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Abstract: Satellite hyperspectral remote sensing has gradually become an important means of Earth
observation, but the existence of various types of noise seriously limits the application value of
satellite hyperspectral images. With the continuous development of deep learning technology,
breakthroughs have been made in improving hyperspectral image denoising algorithms based on
supervised learning; however, these methods usually require a large number of clean/noisy training
pairs, a target that is difficult to meet for real satellite hyperspectral imagery. In this paper, we propose
a self-supervised learning-based algorithm, 3S-HSID, for denoising real satellite hyperspectral images
without requiring external data support. The 3S-HSID framework can perform robust denoising
of a single satellite hyperspectral image in all bands simultaneously. It first conducts a Bernoulli
sampling of the input data, then uses the Bernoulli sampling results to construct the training pairs.
Furthermore, the global spectral consistency and minimum local variance are used in the loss function
to train the network. We use the training model to predict different Bernoulli sampling results, and
the average of multiple predicted values is used as the denoising result. To prevent overfitting,
we adopt a dropout strategy during training and testing. The results of denoising experiments on
the simulated hyperspectral data show that the denoising performance of 3S-HSID is better than
most state-of-the-art algorithms, especially in terms of maintaining the spectral characteristics of
hyperspectral images. The denoising results for different types of real satellite hyperspectral data
also demonstrate the reliability of the proposed method. The 3S-HSID framework provides a new
technical means for real satellite hyperspectral image preprocessing.

Keywords: satellite hyperspectral imagery; image denoising; self-supervised learning; spectral
consistency; dropout

1. Introduction

With the continuous development of satellite hyperspectral imagers, satellite hyper-
spectral remote sensing has gradually become an important means for Earth observation [1].
Satellite hyperspectral imagery not only has abundant spatial and spectral information
but also an observation efficiency with which airborne or UAV hyperspectral imagery
cannot compete. Therefore, satellite hyperspectral imagery has been widely used in smart
agriculture [2], urban applications [3], water quality monitoring [4], ecological sustain-
ability [5], and applications in other fields. Compared with natural images, hyperspectral
images can simultaneously obtain ground scene information in multiple bands with a low
signal-to-noise ratio (SNR), which leads to the inevitable influence of various noises in the
process of hyperspectral image acquisition [6]; furthermore, satellite hyperspectral images
are also affected by complex space and atmospheric environments [7]. Noise reduces the
quality of satellite hyperspectral images and greatly limits their subsequent processing and
application [8]. Therefore, denoising prior to satellite hyperspectral image analysis and
interpretation is a task of primary importance.
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In the past few decades, researchers have proposed a large number of RGB image
denoising methods. A common denoising strategy involves directly applying an RGB
denoising method to the hyperspectral image denoising task in a band-by-band manner,
such as in block-matching and 3D filtering (BM3D) [9], non-local means (NLM) [10], and
weighted nuclear norm minimization (WNNM) [11]. Although these methods are relatively
simple, correlation between the bands of hyperspectral images is not fully considered, and
the original spectral characteristics are often lost in the denoising results [12]. Therefore,
denoising methods starting directly from the actual hyperspectral data are becoming
increasingly popular for achieving denoising while preserving the spatial and spectral
characteristics of hyperspectral data to the maximum possible extent. From this perspective,
we can divide the current mainstream methods in the field of hyperspectral image denoising
into model- and learning-based methods.

Model-based methods model the noise distribution in the hyperspectral image, and
the modeled distribution is then regarded as a prior for accordingly realizing image denois-
ing. Considering the above denoising strategy, it can be seen that the model-based method
is highly dependent on the image prior information, including low-rank (LR) [13–16], total
variation (TV) [17,18], and sparse [19,20] priors. Significant research has been conducted,
for example, considering the low-rank characteristics of hyperspectral images, and the
robust PCA method (RPCA) [21] has been proposed to recover low-rank matrix information.
On this basis, low-rank matrix recovery (LRMR) models [13] and hyperspectral restora-
tion (HyRes) [14] have been subsequently proposed. Based on the LR regularization, Xue
et al. [15,16] made full use of nonlocal similarity/self-similarity and nonlocal global corre-
lation across spectrum intrinsic priors in order to deal with the lack of spatial constraints
for hyperspectral denoising. Similarly, TV regularization is also a common and effective
constraint in HSI denoising, and the scientific classical total variation model has been
expanded to HSI [17]. Structure tensor TV (STV) [22] has been proposed, which utilizes
the low rank of gradient vectors in local regions. Then, spatial–spectral TV (SSTV) [18] has
been proposed to preserve spatial–spectral information by applying TV regularization to
the HSI gradient in the spectral direction. Furthermore, Fei et al. [23] integrated low-rank
prior and spatial–spectral total variation with directional information (SSDTV) for HSI
restoration.

In general, the spatial and spectral characteristics of hyperspectral images are essen-
tially used by methods based on the model prior, in which the denoising performance is
obvious. Most model-based approaches, however, still have unavoidable problems. On one
hand, in the process of modeling the distribution of hyperspectral images or noise, there are
complex mathematical derivation and optimization problems, resulting in a sharp increase
in the calculation volume. This not only makes the denoising of hyperspectral images very
inefficient but also often fails to adequately maintain the texture structure when the noise
is relatively severe. On the other hand, prior models are often non-convex optimization
problems that require a large number of numerical iterations and parameter adjustments
when manually given parameters, which also limits further improvement of the denoising
performance. More importantly, model-based methods are often trained and modeled
concerning a specific type of noise, such that their application in actual hyperspectral image
denoising tasks is limited.

In contrast to model-based methods, learning-based methods are not dependent on
manual priors and learn the hyperspectral image features through data-driven, to realize
hyperspectral image denoising. In other words, compared to the above traditional methods,
different network designs can better adapt to the noise in real data to achieve a better
denoising effect. Following their rapid development, the use of learning-based methods
has become a mainstream hyperspectral image denoising strategy. Learning-based methods
can be further divided into supervised learning denoising methods and unsupervised/self-
supervised learning denoising methods, according to whether external training samples
are needed.
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The focus of supervised learning denoising methods is to learn the non-linear potential
mapping between noisy and clean hyperspectral images in order to realize hyperspectral
image denoising. Xie et al. [24] first introduced the trainable non-linear reaction diffusion
(TNRD) model for hyperspectral image denoising based on the deep learning denoising
strategy for gray images, and the proposed model was shown to effectively remove Gaus-
sian noise. However, this method does not make full use of the correlation between the
bands of hyperspectral images, and spectral details may be lost. To retain the spectral
characteristics, Xie et al. [25] used a denoising convolutional neural network (CNN) model
for hyperspectral image denoising. Through residual learning, the spectral information
contour was effectively retained. Then, the strategy of using key bands for spatial initial-
ization and assisting in denoising was designed [26], which further solved the problem of
spectral distortion after denoising. However, deep learning denoising frameworks based
on natural images cannot make good use of the inherent spatial–spectral advantage of
hyperspectral data. Therefore, various deep learning denoising frameworks based on
spatial–spectral characteristics have been proposed. Yuan et al. [27] proposed a denoising
framework based on spatial–spectral learning, named HSID-CNN, which fuses the spatial
characteristics of a single-band extracted using a 2D-CNN with the spectral characteris-
tics of adjacent bands obtained by a 3D-CNN. To avoid the need for HSID-CNN to train
different models for different noise intensities, Maffei et al. [28] proposed a new model,
called HSI single denoising CNN (HSI-SDeCNN), which can consider both spatial and
spectral correlations. To better preserve the spatial and spectral details of hyperspectral
data, researchers have combined image and depth priors to give full play to their respective
advantages, consequently achieving satisfactory denoising results. For example, by using
the low-rank and local self-similarity priors of hyperspectral data in the spectral domain
and combining them with the spatial depth prior extracted using a CNN, the mixed noise
has been removed, thus providing an improved denoising performance [29–32]. Given the
great success of attention mechanisms in the fields of image recognition, target detection,
and other computer vision applications, researchers have proposed the use of a deep learn-
ing denoising framework based on an attention mechanism to further utilize the global
dependence and correlation between spatial and spectral information in hyperspectral data.
In this approach, the attention module is added to the spatial domain and spectral channel,
such that the neural network is more focused on learning the noise characteristics, and the
denoising effect with respect to mixed noise is obvious [33–36].

It can be seen from the above that supervised deep learning denoising methods per-
form better, both in terms of learning the noise characteristics and utilizing and maintaining
the spatial–spectral characteristics. As such, they can be said to have achieved satisfac-
tory denoising results. However, most supervised learning denoising methods require a
significant amount of supervised training; that is, the denoising network must be trained
using clean/noisy hyperspectral image pairs to achieve an optimal denoising performance.
However, the acquisition of clean/noisy hyperspectral image pairs is very difficult, which
greatly limits the generalization ability of supervised learning denoising methods and their
robustness in denoising real data.

To solve this problem, some scholars have studied unsupervised/self-supervised
learning methods based directly on the actual data. However, compared with the denoising
methods based on supervised learning, only using single images for denoising poses many
challenges, such as the automatic construction of training image pairs, high-quality feature
learning, effective loss function construction, and so on. Scholars have made a series of
attempts to address these issues. Deep image prior (DIP) [37] has been widely used in
natural image denoising. Sidorov et al. [38] proposed deep hyperspectral prior (DHP)
based on DIP without any external training samples, which can use a CNN to learn the
image prior of hyperspectral image data for hyperspectral image denoising, restoration,
and super-resolution tasks. To overcome the semi-convergence of the DIP method, Luo
et al. [39] proposed the spatial–spectral constrained deep image prior (S2DIP) framework.
Imamura et al. [40] proposed a self-supervised learning hyperspectral image restoration
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method based on the separable image prior (SIP), in which separable convolution is used
to extract image prior from hyperspectral data, and constructed the training sample dataset
needed for self-supervised learning. Fu et al. [41] combined a model-based method with a
deep learning method, constructed clean/noisy training pairs using single hyperspectral
image data, and trained a denoising network with an HSI denoising model based on sparse
representation. To deal with real hyperspectral image denoising, Wang et al. [42] proposed
a self-supervised hyperspectral image denoising network, named SHDN, which can extract
a single HSI data noise sample through a noise estimator and form a clean/noisy training
pair by combining the noise sample with the filtered clean band, which can then be used
for CNN denoising network training. Qian et al. [43] proposed a two-stage self-supervised
denoising network based on the similarity of adjacent bands of hyperspectral data.

The above works have provided many ideas for the study of unsupervised/self-
supervised learning denoising. It can be seen, from these algorithms, that the spatial and
spectral information of the hyperspectral image is still indispensable for unsupervised/self-
supervised hyperspectral image denoising; however, we focus not only on the retention
effect of spatial domain features but also on maintaining the spectral domain features
after denoising. Inspired by the natural image denoising framework Self2Self [44], we
make full use of the spectral characteristics of hyperspectral images and propose a self-
supervised denoising method for real satellite hyperspectral imagery. Furthermore, a
spectral consistency constraint is added to the model loss of 3S-HSID to maintain the
spectral characteristics. The 3S-HSID framework can deal with the complex noise in real
satellite hyperspectral images, including Gaussian noise, salt and pepper noise, and bad
lines. We summarize the main contributions of the proposed algorithm as follows:

1. The 3S-HSID framework is a strict self-supervised denoising method. A Bernoulli
sampling of a single hyperspectral image can be used to construct the clean/noisy
image pairs required for training. No external training data are needed, and the
noise situation of the hyperspectral data is not estimated. No clean band is needed
as a reference, and no spatial adjacent bands are needed for auxiliary denoising. All
hyperspectral bands can be denoised at the same time, especially in the case of real
satellite hyperspectral images;

2. The 3S-HSID framework establishes a global spectral consistency constraint between
the model input and output, which maximizes the recovery of spectral characteristics
of ground objects while restoring spatial information;

3. The 3S-HSID framework can be applied in different platforms, at different spatial
resolutions, and in different spectral resolution satellite hyperspectral image denoising
experiments, and the different types of noise removal effects are remarkable, thus
providing a new solution for the denoising of real satellite hyperspectral images.

The remainder of this article is organized as follows. Section 2 introduces the experi-
mental datasets, which include the simulated noisy HSI datasets and multi-resolution real
satellite HSI datasets, and describes the proposed self-supervised satellite HSI denoising
network. Section 3 analyzes the experimental results of the proposed method and the
compared methods. Our conclusions are summarized in Section 4.

2. Materials and Methods
2.1. Datasets

To verify the robustness of 3S-HSID, we chose a public hyperspectral dataset named
Pavia University as the simulated data. The common noises of satellite hyperspectral
images, such as Gaussian noise, salt and pepper noise, and bad lines, were loaded into
simulated hyperspectral data with different intensities, and 3S-HSID was used to denoise
the simulated data. To verify the generalization ability of the 3S-HSID algorithm, satellite
hyperspectral images with different sensors, spatial resolutions, and spectral resolutions
were adopted in this paper, including GF-14, ZH-1, and PRISMA satellite hyperspectral
datasets. All data were normalized to the range 0–1 before denoising. The details of the
above datasets are described as follows:
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1. The Pavia University dataset is a commonly used airborne hyperspectral dataset
obtained by the ROSIS sensor with 115 bands. To increase the possibility of its
application in all kinds of noise simulations, we used only 87 bands, and the data size
was 256 × 256.

2. GF-14 is an optical stereo mapping satellite arranged by the National Science and
Technology Major Project of the High-Resolution Earth Observation System, which
was launched into orbit on 6 December 2020. The satellite hyperspectral imager carried
by GF-14 can obtain hyperspectral images with a spatial resolution of 5 m in visible to
near-infrared wavelengths and of 10 m in the short-wave infrared wavelength, with
70 and 30 bands, respectively. The data used in this paper were captured by GF-14 in
2021, and radiation and atmospheric corrections were carried out before denoising.

3. The Zhuhai-1 remote sensing micro–nanosatellite constellation is a commercial remote
sensing micro–nanosatellite constellation constructed and operated by Zhuhai Obit
Aerospace Science and Technology Co., Ltd., Zhuhai, Guangdong, China. The Zhuhai-
1 constellation contains different types of micro- and nano-satellites, including video
satellites, high-resolution optical satellites, hyperspectral satellites, SAR satellites, and
infrared satellites. Among them, the hyperspectral satellite (ZH-1) was launched into
orbit on 26 April 2018. Its orbit height is 500 km, the imaging width is 150 km, the
spatial resolution is 10 m, the spectral resolution is 2.5 nm, the wavelength range is
400–1000 nm, and the number of bands is 32. The data used in this paper are OHS
captures of Shenzhen, China, on January 31, 2021. Before denoising, radiation and
atmospheric corrections were carried out.

4. The hyperspectral pioneer and application mission (PRISMA) satellite was launched
into orbit by the Italian Space Agency on 21 March 2019. Its orbit height is 620 km,
which allows complete coverage of Earth. The imaging width of PRISMA is 30 km.
Hyperspectral images with a spatial resolution of 30 m can be obtained in orbit. The
spectral resolution is lower than 12 nm, and the number of imaging bands in the
visible and near-infrared ranges is 66 and 173, respectively. At present, PRISMA data
can be freely downloaded, and the official hyperspectral data at L0–L2 levels are
provided.

2.2. Satellite Hyperspectral Image Degradation

Although satellite hyperspectral images are affected by various types of noise during
acquisition, the degradation model can be simply expressed as

yi = xi + ni (1)

where yi ∈ Rw×h represents a band containing noise in hyperspectral data, xi ∈ Rw×h

represents the band data that are not interfered with by noise, and ni ∈ Rw×h represents
the set of various types of noise. As shown in Figure 1, the bands of satellite hyperspectral
images may be affected by different types of noise, such as Gaussian noise, salt and pepper
noise, and bad lines. The noise pollution in different bands often differs in intensity and
type, which poses great challenges and uncertainties when carrying out hyperspectral
image denoising.
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2.3. 3S-HSID Network Framework

We propose a self-supervised learning-based denoising algorithm for satellite hy-
perspectral images, referred to as 3S-HSID. The framework is depicted in Figure 2. The
3S-HSID framework is a self-supervised learning strategy that does not require external
training data support. The input data are used to directly construct a clean/noisy image
pair in order to robustly denoise a single satellite hyperspectral image. The denoising
framework details are explained individually in the following.
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2.4. Dropout Strategy

In essence, denoising is a typical regression problem representing the inverse process
of data contamination by noise. In deep learning, the mean squared error (MSE) is generally
used to measure the prediction accuracy of a regression model. The MSE can be simply
expressed as

MSE =
1
n ∑n

i=1(si − ŝi)
2, (2)

where si is an element value in the sample, and ŝi is the model predicting value of the
element si. It can be seen that the MSE is closely related to the sample. Furthermore, when
we use sample statistics to predict some parameters of the population, we expect to obtain
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the sampling distribution of the sample statistics. At this time, any estimation of the MSE
is based on the function of sample data, such that the MSE can be rewritten, in terms of the
sample variance and bias, as

MSE = Var + Bias2. (3)

In the case of unbiased estimation, the MSE is equivalent to the variance, which also
reflects the difference between the predicted value and the real value in the model. In
the process of supervised training, when there are too many model parameters and the
training dataset is too small, the problem of model overfitting will occur. At this time, a
large number of independent samples can be used to train the model. With an increase
in sample size, the variance—and, thus, the MSE—will continue to decrease, such that
the predicted value becomes close to the real value. However, when we only use a single
hyperspectral image to train the network, the problem of insufficient training data will
be very obvious. A core issue in this case is how to minimize the MSE and successfully
predict its true value.

In deep learning, when the number of training samples is small, the neural network
cannot fully describe the training problem, which will lead to overfitting of the model.
Dropout [45] is a commonly used regularization method to address the overfitting problem.
Dropout hides some neural network nodes in the training process, according to a certain
probability, which is equivalent to introducing uncertainty in model training [46]. The
predicted value of the model after dropout may also have some independent statistical
characteristics, thus reducing the variance between the model prediction and the real value.
Similarly, under the same training sample conditions, dropout can result in the predicted
value of the model being closer to the real value. In other words, the MSE will decrease as
the training time increases.

2.5. Training Scheme

The 3S-HSID framework is a network architecture based on self-supervised learning.
It is very important to construct clean/noisy image pairs for model training. For most deep
learning denoising methods, the network is trained using a large number of clean/noisy
image pairs, such that the network can learn the mapping relationship between noisy
images and clean images to the maximum possible extent to realize denoising. In the case
of 3S-HSID, the training data source is only the input single hyperspectral image data, for
which there is no corresponding clean image. Inspired by Self2Self, we used Bernoulli
sampling to process the input data and construct the clean/noisy image pairs required for
self-supervised training. The Bernoulli matrix can be defined as

b =

{
bi = 1 bi > p
bi = 0 bi < p

, (4)

where a random matrix with the value range of (0, 1) is generated, and the Bernoulli
probability p ∈ (0, 1) is determined. According to the comparison between the element
value of the random matrix and p, the Bernoulli matrix b ∈ Rw×h×c is generated; w
and h represent the width and height of the input hyperspectral image, respectively, and
c represents the number of bands. The matrix b is generated according to the binary
Bernoulli sampling principle and follows the Bernoulli distribution. Then, we can construct
clean/noisy image pairs through Bernoulli sampling. However, the image pairs based on
Bernoulli sampling are completely different from those in supervised learning. The noisy
image in the image pair comes from the Bernoulli sampling example, while the clean image
is the data discarded by sampling. We do not directly establish the mapping relationship
between the two, but we take the noise data as the input and obtain the prediction results
after denoising. The prediction results and the data discarded by sampling are used to
establish a functional relationship. Here, the Bernoulli sampling instance and the part



Remote Sens. 2022, 14, 3083 8 of 24

discarded by sampling are expressed as ybsi and ybsd, according to Equations (5) and (6),
respectively:

ybsi = y� b, (5)

ybsd = y� (1− b) (6)

where � represents the point multiplication operation between matrices, y represents
the given input hyperspectral data, and b represents the Bernoulli sampling matrix. The
3S-HSID process from input to output is shown in Figure 3.
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A different Bernoulli sampling results from different noise data and for a series of
noise hyperspectral image pairs (ybsi, ybsd). Such image pairs are needed for self-supervised
training; that is, the model takes ybsi as the input data, and the model recovers ybsd based
on ybsi and obtains the model output y.

With the increase in sampling, the number of training samples will be greatly enriched,
and each Bernoulli sampling itself can also be regarded as a dropout operation in the
network to further improve the model’s fitting ability. On this basis, we carry out data
enhancement operations on the original input data, which mainly consist of multi-angle
rotation and vertical/horizontal flip operations. Using different combinations, up to
14 transformation enhancements can be carried out on the original input data y.

2.6. Model Structure

We proposed a self-supervised hyperspectral image denoising method, and the struc-
ture of this model is shown in Table 1.

Table 1. Network structures of 3S-HSID.

Layer Configuration Strategy Output Size

Input Bernoulli Sampling Dropout w× h× c

Extractor
PartialConv + BN + LeakyReLU Extract features w× h× 128
PartialConv + BN + LeakyReLU Extract features w× h× 256

Encoder

PartialConv + BN + LeakyReLU + MaxPool Downsample w/2× h/2× 256
PartialConv + BN + LeakyReLU + MaxPool Downsample w/4× h/4× 256
PartialConv + BN + LeakyReLU + MaxPool Downsample w/8× h/8× 256
PartialConv + BN + LeakyReLU + MaxPool Downsample w/16× h/16× 256
PartialConv + BN + LeakyReLU + MaxPool Downsample w/32× h/32× 256
PartialConv + BN + LeakyReLU + MaxPool Upsample w/16× h/16× 256

Decoder

Conv + LeakyReLU + Conv + LeakyReLU Upsample + Dropout w//8 × 512
Conv + LeakyReLU + Conv + LeakyReLU Upsample + Dropout w//4 × 512
Conv + LeakyReLU + Conv + LeakyReLU Upsample + Dropout w//2 × 512
Conv + LeakyReLU + Conv + LeakyReLU Upsample + Dropout w × 512

Denoising Conv + LeakyReLU + Conv + LeakyReLU +
Conv + Sigmoid Dropout w× h× c
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It can be seen from Table 1 that the 3S-HSID network is an encoder–decoder network
architecture based on the U-Net structure. The network encoding stage consists of nine
encoder blocks, while the decoding stage consists of five decoder blocks. In the decoding
stage, a residual connection is used to prevent the gradient of the deep network from
disappearing. The input data are single hyperspectral image data affected by noise with
dimensions of w × h × c. Before encoding, the input data are non-linearly mapped to
w× h× 256-dimensional data by two partial convolution modules. The subsequent encoder
blocks are composed of a partial convolutional layer, an unsaturated activation function
(LeakyReLU), and a maximum pooling layer. The maximum pooling layer stride is 2, and
the consistency of data size before and after convolution is ensured by adjusting the stride of
the partial convolution. After all the encoder modules, the output high-dimensional feature
data have dimensions of w/32× h/32× 256. Before each decoder module, the up-sampling
operation doubles the size of the high-dimensional feature data. The first four decoder
modules are composed of two 2D convolutional layers and two unsaturated activation
functions (LeakyReLU). On this basis, the last decoder module adds a 2D convolutional
layer and a saturated activation function (Sigmoid). The input data for each decoder
module are connected by residuals.

To retain the original image information, the last decoder module connects the data
from before the Bernoulli sampling with the output of the previous decoder module.
Dropout is used in all convolutional layers of the decoder modules in order to prevent
training overfitting due to the use of single hyperspectral image data training.

2.7. Loss Function

Combined with the previous analysis of MSE in Section 2.4, when the MSE between
the predicted value and the data discarded by sampling is minimized, we believe that the
model produces the most accurate prediction for the data discarded by sampling, and the
MSE loss function can be described by

lossmse =
1
n
((yi − yi)

2 � (1− b)), (7)

where n denotes the number of data points discarded by Bernoulli sampling. It can be seen
from Equation (7) that 3S-HSID only uses the data discarded by Bernoulli sampling when
calculating the loss function and reintroduces uncertainty into the model, which increases
the model stability.

In the hyperspectral image denoising task, we focus not only on the retention effect
of spatial domain features but also on maintaining the spectral domain features; that
is, the spectral consistency between the prediction results and the input data should be
maintained. Therefore, a spectral consistency constraint is added to the model loss of 3S-
HSID, in which the spectral angle is used to measure the similarity between the predicted
and original spectra, such that the spectral characteristics of the pixels corresponding to
the model output y and the original input data y are consistent when restoring the spectral
detail characteristics. We use the spectral angle chord as the spectral similarity measure to
calculate lossspectral , and the spectral loss function can be expressed as

lossspectral = cos−1
(

y� y
‖y‖2 · ‖y‖2

)
. (8)

The entire model loss function can be expressed as

loss = lossspectral + lossmse, (9)

where the calculation object of lossspectral is all pixels, and that of lossmse is only on ybsd.
Therefore, lossmse can be understood as a local optimum constraint, while lossspectral is more
similar to a global optimum constraint.
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2.8. Denoising Scheme

We know that noise in real data is often a superposition of various types of noise.
Each type of noise can be assumed to be a random variable subject to a certain probability
distribution, such that the real noise can be expressed as

N = ∑
i

ni, (10)

where N is the noise we observe, and ni is random noise that obeys a certain probability
distribution; notably, we assume the ni are independent and of mean zero. According to
the central limit theorem, when ni different types of noise accumulate in large numbers,
N will tend to a normal distribution (i.e., a Gaussian distribution). When we use a deep
neural network to denoise the noise data, the neural network model is usually regarded as
a conditional distribution probability model, expressed as

P(y|y, w), (11)

where y is the input noise data, y is the data predicted by the network model, and w
denotes the network weights. However, the value predicted by the model, y, contains
Gaussian noise (with mean zero). A series of predicted values are obtained by multiple
predictions, and some Gaussian distributions are then obtained. Therefore, the model
actually predicts the mean values of these Gaussian distributions. The average value of the
multiple prediction results is the final prediction result of the model:

ŷ =
1
m

m

∑
i

y, (12)

where ŷ is the final prediction result, and m denotes the number of predictions.
From the analysis in Section 2.5, it can be seen that the neural network model obtained

by training is subject to the Bernoulli distribution. Therefore, in the test stage, the Bernoulli
probability is still used to scale the neural network model obtained in the training stage in
order to generate multiple denoising results with independent distributions. In the training
stage, we use the network training model to predict different Bernoulli sampling examples
many times. According to Equation (12), we can obtain the result of 3S-HSID denoising on
input data using the obtained weights; that is, we expect a clean image.

The use of dropout, Bernoulli sampling, partial convolution, and other operations
allowed us to achieve satisfactory results in the self-supervised denoising of a single natural
image. Inspired by this, we comprehensively analyzed the characteristics of hyperspectral
data. Based on the above strategies, we incorporated the spectral consistency prior to form
a self-supervised denoising network for real satellite hyperspectral imagery. To the best
of our knowledge, this is a novel hyperspectral image self-supervised learning denoising
framework, especially for real satellite hyperspectral images with different platforms,
spatial resolutions, and spectral resolutions. As it does not require additional training data,
it has a high practical application value.

3. Results
3.1. Experimental Setup

In the process of 3S-HSID denoising, the relevant hyperparameters must first be set,
which are detailed as follows. The input data were full-band hyperspectral data, and
satisfactory denoising results could be obtained after one round of processing. When
Bernoulli sampling the input data, the sampling probability was set to 0.5. All partial
convolution and standard convolution kernel sizes in the 3S-HSID network framework
were used with a stride of one and padded with zero to ensure that the size did not
change before and after convolution. In the framework, LeakyReLU was selected as the
activation function, and its hyperparameter value was 0.1. A BN layer is added before the
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LeakyReLU layer in the encoding stage in order to ensure the stability of the network. For
dropout, the random discard probability was set to 0.5. We chose Adam as the optimizer for
model training, for which the learning rate was set to 10−5. It should be noted that in the
simulation experiment the iteration number of 3S-HSID in the training and testing process
was adaptively determined according to the optimal denoising results, and the iteration
number for real data was determined according to the iteration number in the simulation
experiment. The 3S-HSID framework processes a single HSI without parallel computation.
Suppose the iteration number of 3S-HSID is 10,000, the implementation takes around 50 min
to process an HSI of size 256× 256× 87 on average. Our computer hardware environment
was an RTX 2080Ti GPU, and the software environment was Python 3.6 + PyTorch 1.8.1.

To simulate the noise in real satellite hyperspectral images as much as possible, we
designed Gaussian noise, salt and pepper noise, bad line, and other noise types and
simulated the complex noise in the PaviaU hyperspectral data through the fusion of
different types of noise. The setting of the simulated noise is as follows:

• Case 1 (including Case 11 and Case 12): Adding Gaussian noise with the same mean in-
tensity to each band of the original data, where the standard deviation of the Gaussian
noise is std ∈ [0, 0.1];

• Case 2: Adding Gaussian noise with a different mean intensity to each band of the
original data, where the standard deviation range of the Gaussian noise is std ∈ [0, 0.1];

• Case 3: Based on Case 2, salt and pepper noise of different proportions is added to 30%
of the bands in the original data, where the proportion range of the salt and pepper
noise is p ∈ [0.05, 0.5];

• Case 4: Based on Case 2 and Case 3, bad lines of different proportions are added to
30% of the bands in the original data, where the proportion range of the bad lines is
b ∈ [0.05, 0.2].

The mixed noise in real hyperspectral images was simulated through the random
occurrence of concentrated noise, as shown in Figure 4.
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3.2. Simulation Denoising Experiment

To verify the performance of 3S-HSID denoising, we selected seven previously published hy-
perspectral image denoising algorithms that have relevant operating procedures for comparison,
including the traditional block-matching and 4D filtering (BM4D) method [47]; model-based meth-
ods, including low-rank matrix recovery (LRMR) [13], parameter-free hyperspectral restoration
(HyRes) [14], and L1HyMixDe [48]; and unsupervised/self-supervised learning-based single
hyperspectral image denoising methods, including deep hyperspectral prior (DHP) [38],
separable image prior (SIP) [40], and Stein’s unbiased risk estimate convolutional neural
network (SURE-CNN) [49]. All algorithms used for comparison were applied according to
the information published by their respective authors.

To evaluate the performance of 3S-HSID denoising and compare it with other state-of-
the-art algorithms, we used several commonly used quantitative indicators to evaluate the
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denoising results. Due to the ideal reference data, the comparison between the different
algorithms was considered very fair.

• PSNR, SSIM

Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) are commonly used
indicators for evaluating the quality of image reconstruction in ordinary image processing.
For hyperspectral images, we only need to calculate the PSNR and SSIM band-wise for
two hyperspectral images, and then take the average values to obtain the overall PSNR
and SSIM for hyperspectral images. The higher the PSNR and SSIM values, the better the
denoising performance.

• SAM

Spectral angle mapper (SAM) is a unique evaluation index by which to measure the
spectral consistency of hyperspectral data. By calculating the spectral distance between the
spectral curves of the corresponding pixels of two hyperspectral images and then taking
the average value of the calculation results of all pixels, the SAM value of the whole image
can be obtained. The lower the SAM value, the better the denoising performance.

Based on the above experimental settings, we used the PaviaU hyperspectral data
as the ideal data for testing different types of noise effects, and the various denoising
algorithms were applied for their recovery. Table 2 provides the recovery results regarding
the effect of various denoising algorithms under different noise types. The best results
are marked with double underscores, and sub-optimal results are marked with a single
underscore. It can be seen from the quantitative results that, in most cases, the lowest SAM
value was achieved by 3S-HSID; that is, the recovery effect due to the spectral consistency
constraint on spectral characteristics was obvious. In terms of PSNR and SSIM indicators,
the proposed approach presented similar results to the model-based algorithms and had
obvious advantages when compared to self-supervised learning algorithms, such as DHP-
2D and SIP. SURE-CNN is one of the most advanced unsupervised denoising algorithms;
our performance in PSNR and SSIM are close to SURE-CNN. Nonetheless, our algorithm is
better than SURE-CNN in visual effects of denoising results.

Table 2. Denoising results of PaviaU hyperspectral simulation data.

PaviaU Noise Level Metrics Noisy BM4D LRMR HyRes L1HyMixDe DHP-2D SIP SURE-CNN 3S-HSID

Case11 σ = 0.08
PSNR 21.941 35.298 34.260 32.333 35.759 30.527 34.643 36.118 35.785
SSIM 0.5620 0.9750 0.9563 0.9204 0.9719 0.9280 0.9728 0.9796 0.9779
SAM 0.4187 0.0717 0.1012 0.1373 0.0720 0.0773 0.0664 0.0579 0.0516

Case12 σ = 0.1
PSNR 20.001 34.667 32.533 32.397 34.258 30.368 34.527 35.612 34.786
SSIM 0.4636 0.9669 0.9362 0.9226 0.9604 0.9245 0.9717 0.9766 0.9728
SAM 0.4993 0.0807 0.1226 0.1286 0.0851 0.0798 0.0696 0.0596 0.0558

Case2 σ ∈ [0, 0.1]
PSNR 29.027 37.819 35.983 42.270 40.554 30.332 35.317 36.847 36.291
SSIM 0.7519 0.9759 0.9616 0.9909 0.9880 0.9237 0.9767 0.9832 0.9808
SAM 0.3226 0.0789 0.0994 0.0464 0.0471 0.0783 0.0653 0.0546 0.0461

Case3 Case2+
p ∈ [0.05, 0.5]

PSNR 20.781 26.913 28.878 30.615 31.258 26.593 26.435 26.799 28.006
SSIM 0.5291 0.6960 0.8399 0.7879 0.8216 0.7871 0.8778 0.8471 0.9027
SAM 0.9714 0.7962 0.6108 0.4286 0.2800 0.3580 0.1969 0.1787 0.2052

Case4 Case2+Case3+
b ∈ [0.05, 0.2]

PSNR 20.006 24.401 26.830 33.067 30.045 26.787 25.277 25.852 26.838
SSIM 0.4945 0.6535 0.8026 0.9338 0.8058 0.7764 0.8202 0.8236 0.9011
SAM 1.0415 0.8362 0.5982 0.2091 0.2568 0.4314 0.2626 0.2070 0.2055

To assess the denoising performance of each algorithm more intuitively, as shown in
Figures 5–7, we selected the denoising results for Cases 12, 3, and 4 to demonstrate the
denoising ability of each algorithm with respect to Gaussian noise and mixed noise.
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removed both the salt and pepper and Gaussian noise from the image. Although some 
details were lost, the image contour and clarity were better, as shown in the red box. 

It can be seen from the noise image in Figure 7 that the original band was affected by 
Gaussian noise, salt and pepper noise, and bad lines to varying degrees. BM4D did not 
remove the bad lines from the image, and the denoising results were quite different from 
the original clean image, as shown in the red box. Although the bad lines in the image 
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In Figure 8, we chose the simulated data case11 to extract the spectral curve of one 
pixel in the image (row = 220, column = 113) and analyzed the spectral recovery perfor-
mance of each algorithm; the results are shown in Figure 8. From the figure, it can be seen 
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Figure 6. Case 3—Denoising results of different algorithms in band 26: (a) clean band; (b) noisy
band; (c) BM4D; (d) LRMR; (e) HyRes; (f) L1HyMixDe; (g) DHP-2D; (h) SIP; (i) SURE-CNN; and
(j) 3S-HSID.

It can be seen, from Figure 5, that BM4D removed the Gaussian noise, but there was a
serious loss of information for ground objects with small spatial size, and the image clarity
was reduced, such as the road in the red box. LRMR, HyRes, and L1HyMixDe did not
completely remove the Gaussian noise. DHP-2D removed the Gaussian noise, but its use
resulted in the loss of some ground information and reduced the image clarity. SURE-CNN
and SIP removed the Gaussian noise but lost some ground information. Considering the
removal of Gaussian noise, 3S-HSID showed better retention of image details, which was
also due to the global spectral constraints of 3S-HSID.
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It can be seen from Figure 6 that BM4D only dealt with partial Gaussian noise; the
removal effect of the salt and pepper noise was poor, and the recovery effect was not ideal.
DHP-2D removed the salt and pepper noise from the image but caused a serious loss of
image information. HyRes and L1HyMixDe removed most of the salt and pepper noise,
but there was still a lot of residual noise in the whole image, which seriously affects the
applicability of the image. LRMR, SIP, and SURE-CNN removed the salt and pepper noise,
but there was still a lot of residual noise in the image. The 3S-HSID framework removed
both the salt and pepper and Gaussian noise from the image. Although some details were
lost, the image contour and clarity were better, as shown in the red box.

It can be seen from the noise image in Figure 7 that the original band was affected by
Gaussian noise, salt and pepper noise, and bad lines to varying degrees. BM4D did not
remove the bad lines from the image, and the denoising results were quite different from
the original clean image, as shown in the red box. Although the bad lines in the image were
removed by SURE-CNN, SIP, and DHP-2D, the restoration of image details was insufficient,
which resulted in a decline in image quality. LRMR, HyRes, and L1HyMixDe did not
eliminate the mixed noise, and there was a lot of residual noise. From the perspective of
the visual effect, compared with other algorithms, denoising by 3S-HSID has the best effect
on mixed noise with an adequate effect on the strip noise existing in the original image.

The denoising performance of the various algorithms cannot be fully evaluated from
a single-band visualization analysis. Thus, we also analyzed the denoising results from
different aspects, as shown in Figures 8–11.

In Figure 8, we chose the simulated data case11 to extract the spectral curve of one pixel
in the image (row = 220, column = 113) and analyzed the spectral recovery performance of
each algorithm; the results are shown in Figure 8. From the figure, it can be seen that all of
the denoising algorithms adequately restored the spectral characteristics of vegetation’s
red-edge, and the spectral characteristics were satisfactorily maintained. However, other
algorithms failed to restore the original spectral characteristics in the near-infrared high-
reflection region, while 3S-HSID better restored the original spectral details. In the low-
reflection region, the self-supervised denoising algorithms SIP, SURE-CNN, and 3S-HSID
showed the best recovery effect on the spectral characteristics. Figure 9 shows the denoising
results in Case 2. Based on the false-color images, HyRes, L1HyMixDe, and 3S-HSID
showed a good performance in color maintenance, especially in the right red roof area.
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Figure 8. Recovery of spectral features by different denoising algorithms: (a) BM4D; (b) LRMR;
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Figure 9. Case 2—Denoising results of different algorithms in RGB (45,15,5): (a) clean image; (b) noisy
band; (c) BM4D; (d) LRMR; (e) HyRes; (f) L1HyMixDe; (g) DHP-2D; (h) SIP; (i) SURE-CNN; and
(j) 3S-HSID.

The PSNR and SSIM values of hyperspectral images were obtained by calculating
the PSNR and SSIM values for all bands, and the noise effects in different bands of the
hyperspectral images varied. The denoising performance of the denoising algorithms
for each band can be more intuitively seen in a band-by-band analysis. The PSNR and
SSIM curves for the denoising results of various algorithms in different bands are shown
in Figure 10. From the figure, it can be seen that the denoising performance of 3S-HSID
was relatively stable in different bands when dealing with images dominated by Gaussian
noise, indicating that the algorithm was robust and effective in removing Gaussian noise
of different intensities. When dealing with the bands that have strong noise influence,
such as salt and pepper noise and bad lines, the advantage of denoising by 3S-HSID was
more obvious. In addition, by analyzing the PSNR and SSIM values of each band in the
noise images, we found that the PSNR and SSIM values of some bands were very high.
This is mainly because, when the noise was simulated, the bands to which the noise was
applied were randomly selected, and not all bands had added noise. This led to a very
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small number of bands being unaffected by any noise, and no bands in the real images
were completely clean. This is also the reason why HyRes and L1HyMixDe achieved
higher PSNR and SSIM values for some data. By comparing the SAM values of different
algorithms, it can be found that other algorithms took into account the denoising effect
in the spectral direction while denoising in the spatial direction. From the visualization
results, it can also be seen that HyRes and L1HyMixDe are not the best choice for band
recovery in images affected by noise.
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Figure 10. PSNR and SSIM values of different bands: (a) PSNR values of Case 11; (b) PSNR values 
of Case 12; (c) PSNR values of Case 2; (d) PSNR values of Case 3; (e) PSNR values of Case 4; (f) SSIM 
values of Case 11; (g) SSIM values of Case 12; (h) SSIM values of Case 2; (i) SSIM values of Case 3; 
and (j) SSIM values of Case 4. 

Figure 10. PSNR and SSIM values of different bands: (a) PSNR values of Case 11; (b) PSNR values of
Case 12; (c) PSNR values of Case 2; (d) PSNR values of Case 3; (e) PSNR values of Case 4; (f) SSIM
values of Case 11; (g) SSIM values of Case 12; (h) SSIM values of Case 2; (i) SSIM values of Case 3;
and (j) SSIM values of Case 4.
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Figure 11. Recovery of bad lines by different denoising algorithms in band 83: (a) BM4D; (b) LRMR;
(c) HyRes; (d) L1HyMixDe; (e) DHP-2D; (f) SIP; (g) SURE-CNN; and (h) 3S-HSID.

Mixed noise can be considered the closest case to real image noise, and the influence
of bad lines on image quality is especially obvious. We selected the 77th band of Case 4 to
analyze the recovery of bad line noise. In Figure 11, the pixel values are displayed in the
direction of the band column. It can be seen from the distribution of the blue curve (noise
image) that the bad lines had great influence on the quality of the original band. BM4D
could not satisfactorily remove the bad lines, and other methods for bad line removal had
a certain effect. Although the compared algorithms were able to process mixed noise, the
difference between the denoising results and the sum of pixel values in the column direction
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of the original band was large, as can be seen when comparing the distribution position of
the curve, while the difference between the 3S-HSID output and the sum of pixel values
in the column direction of the original band was the smallest. The curve characteristics
were consistent with those of the sum of pixel values in the column direction of the original
band, indicating that 3S-HSID has a good denoising performance for mixed noise.

3.3. Real Satellite HSIs Denoising Experiment

To verify the universality and practicability of 3S-HSID, we conducted denoising
experiments using real satellite hyperspectral images. Satellite hyperspectral data from
different imaging spectrometers were used, which had varying spatial resolutions, spectral
resolutions, and band numbers. As these data are real and have no noise-free reference, we
compared the denoising performance of 3S-HSID with other algorithms based on the visual
effects of the denoising results, as shown in Figures 12–18, which depict the denoising
results for the hyperspectral data of different satellite platforms, spatial resolutions, and
spectral resolutions.
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Figure 12. GF-14 hyperspectral image (SWIR) denoising results with band 1: (a) real image; (b) BM4D;
(c) LRMR; (d) HyRes; (e) L1HyMixDe; (f) DHP-2D; (g) SIP; (h) SURE-CNN; and (i) 3S-HSID.

The band seen in Figure 12 appeared to be affected by Gaussian noise, especially in
the upper left corner region. The noise processing effect of BM4D and the model-based
methods was not obvious. The noise processing effect of the self-supervised learning
denoising algorithms, such as SIP, was not ideal, and the image quality of the denoising
results was not high. The 3S-HSID framework could better recover the image and show the
image details, as shown in the red box, due to the fact that our algorithm can simultaneously
retrieve all bands for processing.

Similar to SWIR images, VNIR images are typically seriously affected by Gaussian
noise. It can be seen from Figure 13 that BM4D and DHP-2D were not ideal for image
restoration in this case. The result of HyRes is better in noise removal for a single band,
but its performance is not good for all the bands, such as tone distortion, as shown in
Figure 14d. L1HyMixDe and 3S-HSID performed better than the other algorithms in image
restoration, especially regarding the restoration of farmland and housing texture details.
As shown in the red boxes, the effect of 3S-HSID on farmland boundary restoration is very
clear.

It can be seen from Figure 15a that the single band was only slightly affected by noise,
which had little effect on the image details. Therefore, all of the compared algorithms could
recover the image to some extent. The recovery effect of DHP-2D was relatively poor, as the
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recovery of image details was not ideal. The false color images show that the noise intensity
of different bands is different, as presented in Figure 16. The model-based methods have a
certain removal effect on mixed noise, but there are blur and tone distortions. The 3S-HSID
framework deals with noise in the airport runway, terminal, and other areas, and the image
details were clearer, as shown in the red box.
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Figure 13. GF-14 hyperspectral image (VNIR) denoising results with band 5: (a) real image; (b) 
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Figure 14. GF-14 hyperspectral image (VNIR) denoising results with false-color image (R: band 40, 
G: band 15, B: band 5): (a) real image; (b) BM4D; (c) LRMR; (d) HyRes; (e) L1HyMixDe; (f) DHP-2D; 
(g) SIP; (h) SURE-CNN; and (i) 3S-HSID. 

Figure 13. GF-14 hyperspectral image (VNIR) denoising results with band 5: (a) real image; (b) BM4D;
(c) LRMR; (d) HyRes; (e) L1HyMixDe; (f) DHP-2D; (g) SIP; (h) SURE-CNN; and (i) 3S-HSID.

Figure 14. GF-14 hyperspectral image (VNIR) denoising results with false-color image (R: band 40, G:
band 15, B: band 5): (a) real image; (b) BM4D; (c) LRMR; (d) HyRes; (e) L1HyMixDe; (f) DHP-2D;
(g) SIP; (h) SURE-CNN; and (i) 3S-HSID.

As presented in Figures 17a and 18a, the original images had very serious stripe
noise, and neither BM4D nor the model-based methods could completely remove the
stripe noise from the image. Although DHP-2D, SIP, and SURE-CNN displayed certain
suppression of the stripe noise, they were not ideal in terms of maintaining image details,
as shown in Figure 18f,h. In contrast, 3S-HSID effectively removed the mixed noise in
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the image, especially the stripe noise. Although the spatial resolution of PRISMA satellite
hyperspectral image is low, 3S-HSID still restored the image details well.
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Figure 16. ZH-1 hyperspectral image denoising results with false-color image (R: band 32, G: band 
20, B: band 1): (a) real image; (b) BM4D; (c) LRMR; (d) HyRes; (e) L1HyMixDe; (f) DHP-2D; (g) SIP; 
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Figure 16. ZH-1 hyperspectral image denoising results with false-color image (R: band 32, G: band
20, B: band 1): (a) real image; (b) BM4D; (c) LRMR; (d) HyRes; (e) L1HyMixDe; (f) DHP-2D; (g) SIP;
(h) SURE-CNN; and (i) 3S-HSID.



Remote Sens. 2022, 14, 3083 20 of 24

Remote Sens. 2022, 14, x FOR PEER REVIEW 20 of 24 
 

 

suppression of the stripe noise, they were not ideal in terms of maintaining image details, 
as shown in Figure 18f,h. In contrast, 3S-HSID effectively removed the mixed noise in the 
image, especially the stripe noise. Although the spatial resolution of PRISMA satellite hy-
perspectral image is low, 3S-HSID still restored the image details well. 

     
(a) (b) (c) (d) (e) 

 

    
 (f)  (g) (h) (i) 

Figure 17. PRISMA hyperspectral image denoising results with band 66: (a) real image; (b) BM4D; 
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Figure 18. PRISMA hyperspectral image denoising results with false-color image (R: band 66, G: 
band 40, B: band 1): (a) real image; (b) BM4D; (c) LRMR; (d) HyRes; (e) L1HyMixDe; (f) DHP-2D; 
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4. Discussion 
4.1. Hyperparametric Analysis 
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are some of the most important hyperparameters. We used Case11 simulation data to test 
the selection of these two probability values. In the experiment, the dropout probability 

Figure 17. PRISMA hyperspectral image denoising results with band 66: (a) real image; (b) BM4D;
(c) LRMR; (d) HyRes; (e) L1HyMixDe; (f) DHP-2D; (g) SIP; (h) SURE-CNN; and (i) 3S-HSID.

Figure 18. PRISMA hyperspectral image denoising results with false-color image (R: band 66, G:
band 40, B: band 1): (a) real image; (b) BM4D; (c) LRMR; (d) HyRes; (e) L1HyMixDe; (f) DHP-2D;
(g) SIP; (h) SURE-CNN; and (i) 3S-HSID.

4. Discussion
4.1. Hyperparametric Analysis

• Bernoulli sampling probability b and dropout probability p

In this experiment, the Bernoulli sampling probability b and dropout probability p
are some of the most important hyperparameters. We used Case11 simulation data to test
the selection of these two probability values. In the experiment, the dropout probability
was p ε [0.1, 0.9], and the Bernoulli sampling probability was b ε [0.1, 0.9], with an interval
of 0.1. In the form of cross-validation, the dropout probability p and Bernoulli sampling
probability b were added to the experiment. After the experiment was completed, the
PSNR values of all denoising results were calculated. To find the optimal combination, we
fixed a certain probability value and calculated the average PSNR value of all denoising



Remote Sens. 2022, 14, 3083 21 of 24

results in the range of [0.1, 0.9] under the current probability value, as shown in Figure 19.
From the experimental results, it can be seen that 3S-HSID demonstrated the best denoising
performance when b = 0.5 and p = 0.5.
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• Number of iterations

In the 3S-HSID training process, the number of iterations is one of the factors affecting
the denoising effect. However, as the model converges, it is no longer the case that the
denoising effect of the model is higher, given a higher number of iterations. Therefore,
we set the termination condition of iteration and determined whether to stop training
according to whether the optimal denoising model was obtained. The termination condition
of training was to stop training without updating the current optimal denoising results after
8000 rounds of continuous training. According to the previous analysis, the final denoising
result was obtained by averaging the multiple denoising results, and the PSNR values of
the denoising results were obtained by calculating the different average times. Therefore,
judgment of whether the denoising effect is optimal was based on the continuous increase
in average time, up to the point when the PSNR value of the current optimal denoising
result is no longer updated. Based on this, 3S-HSID can adaptively end the training
process and obtain the optimal denoising results, thus avoiding model overfitting. In the
denoising experiment using simulated data, the curve for the relationship between the
loss function and the number of iterations is shown in Figure 20. It can be seen from
the figure that the loss function value decreases rapidly. With an increase in the number
of iterations, the network model is continuously refined to obtain the optimal denoising
results. Thanks to the dropout strategy, the phenomenon of model overfitting does not
appear with the increase in iterations. We determined the iteration training number for real
satellite hyperspectral data according to the iteration number obtained in the simulated
hyperspectral data denoising experiment. The optimal number of iterations for satellite
hyperspectral image data on different platforms was determined to be 30,000. From the
experimental results, the mixed noise in the image could be effectively removed in different
bands, indicating that this number of iterations is reasonable and effective.
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4.2. Future Works

Although 3S-HSID achieved a good denoising effect in our experiments, the algorithm
still needs to be improved for use in practical applications. On one hand, the algorithm only
denoises a single hyperspectral image. In the face of massive satellite hyperspectral data,
how to carry out batch processing remains to be further studied. On the other hand, 3S-
HSID needs to re-learn the noise distribution of hyperspectral images obtained by different
satellite hyperspectral imagers. How to achieve the same effect as denoising methods
based on supervised learning, such that the generalization of the denoising model can be
strengthened, also requires further research.

5. Conclusions

A robust denoising method is crucial for the subsequent processing and application
of satellite hyperspectral images. Common denoising methods based on deep learning
often require a large number of clean/noisy image pairs as training samples, which are
extremely difficult to obtain from real satellite hyperspectral imagery. The use of a single
satellite hyperspectral image denoising algorithm based on self-supervised learning can
effectively solve this problem. The 3S-HSID framework developed in this paper uses
Bernoulli sampling to skillfully construct the clean/noisy image pairs required for training
and uses a random discard strategy during training and testing to prevent the overfitting
problem caused by insufficient samples. At the same time, 3S-HSID uses partial convolution
to help restore noise-contaminated pixels. For the model loss function, we proposed a
local loss function based on mean variance and a global loss function based on spectral
consistency, which effectively preserve the spatial and spectral domain features before and
after denoising. Based on the Pavia University dataset, we simulated the influences of
Gaussian noise, salt and pepper noise, bad lines, and mixed noise on hyperspectral data.
It was found that 3S-HSID can achieve a better denoising effect than most of the state-
of-the-art traditional and unsupervised/self-supervised methods. Note that the spectral
characteristics are well preserved. In the mixed noise removal experiment, the spectral
similarity between the 3S-HSID denoising result and original data is 0.2055; compared with
traditional methods and model-based methods, the improvement is obvious. At the same
time, we used real satellite hyperspectral images with different sensors, spatial resolutions,
and spectral resolutions to test the effect of denoising using 3S-HSID. The denoising results
on GF-14, ZH-1, and PRISMA datasets demonstrated the reliability and universality of the
proposed algorithm. Data preprocessing plays an important role in hyperspectral satellite
ground processing systems. The excellent denoising performance of 3S-HSID provides a
new technical means for real satellite hyperspectral image denoising. We recognize that
3S-HSID still has shortcomings. On the one hand, 3S-HSID denoises all bands at one time,
due to a large number of hyperspectral data bands; the time consumption of 3S-HSID is
longer than that of other algorithms. On the other hand, the U-shaped structure of the
U-Net network will lead to a certain degree of spatial information loss, which is reflected in
the PSNR measurement.

Author Contributions: Conceptualization, J.Q., H.Z. and B.L.; methodology, J.Q.; software, J.Q.;
validation, J.Q. and H.Z.; formal analysis, J.Q. and H.Z.; investigation, J.Q.; resources, H.Z.; data
curation, J.Q.; writing—original draft preparation, J.Q.; writing—review and editing, J.Q. and H.Z.;
visualization, J.Q.; supervision, H.Z.; project administration, H.Z.; funding acquisition, H.Z. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant 41971379.

Data Availability Statement: Pavia university dataset: http://www.ehu.eus/ccwintco/index.php?
title=Hyperspectral_Remote_Sensing_Scenes; PRISMA dataset: http://prisma.asi.it/missionselect/;
other datasets: https://cloud.tsinghua.edu.cn/f/f1883b2d6b8f43dd898c/?dl=1. All data can be
accessed on 23 June 2022.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://prisma.asi.it/missionselect/
https://cloud.tsinghua.edu.cn/f/f1883b2d6b8f43dd898c/?dl=1


Remote Sens. 2022, 14, 3083 23 of 24

References
1. Transon, J.; D’Andrimont, R.; Maugnard, A.; Defourny, P. Survey of Hyperspectral Earth Observation Applications from Space in

the Sentinel-2 Context. Remote Sens. 2018, 10, 157. [CrossRef]
2. Meng, S.; Wang, X.; Hu, X.; Luo, C.; Zhong, Y. Deep learning-based crop mapping in the cloudy season using one-shot

hyperspectral satellite imagery. Comput. Electron. Agric. 2021, 186, 106188. [CrossRef]
3. Pandey, D.; Tiwari, K.C. New spectral indices for detection of urban built-up surfaces and its sub-classes in AVIRIS-NG

hyperspectral imagery. Geocarto Int. 2020, 37, 1949–1970. [CrossRef]
4. Niroumand-Jadidi, M.; Bovolo, F.; Bruzzone, L. Water Quality Retrieval from PRISMA Hyperspectral Images: First Experience in

a Turbid Lake and Comparison with Sentinel-2. Remote Sens. 2020, 12, 3984. [CrossRef]
5. Xie, Y.; Sha, Z.; Mesev, V. Remote Sensing of Sustainable Ecosystems. J. Sens. 2018, 2018, 9683415. [CrossRef]
6. Chen, Y.; Cao, X.; Zhao, Q.; Meng, D.; Xu, Z. Denoising Hyperspectral Image with Non-i.i.d. Noise Structure. IEEE Trans. Cybern.

2018, 48, 1054–1066. [CrossRef] [PubMed]
7. Nalepa, J.; Myller, M.; Cwiek, M.; Zak, L.; Lakota, T.; Tulczyjew, L.; Kawulok, M. Towards On-Board Hyperspectral Satellite

Image Segmentation: Understanding Robustness of Deep Learning through Simulating Acquisition Conditions. Remote Sens.
2021, 13, 1532. [CrossRef]

8. He, W.; Zhang, H.; Zhang, L.; Shen, H. Total-Variation-Regularized Low-Rank Matrix Factorization for Hyperspectral Image
Restoration. IEEE Trans. Geosci. Remote Sens. 2016, 54, 178–188. [CrossRef]

9. Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering. IEEE
Trans. Image Processing 2007, 16, 2080–2095. [CrossRef]

10. Buades, A.; Coll, B.; Morel, J. A non-local algorithm for image denoising. In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–25 June 2005; Volume 2, pp. 60–65.

11. Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted Nuclear Norm Minimization with Application to Image Denoising. In Proceedings
of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 2862–2869.

12. Xie, W.; Li, Y.; Jia, X. Deep convolutional networks with residual learning for accurate spectral-spatial denoising. Neurocomputing
2018, 312, 372–381. [CrossRef]

13. Zhang, H.; He, W.; Zhang, L.; Shen, H.; Yuan, Q. Hyperspectral Image Restoration Using Low-Rank Matrix Recovery. IEEE Trans.
Geosci. Remote Sens. 2014, 52, 4729–4743. [CrossRef]

14. Rasti, B.; Ulfarsson, M.O.; Ghamisi, P. Automatic Hyperspectral Image Restoration Using Sparse and Low-Rank Modeling. IEEE
Geosci. Remote Sens. Lett. 2017, 14, 2335–2339. [CrossRef]

15. Xue, J.; Zhao, Y.; Liao, W.; Kong, S. Joint Spatial and Spectral Low-Rank Regularization for Hyperspectral Image Denoising. IEEE
Trans. Geosci. Remote Sens. 2017, 56, 1940–1958. [CrossRef]

16. Xue, J.; Zhao, Y.; Liao, W.; Chan, J.C. Nonlocal Low-Rank Regularized Tensor Decomposition for Hyperspectral Image Denoising.
IEEE Trans. Geosci. Remote Sens. 2019, 57, 5174–5189. [CrossRef]

17. Yuan, Q.; Zhang, L.; Shen, H. Hyperspectral Image Denoising Employing a Spectral–Spatial Adaptive Total Variation Model.
IEEE Trans. Geosci. Remote Sens. 2012, 50, 3660–3677. [CrossRef]

18. Aggarwal, H.K.; Majumdar, A. Hyperspectral Image Denoising Using Spatio-Spectral Total Variation. IEEE Geosci. Remote Sens.
Lett. 2016, 13, 442–446. [CrossRef]

19. Li, J.; Yuan, Q.; Shen, H.; Zhang, L. Noise Removal From Hyperspectral Image With Joint Spectral–Spatial Distributed Sparse
Representation. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5425–5439. [CrossRef]

20. Lu, T.; Li, S.; Fang, L.; Ma, Y.; Benediktsson, J.A. Spectral–Spatial Adaptive Sparse Representation for Hyperspectral Image
Denoising. IEEE Trans. Geosci. Remote Sens. 2016, 54, 373–385. [CrossRef]

21. Candès, E.J.; Li, X.; Ma, Y.; Wright, J. Robust principal component analysis? J. ACM 2011, 58, 1–37. [CrossRef]
22. Lefkimmiatis, S.; Roussos, A.; Maragos, P.; Unser, M. Structure Tensor Total Variation. SIAM J. Imaging Sci. 2015, 8, 1090–1122.

[CrossRef]
23. Fei, X.; Miao, J.; Zhao, Y.; Huang, W.; Yu, R. Total Variation Regularized Low-Rank Model With Directional Information for

Hyperspectral Image Restoration. IEEE Access 2021, 9, 84156–84169. [CrossRef]
24. Xie, W.; Li, Y. Hyperspectral Imagery Denoising by Deep Learning With Trainable Nonlinearity Function. IEEE Geosci. Remote

Sens. Lett. 2017, 14, 1963–1967. [CrossRef]
25. Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image

Denoising. IEEE Trans. Image Processing 2017, 26, 3142–3155. [CrossRef] [PubMed]
26. Xie, W.; Li, Y.; Hu, J.; Chen, D.-Y. Trainable spectral difference learning with spatial starting for hyperspectral image denoising.

Neural Netw. 2018, 108, 272–286. [CrossRef]
27. Yuan, Q.; Zhang, Q.; Li, J.; Shen, H.; Zhang, L. Hyperspectral Image Denoising Employing a Spatial–Spectral Deep Residual

Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1205–1218. [CrossRef]
28. Maffei, A.; Haut, J.M.; Paoletti, M.E.; Plaza, J.; Bruzzone, L.; Plaza, A. A Single Model CNN for Hyperspectral Image Denoising.

IEEE Trans. Geosci. Remote Sens. 2020, 58, 2516–2529. [CrossRef]
29. Liu, S.; Feng, J.; Tian, Z. Variational Low-Rank Matrix Factorization with Multi-Patch Collaborative Learning for Hyperspectral

Imagery Mixed Denoising. Remote Sens. 2021, 13, 1101. [CrossRef]

http://doi.org/10.3390/rs10020157
http://doi.org/10.1016/j.compag.2021.106188
http://doi.org/10.1080/10106049.2020.1805031
http://doi.org/10.3390/rs12233984
http://doi.org/10.1155/2018/9683415
http://doi.org/10.1109/TCYB.2017.2677944
http://www.ncbi.nlm.nih.gov/pubmed/28767377
http://doi.org/10.3390/rs13081532
http://doi.org/10.1109/TGRS.2015.2452812
http://doi.org/10.1109/TIP.2007.901238
http://doi.org/10.1016/j.neucom.2018.05.115
http://doi.org/10.1109/TGRS.2013.2284280
http://doi.org/10.1109/LGRS.2017.2764059
http://doi.org/10.1109/TGRS.2017.2771155
http://doi.org/10.1109/TGRS.2019.2897316
http://doi.org/10.1109/TGRS.2012.2185054
http://doi.org/10.1109/LGRS.2016.2518218
http://doi.org/10.1109/TGRS.2016.2564639
http://doi.org/10.1109/TGRS.2015.2457614
http://doi.org/10.1145/1970392.1970395
http://doi.org/10.1137/14098154X
http://doi.org/10.1109/ACCESS.2021.3087916
http://doi.org/10.1109/LGRS.2017.2743738
http://doi.org/10.1109/TIP.2017.2662206
http://www.ncbi.nlm.nih.gov/pubmed/28166495
http://doi.org/10.1016/j.neunet.2018.08.021
http://doi.org/10.1109/TGRS.2018.2865197
http://doi.org/10.1109/TGRS.2019.2952062
http://doi.org/10.3390/rs13061101


Remote Sens. 2022, 14, 3083 24 of 24

30. Zhuang, L.; Ng, M.K.; Fu, X. Hyperspectral Image Mixed Noise Removal Using Subspace Representation and Deep CNN Image
Prior. Remote Sens. 2021, 13, 4098. [CrossRef]

31. Jiang, T.X.; Zhuang, L.; Huang, T.Z.; Zhao, X.L.; Bioucas-Dias, J.M. Adaptive Hyperspectral Mixed Noise Removal. IEEE Trans.
Geosci. Remote Sens. 2022, 60, 1–13. [CrossRef]

32. Xiong, F.; Zhou, J.; Zhao, Q.; Lu, J.; Qian, Y. MAC-Net: Model-Aided Nonlocal Neural Network for Hyperspectral Image
Denoising. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [CrossRef]

33. Kan, Z.; Li, S.; Zhang, Y. Attention-Based Octave Dense Network for Hyperspectral Image Denoising. In Proceedings of the 2021
IEEE 4th International Conference on Big Data and Artificial Intelligence (BDAI), Qingdao, China, 2–4 July 2021; pp. 230–235.

34. Shi, Q.; Tang, X.; Yang, T.; Liu, R.; Zhang, L. Hyperspectral Image Denoising Using a 3-D Attention Denoising Network. IEEE
Trans. Geosci. Remote Sens. 2021, 59, 10348–10363. [CrossRef]

35. Wang, Z.; Shao, Z.; Huang, X.; Wang, J.; Lu, T. SSCAN: A Spatial–Spectral Cross Attention Network for Hyperspectral Image
Denoising. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [CrossRef]

36. Yuan, Y.; Ma, H.; Liu, G. Partial-DNet: A Novel Blind Denoising Model With Noise Intensity Estimation for HSI. IEEE Trans.
Geosci. Remote Sens. 2022, 60, 1–13. [CrossRef]

37. Lempitsky, V.; Vedaldi, A.; Ulyanov, D. Deep Image Prior. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 9446–9454.

38. Sidorov, O.; Hardeberg, J.Y. Deep Hyperspectral Prior: Single-Image Denoising, Inpainting, Super-Resolution. In Proceedings
of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 27–28 October 2019;
pp. 3844–3851.

39. Luo, Y.S.; Zhao, X.L.; Jiang, T.X.; Zheng, Y.B.; Chang, Y. Hyperspectral Mixed Noise Removal via Spatial-Spectral Constrained
Unsupervised Deep Image Prior. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9435–9449. [CrossRef]

40. Imamura, R.; Itasaka, T.; Okuda, M. Zero-Shot Hyperspectral Image Denoising with Separable Image Prior. In Proceedings
of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Korea, 27–28 October 2019;
pp. 1416–1420.

41. Fu, G.; Xiong, F.; Tao, S.; Lu, J.; Zhou, J.; Qian, Y. Learning a Model-Based Deep Hyperspectral Denoiser from a Single Noisy
Hyperspectral Image. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS,
Brussels, Belgium, 11–16 July 2021; pp. 4131–4134.

42. Wang, X.; Luo, Z.; Li, W.; Hu, X.; Zhang, L.; Zhong, Y. A Self-Supervised Denoising Network for Satellite-Airborne-Ground
Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [CrossRef]

43. Qian, Y.; Zhu, H.; Chen, L.; Zhou, J. Hyperspectral Image Restoration With Self-Supervised Learning: A Two-Stage Training
Approach. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–17. [CrossRef]

44. Quan, Y.; Chen, M.; Pang, T.; Ji, H. Self2Self with Dropout: Learning Self-Supervised Denoising from Single Image. In Proceedings
of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020;
pp. 1887–1895.

45. Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

46. Gal, Y.; Ghahramani, Z. Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning. arXiv 2016,
arXiv:1506.02142.

47. Maggioni, M.; Foi, A. Nonlocal Transform-Domain Denoising of Volumetric Data with Groupwise Adaptive Variance Estimation; SPIE:
Bellingham, WA, USA, 2012; Volume 8296.

48. Zhuang, L.; Ng, M.K. Hyperspectral Mixed Noise Removal By l-Norm-Based Subspace Representation. IEEE J. Sel. Top. Appl.
Earth Obs. Remote Sens. 2020, 13, 1143–1157.

49. Nguyen, H.V.; Ulfarsson, M.O.; Sveinsson, J.R. Hyperspectral Image Denoising Using SURE-Based Unsupervised Convolutional
Neural Networks. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3369–3382. [CrossRef]

http://doi.org/10.3390/rs13204098
http://doi.org/10.1109/TGRS.2021.3085779
http://doi.org/10.1109/TGRS.2021.3131878
http://doi.org/10.1109/TGRS.2020.3045273
http://doi.org/10.1109/LGRS.2021.3112038
http://doi.org/10.1109/TGRS.2021.3071799
http://doi.org/10.1109/JSTARS.2021.3111404
http://doi.org/10.1109/TGRS.2021.3064429
http://doi.org/10.1109/TGRS.2021.3137313
http://doi.org/10.1109/TGRS.2020.3008844

	Introduction 
	Materials and Methods 
	Datasets 
	Satellite Hyperspectral Image Degradation 
	3S-HSID Network Framework 
	Dropout Strategy 
	Training Scheme 
	Model Structure 
	Loss Function 
	Denoising Scheme 

	Results 
	Experimental Setup 
	Simulation Denoising Experiment 
	Real Satellite HSIs Denoising Experiment 

	Discussion 
	Hyperparametric Analysis 
	Future Works 

	Conclusions 
	References

