that can reach 60 cm depending on
the length of the irrigation period [23]. IPGs are the most predominant irrigated crops in
the Crau area [19,23] with a coverage of about 13,000 ha (23%), as depicted in Figure 1
(the dark green plots). The irrigation practice of permanent grasslands in the Crau area is
more than 4 centuries old, which can be dated back to the 16th century [30]. The common
practice mostly remains the same, which involves the use of gravity (flood) for irrigation,
on areas specifically dedicated to hay production and rearing of sheep. The water used for
flooding irrigation contributes to more than 75% of the groundwater table. This ground
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water table is used for the irrigation of intensive orchard and market garden productions
and domestic and industrial purposes to roughly 280,000 people around the southern part
of the area [23,30]. The duration for irrigation in a year extends to about seven months [19]
from March to September. IPG management is regulated by the selling label “foin de Crau”,
the first COP (Certified Origin Product) in France leading to standardised management
with three or four grass mowings from 1 May to the end of October and sheep grazing in
winter. In general, grass fields are irrigated optimally to cover the water needs, but in some
places and some years, the access to water might be critical, thus leading to reduced grass
productivity and skipping a mowing operation. Some farmers do not follow label rules (for
example, when they breed animals all year round), which leads to a different spatial and
temporal dynamics of the vegetation cover than the one obtained with the recommended
cultivation practices, which are dominant on the territory. The grass fields are in general
homogeneous but heterogeneities in vegetation cover were found at the field boarder or
within the field when surface levelling is not satisfactory, generating heterogeneities in the
water supply. Therefore, if a dominant grass development temporal pattern is expected
and then used to identify grassland areas, the mentioned variation can interfere with the
classification process.
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2.2. Data Used
2.2.1. Field Survey

A field survey was conducted to identify crop type and irrigation over a total of
809 plots (all plots were greater than 1 ha) by a visit during the 2016–2020 periods. During
the visit, surveyed plots were identified and observed crop were reported in the plot map
established over the entire area. Irrigated permanent grasslands (IPG) consisted of 391 plots
and not irrigated grasslands (NIGs) comprise 418 plots. In addition, aerial photographs
were used to verify management features such as soil levelling, land-use change, or grazing.
For that purpose, we used Google Earth images acquired during the 2015–2021 period
together with the IGN (the French National Geography Institute) 2020 flight campaign.
Plot boundaries were drawn in 2012 throughout the Crau area, leading to 18,058 polygons.
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The map was initiated with the cadastre, which we then corrected manually to delimit
homogeneous spatial entities in terms of their use hereafter referred to as plot. The resulting
SIG layer was then used to aggregate classification results produced at pixel scale over
plot’s polygons

2.2.2. Satellite Data

Time series of Sentinel-2 of level 2A optical images were used for this study, which
were collected from both Sentinel-2A and Sentinel-2B for all dates from 2016 to 2020. We
used the images distributed by the French land data open-source service centre (https:
//www.theia-land.fr/, accessed on 17 May 2022), which also proposed cloud masks that
were used to remove pixels affected by clouds. The number of remaining dates during the
considered period (15 March to 30 October) is provided in Table 1. As Sentinel 2B satellite
was operational during 2017, we obtained a lower number of dates in 2016 and 2017. At
the pixel level, the number of available dates varied due to occurrence of clouds, which
was not homogeneous within the studied area.

Table 1. Statistics on the number of days available over the period from 15 April to 30 October after
removing the dates impacted by clouds. Filtering is carried out at the pixel level and the statistics
have been calculated on all pixels of the Crau area.

Year Average Maximum Minimum

2016 26 31 20

2017 43 49 37

2018 52 61 44

2019 54 59 48

2020 49 56 42

The BVNET algorithm using bands 3, 4, and 8 was used. The algorithm calculates
biophysical canopy variables such as Leaf area Index (LAI). Due to its robustness, especially
on homogeneous canopies such as grasslands, the algorithm has been integrated in the
S2toolbox developed by European Space Agency. It is based on neural network trained on
simulated spectral reflectance using a radiative transfer model [32]. Temporal profiles of
LAI were then established for every 10 m pixel.

2.3. Developed Irrigated Permanent Grassland Detection Algorithm

The specificity of irrigated grasslands is that they present several mowing–vegetation
growth cycles during the year. To detect a grassland, we can also rely on the level of LAI,
which is generally high (LAI > 4) when the vegetation is well developed, and the growth
rate after a cut is specific to the grassland. For example, in the study area, it takes 30 to
50 days after a mow to return to a vegetation development comparable to that before the
mow. Although these characteristics specific to irrigated grassland should make it relatively
easy to identify them with temporal sampling such as that offered by the Sentinel-2 mission,
we were confronted in the time series with LAI variations linked to atmospheric corrections
that may generate temporal patterns of LAI leading to confusion with grassland mowing
events. In addition, the presence of clouds during the mowing periods reduced the time
sampling of LAI and prevents a clear detection of a mowing event.

As in [23,24,26,27], the detection algorithms of mowing events developed in the study
are based on a sharp reduction in vegetation amount followed by significant vegetation
developments during the following 45 days. To monitor the development of vegetation,
we used the LAI estimated from Sentinel-2. If this quantity has not been used in previous
mowing event detection studies that rely on NDVI or NDII [23,24,26,27], the main reason
for this choice comes from the nature of the quantity, which is a characteristic of plant cover
and can, therefore, be directly linked to agronomic knowledge and crop model outputs.

https://www.theia-land.fr/
https://www.theia-land.fr/
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This is important for the design of algorithms characterising agronomic traits, their parame-
terisation, and their generalisation to include prior information from agronomic knowledge.
Moreover, it has be shown that LAI is more sensitive to variations in well-developed
vegetation, while conventional vegetation indices tend to saturate more easily [29]. The
disadvantage is that the computed LAIs are more sensitive to atmospheric corrections
as we no longer have the normalization of measurements made on classical vegetation
indices such as NDVI. Moreover, on some surface types, the LAI inversion algorithm may
fail. For example, we found very high and variable LAI values on greenhouses with a
non-negligible risk of confusion with grasslands.

To detect an irrigated grassland, we made the following main assumptions:

• There are at least 2 mowing events during the May to October period. If most of the
irrigated grassland is managed with 3 or 4 mowing events, this threshold makes it pos-
sible to consider less intensively managed grasslands or to allow for the possibility of
missing a mowing event due to an unfavourable time series with a long cloudy period
during the mowing period. Such a situation can happen even in the Mediterranean
area despite the high revisit frequencies of Sentinel-2 satellites.

• A mowing event is characterized by a local minimum with significant variations in
LAI over 45 days before and after this minimum. The period of 45 days after the
minimum reflects the growth time of the grassland after mowing. The period of
45 days before may seem long since a mowing induces an immediate drop in the
amount of vegetation. However, we found that some mowings were delayed and then
the grassland began to senesce, resulting in a decrease in green leaf area as captured
by the LAI estimate. A shift of 10 to 20 days in the maximum LAI before mowing can
thus be observed. In addition, gaps in LAI time series may lead to the maximum being
sought over a somewhat longer period.

To implement these assumptions, we propose a five steps algorithm as summarized
in Figure 2

Step 1: We first flagged the LAI time series by considering that the maximum LAI
must be greater than tlaimin and lower than tlaimax. The tlaimin threshold reflects the fact
that irrigated grassland leads to strong vegetation development while tlaimax is dedicated
to eliminating surface type on which LAI computation fails, leading to unrealistic high
values.

Step 2: To eliminate local minimum due to short-term LAI variations as induced by
poor atmospheric corrections, different smoothing procedures were presented in [24,26,33].
In this work, we used the smooth spline algorithm in R [34], which is efficient and flexible.
The algorithm involved a degree of freedom parameter (df ) by controlling the smoothing
process. The minimum was then detected on the smoothed LAI time series that might be
slightly delayed in comparison to the date of the corresponding minimum in the observed
LAI time series.

Step 3: Some remaining anomalies in the LAI time series that might impact LAI
variations computation will be corrected. When the LAI is too small, i.e., lower than tlailow,
or when the difference between the observed LAI and the smoothed LAI is greater than
difmax, the observed LAI is substituted by the corresponding smoothed LAI value.

Step 4: Every detected minimum in step 2 is validated according to different criteria.
First, the date of the observed minimum (tmin) is searched in the observed LAI time
series within a time window around the minimum detected on the smoothed series. This
time window ranges from dtb1 days before and dta1 days after the date of the minimum
detected in step 2. The time tmin must fall within the considered period starting at dbeg
and ending at dend, which in our case is 1 May and 15 October, respectively. Then, the
value of the minimum was analysed. We consider that the minimum LAI must be lower
than a threshold, and this threshold is adapted according to the LAI sampling date before
and after the minimum date. Indeed, if LAI is sampled loosely around the minimum, the
truncation effect of the time series may result in a minimum value that is larger than the
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true minimum, as the vegetation may have started to grow at the time of the measurement.
The threshold is, therefore, set according to the following relationship:

tminlai = tminlai0 when dt < dtmin0

tminlai = tminlai1 when dt > dtmin1

tminlai = tminlai0 +
dt

(dtmin1− dtmin0)
·(tminlai1− tminlai0) (1)

with dt being the time interval between the first acquisition date before and after tmin. If the
minimum is validated (LAI(tmin) < tminlai), the last test was performed on the LAI variations
before (within the [tmin-dtb− tmin] period) and after (within the [tmin − tmin + dta] period)
that must be greater than threshlai. The period before the minimum is reduced when
LAI sampling is tightened. If the measurement period of the nbb observations before the
minimum is shorter than dtb, then this period is used to calculate the LAI variation.
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Figure 2. Five steps of the developed irrigated grassland algorithm at the pixel level.

Step 5: The number of validated minimums, considered as mowing events, is estab-
lished and used to apply the irrigated grassland filter being a minimum of two events.

The algorithm is applied at the pixel level. However, due to plot heterogeneity or
border effects, an aggregation was performed within the plot boundary after applying a
buffer of 20 m to provide a classification at the plot level. A plot was then declared as
irrigated grassland when a majority of pixels were classified as irrigated grassland, the
majority being qualified by a percentage of the pixels that has to be determined (pixperc).

The detection algorithm involved 16 parameters that are summarized in Table 2. As
the number of parameters was large, we prescribed some of them to values consistent with
our agronomical knowledge while the other parameters were calibrated.



Remote Sens. 2022, 14, 3056 8 of 21

Table 2. List of parameters and value retained to implement the developed method.

Parameters Definitions Range of Values Used
When Calibrated Final Value

fd Degree of freedom of the smoothing algorithm 5, 10, 15, 17 10

tlaimax LAI threshold. a pixel is declared being not a grassland when
the maximum of LAI time series is greater than tlaimax 10, 10.5, 11, 11.5 10.5

tlaimin LAI threshold. A pixel is declared not being a grassland when
the maximum of the LAI time series is lower than tlaimin 4.0, 4.1, 4.2, 4.3, 4.4, 4.5 4.2

threshlai LAI variation threshold before and after the detected minimum 0.5, 1.0, 1.5, 2.0, 2.5 1.5

dta1 Period to search for the true minimum after the
smoothed minimum 15

dtb1 Period to search for the true minimum before the
smoothed minimum 25

tlailow LAI threshold to characterize unrealistic low LAI value 0.4

nbb Number of points to consider in searching the maximum before
a cut 2, 4, 6, 8 4

dtmin1 Minimum time interval between observations bracketting the
minimum leading to selecting the largest tminlai (tminlai1) 25

dtmin0 Maximum time interval between observations bracketting the
minimum leading to selecting the smallest tminlai (tminlai0) 10

tminlai1 Largest LAI threshold to validate a minimum LAI (when time
sampling is sparse) 2.5

tminlai0 Smallest LAI threshold to validate a minimum LAI (when time
sampling is frequent) 2

dta Period length after a minimum to characterize LAI variation 45

dtb Period length before a minimum to characterize LAI variation 45

difmax The difference between the observed and the smoothed LAI
above which the LAI is corrected. 2.6

Pixperc The minimum rate of pixels detected as irrigated grass in a plot
to classify it as an irrigated grass plot 50, 70, 90 90

2.4. Calibration and Evaluation

The calibration procedure targeted the best parameters used for the separation of
IPG from NIG. The calibration was performed by considering 29 vignettes surrounding a
known IPG plot. In each vignette, we determined 6 polygons, 3 being inside the grassland
plot and three being outside (Figure 3), that correspond to surfaces that might be orchards,
vineyards, field crops, market gardens, and dry grasslands. Each polygon is considered
as a single entity on which metrics describing the mowing event number distribution
are computed.

The cost function used for calibration was the percentage of well-classified polygons,
i.e., having a majority of pixels with at least 2 mowing events for the IPG polygons and lower
than 2 for the NIG polygons. A database covering the 2016–2020 period was generated,
considering that each year provides a set of data to compute the cost function.

Two phases are considered in the calibration. First, based on agronomic knowledge
and/or visual analysis of LAI time series, we set dta and dtb to 45 days, dta1 to 15 days, dtb1
to 25 days, and dbeg and dend set to 1 May and 15 October, respectively. Then, fd, tlaimax,
tlaimin, threslai, and pixperc were calibrated using a manual fitting considering the range of
value provided in Table 2. In that first calibration phase, the LAI anomaly correction (step 3)
and the filtering tests on the minimum value (step 4) involving the other parameters were
not activated.
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Then, in a second phase, some refinements were added to the minimum detection
algorithm dtlimlai0, dtlimlai1, dtmin0, dtmin1, and tlailow were prescribed to 15, 25, 10, 25, 2,
2.5, and 0.4, respectively, based on the visual analysis of the LAI time series that led to an
error in the first phase. The other parameters (difmax and nbb) were calibrated.

The evaluation was made at the plot level on 780 plots not used for the calibration with
362 IPG plots and 418 NIG plots, in which their break down is 162 orchards; 100 vineyards;
99 greenhouses; 20 dry grass; 33 field crops; and 4 lawns.

2.5. Accuracy Assessment

Accuracy assessment remains an important aspect of mapping projects utilising re-
motely sensed information [35]. The different classifications made in the study were
evaluated using overall accuracy (OA), producer’s accuracy (PA), and Cohen’s Kappa in-
dex (K), all quantities being derived from the confusion matrix having the following terms:
TG (well-classified irrigated grassland plots), FG (plot classified as irrigated grassland while
not an irrigated grassland), TNG (well classified not irrigated grassland plots), and FNG
(irrigated grassland plot classified as not irrigated grassland).

Overall accuracy =
TG + TNG

TG + FG + TNG + FNG
·100 (2)

Producer’s accuracy corresponds to the error due to omission (exclusion). From the
perspective of the land use map maker, it indicates how accurate is the map: For a given
class, it shows how many plots among the reference plots in the map were tagged accurately.
It is defined for = IPG as follows.

Producer′s accuracy =
TG

TG + FNG
·100 (3)

Cohen’s Kappa index (K) characterizes the map agreement with the ground truth after
removing the chance factor. It is an indication of the adding value of the classification
method, which is defined as follows:

K =
overall accuracy – chance agreement

1− chance agreement
(4)

where chance agreement is the probability of having a good classification by chance, which
is defined by the following.

chance agreement =
(TG + FG)·(TG + FNG) + (FNG + TNG)·(FG + TNG)

(TG + FG + FNG + TNG)2 (5)
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2.6. Benchmark

Different existing classification methods based on Sentinel 2 data were considered to
assess the adding value of the new proposed method described above. First, we made a
supervised classification based on the Support Vector Machine (SVM) method, which is
rather common and powerful for discriminating two classes. The classification was carried
out on cloud-free LAI images taken over the entire year. Due to the proximity of the coast,
we have large cloudiness heterogeneities. To maximise the number of images, the Crau
area was divided into four zones, and for each zone, we selected the images according to
the following two criteria: (1) The entire zone is cloud free as well as (2) for the training
polygons (Figure 3). As a consequence, the number of images used for the classification
varied between 12 and 25 in 2016, 13 and 33 in 2017, and 24 and 38 in 2018 according
to the zones. The training dataset is similar to that used for the developed algorithm by
taking randomly three pixels in every polygon described in Section 2.5. The training was
performed for each year with the cloud-free images selected for each of the four zones. The
classification was then applied to each zone and aggregated over the Crau area to produce
a binary image (IPG/NIG) per year.

We also consider the THEIA land use map as a benchmark since it is implemented
yearly over the entire national territory (https://www.theia-land.fr/ceslist/ces-occupation-
des-sols/, accessed on 17 May 2022). It is a supervised classification [36] based on random
forest classification using all Sentinel-2 dates and the VIS and NIR bands and as auxiliary
information, including the topography, urban map, Corinne Land Cover map, and the
RPG (‘Registre Parcellaire Graphique) data, which gather farmer’s annual declarations for
obtaining subsidies from the European Union. Seventeen classes were identified with one
dedicated to grasslands. In our study, the detection of one class, the grassland class, among
the others was evaluated. The produced maps are provided at the scale of Sentinel 2 10 m
pixels.

The evaluation of the two benchmark classifications was performed on the evaluation
plots described in Section 2.5. Therefore, each evaluation plot is classified according to the
majority class (>50% of the pixels in the plot).

3. Results
3.1. Calibration

The most important parameter is the smoothing parameter (df) for which its effect is
clearly illustrated in Figures 4–6. The goal of the smoothing is to remove signal oscillations
that are not linked to mowing events (Figure 4). We observed that most of these undesirable
oscillations correspond to short-term variations. Therefore, the smoothing should be strong
enough to remove them (i.e., df < 15) but should not be too strong as some mowing events
might be missed (i.e., df = 5). The calibration led to df = 10, which corresponds to an
intermediate case in Figure 5. When applying the minimum detection on the smoothed
LAI time series, we identified three events that are consistent with the mowing calendar
(Figure 6). The rate of misclassified plots was about 13% after phase 1 (Table 3). The main
source of error comes from the detection of NIG as IPG (9%), as shown in Figure 7.

Table 3. Calibration performance after the first and second phases on the calibration data set. TG
represents well-classified irrigated grassland polygons; FG, polygons classified as irrigated grassland
while not an irrigated grassland; TNG, well classified not irrigated grassland polygons; FNG, irrigated
grassland polygons classified as not irrigated grassland.

Calibration Phases Total Plots TG TNG FG FNG

First calibration phase 748 372 281 69 26

Second calibration phase 748 416 304 25 3

https://www.theia-land.fr/ceslist/ces-occupation-des-sols/
https://www.theia-land.fr/ceslist/ces-occupation-des-sols/
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Figure 5. Effect of degrees of freedom (df ) of the smoothed algorithms on LAI times series of an IPG
pixel. In blue is the observed LAI; the smooth LAI times series with df equalling 5, 10 and 15 are in
grey, orange, and yellow, respectively.

In the presented case in Figure 7, smoothing was not appropriate and some strong
LAI oscillations were still present in the smoothed signal, thus triggering the identification
of false mowing events. However, the LAI values corresponding to the detected minimum
were high and larger than what is expected with freshly mowed grass. An additional test
on the LAI values at the detected minimum is a way to resolve the ambiguity displayed in
Figure 7. The analysis of such errors led to defining the series of tests and data manipulation,
as described in Section 2.3 in steps 3 and 4, and the parameters were characterized in phase
2. After this phase, we reduced the misclassified plots rate to less than 4%, with still a
greater probability to miss an NIG than an IPG (Table 3). The final values of the parameters
of the algorithm are reported in Table 2.
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Figure 7. Observed (blue) and smoothed (orange) LAI time series of a NIG pixel detected as an IPG.
The green dots correspond to the detected mowing events using the developed algorithm after the
first phase of calibration.

To illustrate the results of the algorithm, we selected an area covering two grassland
plots surrounded by NIG area. The results obtained in 2019 are displayed in Figure 8
where letters represent the exact location of the pixel time series A, B, and C displayed in
Figures 6, 9 and 10, respectively. There is a clear difference in grass management with four
mowing events in the northern plot and three in the southern (Figure 8), as illustrated in
Figures 6 and 10. If the plots are mostly homogeneous, some areas with less mowing events
can be seen at the plot boarder, in the middle corresponding to a ditch bringing the water,
and in some patches. The case of point A (Figure 9) indicates that the missed last mowing
event is explained by a low grass growth at end of the season. The difference between the
minimum and the maximum after harvest was below 1.5 (threshlai < 1.5), reflecting less
productive area that might be induced by soil properties or the quality of the irrigation
with heterogeneities induced by poor soil levelling.
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Figure 9. Observed signal (blue) and smoothed (orange) LAI time series of an IPG pixel showing two
mowing events (green dots).

3.2. Evaluation

Results obtained on the evaluation data set are provided in Table 4. Excellent results
were obtained with an OA greater than 97% and a Kappa index between 0.94 and 0.99.
The producer accuracy is equal to 100% for the NIG class, meaning that a parcel declared
as a NIG is always NIG. This shows that additional filtering can handle situations such
as the one shown in Figure 7. The producer’s accuracies of the IPG class are a little less
good, which means that some IPG plots are not detected. We will come back to this point
in the Discussion section. There is also a year effect that appears clearly. For example,
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2020 was the worst year, while the best results were obtained in 2018. The 2018 year is the
wettest year during the summer, which might limit the irrigation pressure and, therefore,
allowed good production throughout the cycle. In 2020, there was gap of 20 days in the
measurements, which did not allow for the detection of the maximum grass development
between the second and the third mowing events, leading to missing both of them.
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Table 4. Summary of all the classification performances conducted in the Crau area.

Year Overall Accuracy Producer’s Accuracy (IPG) Producer’s Accuracy (NIG) Kappa Indice

Developed Classification
Leaf Area Index (Sentinel-2) + proposed algorithm

2016 97.7 95.2 100.0 0.96

2017 99.1 98.3 100.0 0.98

2018 99.7 99.4 100.0 0.99

2019 98.8 97.5 100.0 0.98

2020 96.9 93.8 99.7 0.94

THEIA Classification
Satellite image + Land use data + Supervised classification

2016 97.2 95.5 98.7 0.95

2017 98.6 96.9 100.0 0.97

2018 98.4 97.8 98.9 0.97

Classification via Support Vector Machine (SVM)
Satellite images + supervised classification using SVM method

2016 67.2 72.6 68.4 0.51

2017 71 78.3 79.1 0.63

2018 73.3 81.3 76.2 0.58

These good results have to be tempered by the fact that IPGs are likely a class that is
easy to detect, as shown by the good results depicted in Table 4 with THEIA classification
approaches. However, our results are clearly better than those obtained with the SVM
method, which means that algorithms based on artificial intelligence cannot necessarily
capture the agronomic traits as used in our method. Although slightly better, our results
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are comparable to those of THEIA, which relies on a rich spatialized ground truth with the
administrative census and Corinne Land Cover data.

4. Discussion

The proposed method was applied to the entire territory of the Crau area having
18,058 plots with an illustration given in Figure 11 for the year 2018, showing all plots of
IPG (in green) and NIG (in red). We do not have any reference on the entire territory; we can,
therefore, only make relative analyses. This was performed by addressing the following
two questions: (i) What is the impact of classifying land use at plot scale compared to a
pixel scale approach? (ii) What is the evolution of irrigated areas between years and can it
be linked to changes in land use? Finally, we discussed the novelty of the approach and its
generalisation
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4.1. Impact of Plot Aggregation in the Classification Process

One of the constraints of the method applied in this work is that the land-use class is
determined at the scale of a plot. We have seen in Figure 8 that the edges of the plot, the
irrigation ditches within the plot, and certain less productive areas could lead to a lower
number of mows and thus induce a misclassification of the pixel. It is also possible to have
isolated pixels located in NIG areas that present several mowing-like events. Working at the
plot level reduces the risk of error since the land-use class is based on a majority of pixels.
However, a plot map with their boundaries is not always available, especially when large
areas are considered. Furthermore, the plot map may contain errors generating errors in the
areas counted or misclassification of an IPG plot when it includes a significant part (>10%
in our case) of an area that is not an IPG. For inventory purposes, we can imagine applying
the developed classification method at the pixel level rather than at the plot level. To see the
impact of such a choice, we compared the total surface over the Crau area obtained using
either a pixel-based approach by counting the pixels classified in each class or a plot-based
approach where we summed the surface of the plots per class.
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The pixels of the study site (the Crau) were taken from an extraction polygon that
is as close as possible to the considered area being the aggregation of plots. As this area
sometimes presents a complex boundary (Figure 11), the extracted polygon was drawn
inside the area explaining the small differences in the total areas of the pixel based and plot
base counting (Table 5). The percentages of IPG based on the plot-based approach ranged
from 25 to 26% and 74 to 75% for NIG, while for the pixel-based approach, the percentages
of IPG ranged from 22 to 25% and 75 to 78% for NIG. The underestimation obtained with
the pixel-based approach, likely due to plot boarder effect, remained, however, moderate.

Table 5. Total surfaces obtained for IPG and NIG classes using the developed classification algorithm
obtained with a plot aggregation or a pixel-based approaches.

Plot-Based Approach

IPG NIG Total plots

2016 13,318 ha 40,264 ha 53,581 ha

2017 13,717 ha 39,864 ha 53,581 ha

2018 13,839 ha 39,742 ha 53,581 ha

2019 13,994 ha 39,587 ha 53,581 ha

2020 13,850 ha 39,731 ha 53,581 ha

Pixel-Based Approach

IPG NIG Total pixels

2016 11,480 ha 40,520 ha 52,000 ha

2017 11,770 ha 40,230 ha 52,000 ha

2018 12,345 ha 39,655 ha 52,000 ha

2019 11,561 ha 40,439 ha 52,000 ha

2020 12,758 ha 39,242 ha 52,000 ha

4.2. Ability to Detect Land-Use Changes

The proposed method implemented across the five years (2016–2020) provided us with
an overview of the consistency of the results from one year to another. Results are displayed
in Table 6 by considering plots where the classification remained stable over the five years
(i.e., GGGGG and NNNNN classes), plots that met one change that can be attributed to a
land-use change, and plot having several changes, reflecting problems in their classification.
In 91% of the case, perfect stability was observed. The analysis was conducted on plots
presenting one change with spatial illustrations depicted in Figure 12. The figure shows
that changes are spread over the area with plot of different sizes. The causes of the change
were identified by analysing the high-resolution images acquired during the considered
period. From these images, we can identify the following key features clearly:

LUC: land-use change, most of them being IPG converted in urban areas, orchards or
abandon and vice versa;

EXPL: Some plots have been levelled and resown, and the algorithm can fail to classify
such plots as IPG, especially during the first year after leveling because there is relatively
very low vegetation growth;

MGT: Some plots are very heterogeneous likely due to permanent grazing or irrigation
problems such as the insufficient flow of irrigation water or a lack of levelling preventing a
homogeneous water supply;

In the other cases, hereafter labelled as ERR, there were no clear features that can
explain the classification change during the considered period.
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Table 6. Composition of land-use change classes. (The land-use type sequence corresponds to the
five-year succession G and N corresponding to the IPG and NIG classes, respectively).

Case ID Land-Use Type Sources of Variations Number of Plots > 1 ha

Consistent classification through the 5 years

1 G G G G G 3156

2 N N N N N 6623

Plots presenting one land-use change through the 5 years

3 G G G G N MGT (60); ERR (15) 75

4 G G G N N MGT (34); LUC (15); EXPL (10) 59

5 G G N N N MGT(40); LUC (40); EXPL (20) 100

6 G N N N N MGT (21); EXPL (6); LUC (10) 37

7 N G G G G MGT (139); EXPL (14); ERR (32) 185

8 N N G G G MGT (27); LUC (7); EXPL(11); ERR (5) 50

9 N N N G G MGT (20); ERR (5); LUC(6) 31

10 N N N N G MGT (47); LUC (20); EXPL (3) 70

Plots presenting ≥ 2 land-use changes through the 5 years

11 G N G N G MGT(65); EXPL (25); ERR (10) 100

12 All plots 331

G = grassland; N = non-grassland.
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Analysis of the data in Table 6 shows that over the 5 years, 607 (6%) plots presented
one change in classification while 331 (3%) plots had at least two changes. The analysis of
the high-resolution images on plots with time series presenting at least one change shows
that when a plot is detected as an IPG, it is always an IPG. On the 707 plots controlled,
only one case corresponding to a young grassed orchard generated an error. This confirms
the reliability of the algorithm when IPG is detected, as shown in Table 4, with a producer
accuracy close to 100%. Among plots with at least one year classified as IPG (class Id 1,
3–11 in Table 6), 19% have discontinuous NIG-IPG series over the 5 years. These plots are
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mostly related to heterogeneity problems (MGT) (66% of the cases), while in 27% of the
cases, a real change in use (LUC) or a plot levelling (EXPL) was observed. If we consider
the cases where the change is confirmed over the last 2 or 3 years (Case ID 4, 5, 8, 9), the
cumulative rate of LUC and EXPL features increased to 50%.

This leads us to conclude that the use of a long series (5 years) allows us to charac-
terise IPGs even when they present strong heterogeneities linked to irrigation defects or
grazing during the summer period. The occurrence of IPG detection could be a marker
of grassland management and might be used as information to refine the description
of grassland systems. The detection of real land-use change needs confirmation of the
change over several years (>3 years), which requires a time series longer than 5 years to
reduce the ambiguity between actual land use change and classification errors induced by
grassland management.

4.3. Novel Aspects and Generalization

Our study shows that a classification based on temporal signal with agronomic trait
detection offers much better results than a supervised classification such as the use of the
SVM method. This superiority is probably exacerbated with the detection of intensively
farmed grasslands. Indeed, with grasslands, there is no strong seasonality in vegetation
variation. Vegetation cycles are numerous and asynchronous between IPG plots, making
the identification of a specific grassland pattern in the data series across the entire Crau
area difficult by a simple supervised classification algorithm such as SVM. This comparison
is somewhat contradicted by the very good results obtained by THEIA, which also used a
supervised random forest classification. However, the a priori knowledge on the territory
integrated in the classification can have a very important weight in the obtained perfor-
mances, and it would be interesting to analyse the impact of remotely sensed classifiers on
the results. If classification approaches based on agronomic traits detection are efficient,
they remain specific to a given class of land use and are not adapted for simultaneously
identifying a large number of classes as could be performed by usual classification methods.
Thus, a complementarity between methods might be foreseen, where approaches based on
the temporal signal should be dedicated to answering some specific questions requiring a
good accuracy on a given land use class as for IPG in the Crau area.

The advantage of our method is that it does not require supervised learning even if
some calibration was required on a few plots. The question is then to establish to what extent
our approach is generic and implementable in other contexts. First, we found that a single
set of parameters was suitable for the five years. The analysis of the classification errors has
shown that classification errors come more from ground problems (plot heterogeneity and
management variability) and the timing of the LAI time series than the detection algorithms
itself. Thus, we can reasonably support the idea that calibrated algorithms can be applied
to any years. The implementation of the development method to other territories needs to
be examined more carefully. Most of the parameters (10 over 16) were prescribed either
from agronomic knowledge (dta1, dtb1, dta, dtb, tminlai0, tminlai1, dtmin0, dtmin1, and
tlailow) or on visual analysis on some problematic LAI time series (difmax). We think that
these parameters can be adapted to other contexts. As far as the calibrated parameters are
concerned, they have to be considered individually. Nbb and fd are related to the temporal
frequency of the images. It is conceivable that, in a cloudier context, they may have to be
revisited. threshlai and tlaimin are related to the temporal dynamics of the LAI of grasslands,
which is influenced by plot management and soil and climate conditions. However, with a
good knowledge of the grasslands of the targeted territory, it should be possible to provide
an estimation for both parameters. This was the case in our study with tlaimin for which its
values were explored over a narrow range (from 4.0 to 4.5). The filtering of outliers with
tlaimax seems to us to have a generic scope while the pixperc parameter could be the most
impacted by new contexts with different intra-plot heterogeneities. In conclusion, we think
that adaptations of the parameters based on the knowledge of the territorial characteristics
of the grasslands should allow good accuracy. A calibration will undoubtedly be necessary
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to obtain the precision levels obtained in our study, but this must be performed only once
for all years.

Several algorithms, comparable to the one above, have recently been published [23,24,26,27].
While the approaches used are similar, the solutions for filtering the signal from atmospheric
remaining effects and detecting drops in the time series of vegetation indices are very
different. It is, however, difficult to compare our results with those of these studies since we
are interested in the identification of grasslands whereas the other studies are interested in
the number of mowing events that is sought. In all cases, the timing of the time series and
the diversity of the grasslands due to their management or heterogeneity lead to detection
errors. In spite of the good scores obtained in our classifications, we had mowing detection
errors that did not necessarily lead to a classification error, since the observation of two
events is sufficient to classify IPTs even though they are mowed three or four times a year.
We can also point out that the complexity of the mowing detection algorithms is largely
due to anomalies in the temporal series of the vegetation index. This could be simplified if
the data were better filtered upstream, and there is no doubt that this will be possible in the
future. In this sense, the approach in [27] to improve cloud masks is interesting.

5. Conclusions

A new algorithm for the identification of Irrigated Permanent Grass (IPG) was devel-
oped in this study. It is based on the detection of agronomic traits thanks to the possibility
offered by the Sentinel 2 mission to provide frequent images of the vegetation development.
In our area located in the Mediterranean, about 40 images per year can be exploited during
the period of interest (mid-April to October ending). IPGs were classified by detecting
mowing events assuming that a pixel is an IPG when at least two mowing events were
detected. The developed classification method offers very good results, better than that
obtained when using supervised classification as SVM or land use product as the THEIA
product covering the French territory. The method presents the advantage of not depending
on training samples, even if some calibration was necessary to fix some thresholds and deal
with the remote sensing signal noise. We believe that calibration efforts will likely be lower
when addressing IPG detection in other geographical contexts. Moreover, once established,
the algorithm can be applied directly to another year.

Despite the good performance of the developed algorithm, it is faced with some
constraints that lead to failure to detect mowing activities. For instance, when there is
relatively very low biomass or a heterogeneous plot, the developed algorithm tends to
fail by missing some mowing events. This can be seen as a weakness, but our analysis
has shown that the IPG class covers several management modalities. Depending on the
objectives, such a weakness can be a strength to characterize different production systems.
In addition, the detection of mowing should make it possible to understand the technical
itineraries and to provide information to inform farming practice heterogeneities over
large territory to implement crop models. Real changes in use can be observed, but long
time series are needed to confirm the change and remove ambiguities with heterogeneous
grasslands.

In general, one can question the relevance of relying on agronomic traits specific to
certain types of land use to map them. In this work, we have relied on a clear, specific,
and somewhat caricatural trait, and this has obtained excellent results. The results in the
literature are not necessarily as precise, and this is probably due to less clear specific features
that can lead to ambiguities. We believe, for example, that the separation of vineyards and
orchards, which is important to map different irrigation strategies, may be more difficult to
characterize. Moreover, it was found that the method requires frequent acquisition to catch
the events of interests. For locations with frequent cloud cover, combining optic and radar
images can be an option to overcome the lack of optical data.
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