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Abstract: Single-object tracking (SOT) in satellite videos (SVs) is a promising and challenging task in
the remote sensing community. In terms of the object itself and the tracking algorithm, the rotation of
small-sized objects and tracking drift are common problems due to the nadir view coupled with a
complex background. This article proposes a novel rotation adaptive tracker with motion constraint
(RAMC) to explore how the hybridization of angle and motion information can be utilized to boost SV
object tracking from two branches: rotation and translation. We decouple the rotation and translation
motion patterns. The rotation phenomenon is decomposed into the translation solution to achieve
adaptive rotation estimation in the rotation branch. In the translation branch, the appearance and
motion information are synergized to enhance the object representations and address the tracking
drift issue. Moreover, an internal shrinkage (IS) strategy is proposed to optimize the evaluation
process of trackers. Extensive experiments on space-born SV datasets captured from the Jilin-1
satellite constellation and International Space Station (ISS) are conducted. The results demonstrate
the superiority of the proposed method over other algorithms. With an area under the curve (AUC) of
0.785 and 0.946 in the success and precision plots, respectively, the proposed RAMC achieves optimal
performance while running at real-time speed.

Keywords: rotation adaptive; optical flow remapping; satellite video; single-object tracking

1. Introduction

Single-object tracking (SOT), a fundamental but challenging task, allows the estab-
lishment of object correspondences in a video [1]. It is applied in diverse scenarios, such
as surveillance, human-computer interaction, and augmented reality [2,3]. Given only
the initial state of an arbitrary object, the tracker aims to estimate its subsequent states
in a video [4]. Many studies, including deep-learning-based [5–9] and correlation-filter-
based [10–13], have been conducted to improve the tracking effects. Due to the achieve-
ments of the convolutional neural network (CNN), researchers have introduced CNNs
for object tracking. The CNN-SVM [14] combines CNN with a support vector machine
(SVM) [15] to achieve tracking. TCNN [16] and MDNet [6] have demonstrated their perfor-
mance in object tracking. There are also many trackers based on the Siamese network, such
as SiamRPN [7], SiamRPN++ [8] and SiamMask [17]. Deep-SRDCF [18], C-COT [19] and
ECO [20] employ deep features extracted from CNNs to enhance the object representations
but at the cost of high computational complexity. Correlation filter-based methods have
emerged since MOSSE [21] was first proposed. Such methods train the filter by minimizing
the output sum of squared errors. The CSK [22] tracker improves upon MOSSE by introduc-
ing the circulant matrix and kernel trick. However, CSK still uses a simple raw pixel feature
despite improving accuracy and speed. The kernelized correlation filter (KCF) [10] extends
CSK by incorporating a multichannel histogram of oriented gradients (HOG) [23] feature
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and different kernel functions, and it has shown outstanding performance in tracking
objects without rotation. Only a few correlation filters [24–26] have considered rotation. In
addition, tracking drift is a drawback of correlation filters, which may cause the sample
to drift away from the object. Some algorithms (e.g., SRDCF [27] and CSR-DCF [13]) have
been proposed to prevent tracking drift at the expense of high time consumption.

Remote sensing observation capabilities have broadened from static images to dynamic
videos. In 2013, the SkySat-1 video satellite captured panchromatic videos with a ground
sample distance (GSD) of 1.1 m and a frame rate of 30 frames per second (FPS) [28]. In
2016, the International Space Station (ISS) released an ultra-high-definition RGB video
with a GSD of 1.0 m and a frame rate of 3 FPS. From 2015 to the present, members of
the Jilin-1 satellite constellation produced by China Changchun Satellite Technology Co.,
Ltd. (Changchun, China) have been launched. Currently, Jilin-1 can capture 30 FPS RGB
videos with a GSD of 0.92 m. Video satellites in orbit deliver rich, dynamic information on
the Earth’s surface and have been successfully used for SOT [29–31], traffic analysis [32],
stereo mapping [33] and river velocity measurement [34]. However, compared with natural
video (NV), SOT in satellite video (SV) involves many challenges and can be defined as an
emerging subject [35]. The main difficulties are two-fold.

(1) The nadir view makes the rotation (in-plane) of the object a common phenomenon,
as shown in Figure 1b–d; rotation can induce non-rigid deformation of the object
and change the object spatial layout, affecting the performance of the tracking algo-
rithms [36].
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Figure 1. Visualization of object rotation and tracking drift in SVs. The symbol # represents the prefix
of the frame number. The current frame is shown in the upper-left corner of each image. The yellow
arrow indicates the orientation of the object. (a) and (e) show the original frames, and the selected
objects are enlarged. (b–d) show the object rotation. (f–h) show the tracking drift due to the complex
background and low contrast of the ship and wake.

(2) The complex background and low contrast between small-sized objects and the
background can lead to tracking drift of the algorithms [37], as shown in Figure 1f–h.

The KCF [10] has shown promising performance for SOT in SVs [36–39]. However,
HOG-based KCF inherently cannot handle object rotation [40]. The axis-aligned bound-
ing box of the KCF contains more background information, which may cause tracking
drift [36,39]. Moreover, compared to the rotating bounding box, it cannot express accu-
rate semantic information, such as the real size and orientation of the object, as shown in
Figure 2. To address the object rotation and tracking drift issues of SOT in SVs, we proposed
a rotation adaptive tracker with motion constraint (RAMC) consisting of a rotation and a
translation branch in this paper. We performed quantitative and qualitative experiments on
the space-born SV datasets. The experimental results demonstrate that the RAMC tracker
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outperforms state-of-the-art algorithms and runs at over 40 FPS. The major contributions
are summarized as follows:

(1) We analyze the relationship between the intuitive rotation and the potential translation.
And the rotation and translation motion patterns are decoupled by decomposing the
rotation phenomenon into a translation solution. It could achieve adaptive rotation
estimation when applied to SOT in SVs.

(2) The appearance and motion information, contained in adjacent frames, are then
synergized into the framework. It constructs the motion constraint term on the
appearance model to prevent tracking drift and guarantee precise localization.

(3) An internal shrinkage strategy is proposed to narrow the gap between the rotating
and axis-aligned bounding boxes in the evaluation benchmark. It models axis-aligned
rectangles with ellipse-like distributions to optimize the evaluation process.
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2. Background
2.1. Satellite Video Single-Object Tracking

As mentioned previously, the main challenges of SOT in SVs are object rotation and
tracking drift. A few methods have been proposed to solve the object rotation problem
in SVs. Guo et al. [37] detect the orientations of objects by using slope information and
output rotating bounding boxes. Xuan et al. [40] rotate the extracted patch with a fixed-
angle pool to deal with the object rotation issue and obtained axis-aligned bounding boxes.
These methods may be numb to a slight rotational issue. To address tracking drift, some
approaches [29–31,36,37,41,42] have built motion models based on the relatively stable
motion patterns of objects in SVs. In [30,36,37,41,42], the authors use the properties of
the Kalman filter [43] to predict the object position at low tracking confidence, which
attenuates the tracking drift. In [29,31], the motion smoothness and centroid inertia models
are embedded into the tracking framework to reduce tracking drift. However, most of
them [29,31,36,37,41,42] place high demands on positioning accuracy during the initial
stage. Other methods [30,38,39,44] extract the motion features contained in adjacent frames
to prevent tracking drift. Du et al. [44] combine the three-frame-difference approach and
the KCF tracker to obtain the object’s position. Shao et al. [30] construct a refining branch
modeled on Gaussian mixture models (GMM) to reduce the risk of drifting. In [37,38], the
authors use the Lucas–Kanade sparse optical flow [45] feature for SOT in SVs. However,
they ignore the directional information of the optical flow. And the sparse optical flow
makes it difficult to represent pixel-level motion information [46].

To achieve precise angle estimation and localization of SOT in SVs, this study designs a
rotation-adaptive tracking framework with motion constraint. It decouples the rotation and
translation motion patterns by decomposing the rotation issue into a translation solution.
In addition, it further synergizes the appearance and motion information to enhance the
localization performance of SOT in SVs. It guarantees that the proposed method can
estimate slight angle differences of objects and prevent tracking drift.
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2.2. Kernelized Correlation Filter

KCF [10] has shown promising performance for SOT in SVs [36–39]; we exploit and
improve it to address object rotation and tracking drift for accurate semantic representations.
This section introduces the KCF [10] framework based on the training and detection
processes. It applies dense cyclic samples to explore the structural information of an object.
A circulant matrix is used to model specific structures, and the correlation is transformed
into element-wise products by a fast Fourier transform (FFT).

Let an M × N patch x denote a base sample that is centered on an object and is
more than twice the size of the object. All cyclic shifts {xm,n}, (m, n) ∈ {0, . . . , M− 1} ×
{0, . . . , N − 1} are considered dense sampling over the base sample. They are labeled by a
Gaussian function y so that y(m, n) is the label of xm,n.

In the training process, the solution ω is obtained by minimizing the ridge regression
error [10], as follows:

minw ∑
m,n
|〈 ϕ(xm,n), ω〉 − y(m, n)| 2 + λ‖ ω ‖2 (1)

where ϕ is the Hilbert space mapping induced by kernel κ. The inner product is defined
as ϕ(x), ϕ(g) = κ(x, g). A constant λ ≥ 0 is a regularization term that avoids overfitting.
After a powerful nonlinear regression using the kernel trick, the solution ω is

ω = α(m, n)ϕ(xm,n). (2)

The discrete Fourier transform (DFT) of a vector is denoted by a hat (ˆ). The kernel
matrix is a circulant matrix in commonly used kernel functions [10]. Thus, the dual-space
coefficient α is

α̂ =
ŷ

k̂xx + λ
, (3)

where kxx = κ(xm,n, x). A Gaussian kernel is employed to compute the kernel correlation
kxx with element-wise products in the frequency domain. For a patch with C feature
channels, the base sample is x = [x1, x2, . . . , xC]. Therefore, we have

kxx′ = exp
(
− 1

σ2

(
‖ x ‖2 + ‖ x′ ‖2 − 2F−1

(
∑C

i=1 x̂i � x̂
′∗
i

)))
(4)

where F−1 is the inverse Fourier transform (IFT), � denotes element-wise products, ∗
denotes the complex conjugate, and i is the index of feature channels.

In the detection process, patch z in a new frame equal to the size of x is cropped out in
the center of the object in the previous frame. The response map f (z) is solved by:

f (z) =
(
F−1

(
k̂xz � α̂

))
. (5)

The object position is then obtained by determining the maximum value of f (z). To
adapt to changes in the object, the two coefficients x and α are updated [10].

3. Methodology

Figure 3 shows the overall framework of the proposed method, including the rotation
and translation branches. The rotation branch calculates the rotation angle α(t) of the object
to provide an accurate orientation representation. Moreover, the angle is adopted for the
translation branch to yield a stable response map. The translation branch synergizes the
appearance and motion information contained in adjacent frames for positioning to prevent
tracking drift. These two complementary branches are unified for the SOT in SVs.
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Figure 3. Overall framework of the proposed RAMC algorithm. pos(t− 1) and α(t− 1) denote the
position and angle of the object at frame t− 1, respectively. The color code is shown for visualizing
the optical flow, in which the color denotes the displacement direction, and the saturation represents
the displacement magnitude. The appearance and motion lines represent the positioning process of
appearance and motion information, respectively. Two frames separated by T are selected as adjacent
frames to show the overall tracking framework. It yields more intuitive rotation and translation of
the object for visualization.

3.1. Rotation Branch for Adaptive Angle Estimation

Object rotation is common in SVs because of the nadir view. It can cause the spa-
tial layout between the object and background to change, challenging the accuracy and
robustness of object tracking. Since the log-polar conversion can convert the rotation
problem into a potential translation problem, we propose an adaptive angle-estimation
method incorporating Fourier–Mellin registration [47]. The rotation branch consists of
three main parts: log-polar conversion, feature extraction, and phase correlation, which are
introduced briefly.

For the log-polar conversion, I(u, v) and I′(ρ, θ) denote the patches in Cartesian
coordinates and log-polar coordinates, respectively. After giving the pivot point (u0, v0)
and the reference axis (u axis), it is obtained that:

ρ = lg
(√

(u− u0)
2 + (v− v0)

2
)

, (6)

θ = arctan
(

v− v0

u− u0

)
, (7)

where ρ is the log distance between the original point (u, v), the pivot point (u0, v0), lg
indicates log10, and θ denotes the angle between the reference axis and the line through the
pivot and original point.

I2(u, v) is a rotated replica of I1(u, v) with rotation θ0. The correspondences in Carte-
sian coordinates are

I2(u, v) = I1(u cos θ0 + v sin θ0,−u sin θ0 + v cos θ0), (8)



Remote Sens. 2022, 14, 3108 6 of 19

In log-polar coordinates, their correspondences are

I2
′(ρ, θ) = I1

′(ρ, θ − θ0). (9)

It can be seen that the rotation between I2 and I1 is deduced as translation between
I2
′ and I1

′. By calculating the offset θ0, the angle difference between the two patches can
be obtained.

For the feature extraction, the HOG feature is sensitive to the rotation of the object and
can be applied to discriminate the angle difference [40]. In this study, the HOG feature is
extracted in log-polar coordinates and used to calculate the offset θ0 by phase correlation.

For the phase correlation, it can be used to match images translated to each other [47].
Therefore, it is employed to solve θ0. f1(u, v) and f2(u, v) denote the two 2D patches.
f2(u, v) has a (u0, v0) displacement from f1(u, v) along the u axis and v axis, as follows:

f2(u, v) = f1(u− u0, v− v0). (10)

Their Fourier transforms are related by

F2(α, β) = e−j2π(αu0+βv0)F1(α, β), (11)

where F1(α, β) and F2(α, β) denote the DFT of f1(u, v) and f2(u, v), respectively. The
cross-phase spectra of F1(α, β) and F2(α, β) are defined as:

C̃(α, β) =
F1(α, β)F∗2 (α, β)∣∣F1(α, β)F∗2 (α, β)

∣∣ = ej2π(αu0+βv0), (12)

where ej2π(αu0+βv0) is the u and v axis translation in the Fourier domain. By applying the
2D IFT to C̃(α, β), the phase correlation function ϕ of the spatial domain can be obtained by

ϕ(u− u0, v− v0) = F−1
(

ej2π(αu0+βv0)
)

. (13)

In the ϕ, the location (u0, v0) corresponds to the offset between the two images and
can be computed for

(u0, v0) = argmax(ϕ(u− u0, v− v0)). (14)

Through phase correlation, we can finally obtain the offset θ0 = v0, which is the angle
difference between I2(u, v) and I1(u, v).

In tracking, the rotation template temp(1) for the first frame is obtained by extracting
the HOG feature zhog(1) of the log-polar patch representation. In the subsequent frames,
the extracted result zhog(t) at frame t is utilized to compute the angle difference θ(t)
between the temp(t− 1) and zhog(t), as shown in Figure 3. Moreover, to adapt to object
changes (e.g., illumination and deformation), the rotation template temp(t) at frame t is
updated by the learning rate ηθ . The pseudocode of rotation branch procedure is shown in
Algorithm 1. Compared with the methods [37,40] that use slope and angle pool to estimate
the rotation angle of the object, the proposed method may be suitable for achieving accurate
angle estimation and orienting the bounding boxes to a real state in SVs. Stable response
maps can also be obtained under object rotation, thereby enhancing the positioning of the
translation branch.
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Algorithm 1 Rotation Branch Procedure

Input: frame index: t, total frames: N, image frame: frame(t), position: pos(t), rotation template:
temp(t), learning rate of rotation templates: ηθ ;
Output: rotation angle of the object at frame(t): α(t);
1: for t = 1; t <= N; t ++
2: if t = 1
3: /* carry out initialization in the first frame */
4: /* set a tracked object by pos(1 ) */
5: Initialize the angle α(t) in the first frame;
6: Initialize the rotation template temp(1) in the first frame;
7: else
8: Extract rotated patch zα(t) at pos(t − 1) at angle α(t − 1) from frame(t);
9: Convert zα(t) to log-polar coordinates and obtain patch zlp(t);
10: Extract HOG feature zhog(t) of patch zlp(t);
11: Calculate the phase correlation function ϕ between zhog(t) and temp(t − 1);
12: Estimate angle difference θ(t)← argmax(ϕ) ;
13: Update angle α(t)← α(t − 1) + θ(t) ;
14: Update template temp(t)← (1 − ηθ) ∗ temp(t − 1) + ηθ ∗ zhog(t);
15: return: α(t)
16: end if
17: end for

3.2. Translation Branch with Motion Constraint

The object angle α(t) in frame t can be estimated using the rotation branch. The next
stage is to determine the object position (x, y) on the basis of the α(t). In the translation
branch, the input patch of frame t is first rotated by α(t), and then the rotated patch is
fed into the KCF [10] and optical flow remapping (OFR) modules for accurate positioning.
In the KCF module, the issue caused by the object rotation is removed to ensure that
tracking can be achieved using the appearance information of the object, as described in
Section 2.2. In the OFR module, the optical flow represents the apparent motion of the
brightness patterns and captures the motion magnitude and direction information between
adjacent frames [48]. Therefore, the motion state of the object in the previous frame can
be remapped to the current frame using the optical flow feature. To achieve the per-pixel
motion constraint information, we employ Farneback dense optical flow [49] to remap
previous response maps into the current frame.

For the dense optical flow, it approximates the neighborhoods of each pixel using a
quadratic polynomial. Given a local signal model, the local coordinate system E(X) of
pixel X = (x, y)T can be expressed as

E(X) = XT AX + BTX + C, (15)

where A ∈ R2×2, B ∈ R2 and C denote the coefficients of the quadratic polynomial, which
are estimated using a weighted least-squares method. The polynomial coefficients of the
neighborhood change with the pixels of the frame. When a pixel is moved by displacement
D, a new local system is constructed as follows:

E2(X) = E1(X− D) = (X− D)T A1(X− D) + B1
T(X− D) + C1

= XT A1X + (B1 − 2A1D)TX + DT A1D− B1
T D + C1

= XT A2X + B2
TX + C2

, (16)

where A2 = A1, B2 = B1 − 2A1D and C2 = DT A1D − B1
T D + C1 according to the

equality of the polynomial coefficients. From the equation B2 = B1 − 2A1D, we obtain
D = − 1

2 A1
−1(B2 − B1) and solve it by minimizing the objective function:

e(X) = ‖ AD− ∆B ‖2, (17)
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where ∆B = − 1
2 (B2 − B1). In order to suppress the excessive noise caused by single-point

optimization [49], the neighborhood δ of pixel X is integrated to obtain the solution from

argminD(X) ∑
∆X∈δ

ω(∆X)‖ A(X + ∆X)D(X)− ∆B(X + ∆X) ‖2, (18)

where ω(∆X) denotes the 2D Gaussian weight function of the neighborhood points. The
displacements of the pixels can be solved by

D(X) =
(
∑ ωAT A

)−1
∑ ωAT∆B. (19)

The optical flow obtained represents the direction and magnitude of each pixel in the
frame. The response map containing the historical states of the object is then remapped to
the current frame for positioning.

For the remapping, it is the process of transferring each pixel of the original image
g(x, y) with size M× N to the target image G(x, y). The process is

G
(

xi, yj
)
= g

(
R
(
xi, yj

))
, i ∈ {1, · · · , M}, j ∈ {1, · · · , N}, (20)

where R denotes the mapping relationship that specifies the motion direction and mag-
nitude of each pixel in the original image. Therefore, the optical flow at frame t can be
regarded as the mapping relationship R

(
xi, yj

)
= D

(
xi, yj

)
, and the previous response map

at frame t− 1 is remapped to the current frame t, as shown in Figure 4.
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Figure 4. Visualization of the optical flow remapping process. In the last row, each pixel of the target
response map is traversed to calculate its corresponding position in the previous response map. If the
position does not exist, the values of its neighboring pixels will be interpolated to determine the pixel
value in the target response map.

We implement object tracking with motion constraint in the SVs in the translation
branch. To comprehensively exploit the motion and appearance information, the OFR
module works with the KCF module to obtain the object position pos (t), thereby addressing
the tracking drift.
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4. Experimental Details and Analysis
4.1. Experimental Settings
4.1.1. Datasets

We conduct extensive experiments using eight high-resolution SVs. Seven SVs are
obtained from the Jilin-1 satellite constellation launched by Chang Guang Satellite Tech-
nology Co., Ltd. (Changchun, China). Moreover, only the Vancouver dataset is acquired
using a high-resolution iris camera installed on the ISS. These datasets are divided into two
groups: those with rotation (i.e., Dubai, Muharraq, Hong Kong, and Boston) and those with-
out rotation (i.e., San Diego, Vancouver, Minneapolis, and San Francisco) to demonstrate
the tracking effectiveness of the proposed method for rotating and non-rotating objects.
Tracked targets include cars, planes, trains, and ships. These objects are represented by
rotating bounding boxes annotated with four corner coordinates. One region of each SV is
cropped for clear visualization. Table 1 provides detailed information about the datasets.
Figure 5 shows the first frames, cropped regions, and tracked objects.

Table 1. Details of the SV datasets. “px” = pixels.

SVs Frame Size (px) Cropped Region Size (px) GSD (m) Frame Number Target Target Size (px) Rotation

Dubai 4096 × 3072 256 × 218 0.92 147 Car 15 × 7
√

Muharraq 4096 × 2160 174 × 193 0.92 500 Car 13 × 6
√

Hong Kong 4096 × 3720 268 × 216 0.92 164 Car 14 × 7
√

Boston 4096 × 3720 215 × 300 0.92 320 Plane 36 × 33
√

San Diego 4090 × 2160 135 × 94 0.92 228 Car 13 × 6 –
Vancouver 3840 × 2160 501 × 487 0.92 405 Train 16 × 80 –

Minneapolis 4090 × 2160 336 × 328 0.92 268 Car 24 × 7 –
San Francisco 3840 × 2160 501 × 501 1.00 500 Ship 15 × 9 –
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Figure 5. The SV datasets used in the experiments. A region marked by a yellow rectangle in each
dataset is cropped out, and the tracked object, marked by the green rectangle, is displayed enlarged.

4.1.2. Evaluation Metrics

To measure the performance of the tracking algorithms, two protocols (success and
precision plots) in the online tracking benchmark [50,51] are used. The success plot displays
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the percentages of scenarios in which the overlap between the estimated bounding box be
and ground truth bg is larger than the threshold of ts ∈ [0, 1]:

overlap =

∣∣bg ∩ be
∣∣∣∣bg ∪ be
∣∣ , (21)

where ∩ and ∪ denote intersection and union operators, respectively, and |·| denotes the
number of pixels in the region. The precision plot records the percentage of scenarios in
which the center location error (CLE) between the estimated location and ground truth is
smaller than the threshold tp ∈ [1, 50]. The area under the curve (AUC) of the success and
precision plots is selected to rank all trackers, avoiding unfair comparisons due to specific
thresholds. We mainly rank trackers based on the AUC of the success plot because of its
representativeness in evaluation [52]. The FPS is used to evaluate tracking speed.

To narrow the gap between the rotating and axis-aligned bounding boxes in the
evaluation, we propose an internal-shrinkage (IS) strategy, as shown in Figure 6.
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Figure 6. Visualization of different bounding boxes. (a) shows the external rectangle of the rotating
bounding box. (b) shows the effect of angle deviation on the external rectangle. (c) presents the
internal-shrinkage strategy for evaluation.

Most algorithms receive (initialize) and yield (output) axis-aligned bounding boxes.
To optimize the evaluation process, we attempt to initialize and evaluate the algorithms
using an external rectangle, as shown in Figure 6a. In this way, the initial bounding box
contains many backgrounds, and even a small angle deviation may greatly affect the
overlap between the estimated external rectangle and the ground truth rectangle, as shown
in Figure 6b. Considering that the object of SV appears as an ellipse-like distribution
pattern, we compute the internal ellipse followed by its external rectangle, as shown in
Figure 6c. Finally, we use the internal rectangle to initialize trackers that can only receive
axis-aligned labels. In this way, the estimated rotating bounding boxes are converted to an
external rectangle using the proposed IS strategy for the evaluation.

4.1.3. Implementation Details

Considering the relatively slight object changes (e.g., illumination, deformation) in a
short time, the learning rate of the rotation template is set as ηθ = 0.01. The cell size and
orientation of the HOG feature are set to 4 × 4 and 9, respectively, for accurate tracking, as
commonly used in [36,40]. The other parameters related to KCF are referred to [10]. The
trackers are executed on a workstation with a 3.20 GHz Intel(R) Xeon(R) Gold 6134 CPU
(32-core) and NVIDIA GeForce RTX 2080 Ti GPU.

To correctly select the fusion weight ω for optical flow remapping, we randomly
selected three of the eight SVs for the experiments. Table 2 presents the experimental
details, and Figure 7 shows the AUC of the success and precision plots. It can be seen that
both the AUC of the success and precision plots tended to increase and then decrease as the
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weights increased. The results are ideal when the weight is approximately 0.36. Therefore,
this weight ω = 0.36 is used in subsequent experiments.

Table 2. AUC of the success and precision plots on a randomly picked data set.

Weights 0 0.06 0.12 0.18 0.24 0.30 0.36 0.42 0.48 0.54 0.60 0.66 0.72 0.78 0.84 0.90 0.96

Success plot 0.473 0.642 0.663 0.675 0.611 0.476 0.729 0.720 0.701 0.699 0.681 0.270 0.277 0.106 0.081 0.085 0.192
Precision plot 0.579 0.765 0.805 0.831 0.764 0.597 0.881 0.871 0.863 0.861 0.846 0.364 0.355 0.152 0.108 0.153 0.283
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4.2. Ablation Experiments

The proposed method incorporated two major improvements: (1) angle estimation
(AE) and (2) optical flow remapping (OFR). To validate their performance, three variants of
RAMC are tested: Baseline (only KCF [10]), Base_AE (add AE to Baseline), and Base_OFR
(add OFR to Baseline). Table 3 lists the components of these variants and the experimental
results, and Figure 8 shows the success and precision plots. By comparing the Baseline
and Base_AE, Base_AE yields a 13.9% and 18% gain in the AUC of the success and preci-
sion plots, respectively, after adding the AE. When comparing the proposed RAMC and
Base_OFR, we find a 14.5% and 3.6% reduction in the AUC of the success and precision
plots, respectively, when removing the AE. Owing to the absence of AE, object rotation
can adversely affect the tracking performance. By comparing the Baseline and Base_OFR,
Base_OFR obtains 34.4% and 34.2% in the AUC of the success and precision plots, respec-
tively, after adding the OFR. In contrast with Base_AE, the proposed RAMC yields a 35%
and 19.8% improvement in the AUC of the success and precision plots, respectively, when
adding the OFR. This is because OFR exploits the underlying motion information in adja-
cent frames to prevent tracking drift. Owing to the synergy of the AE for the rotation branch
and OFR for the translation branch, the proposed RAMC yields optimal performance.

Table 3. Components and results of ablation experiments.

Trackers KCF +AE +OFR Success Plot Precision Plot

Baseline
√

– – 0.296 0.568
Base_AE

√ √
– 0.435 0.748

Base_OFR
√

–
√

0.640 0.910
RAMC

√ √ √
0.785 0.946
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4.3. Comparisons on Satellite Video Datasets
4.3.1. Quantitative Evaluation

We compare the proposed RAMC with 13 competing algorithms: KCF [10], SAMF [53],
Staple [11], BACF [12], ECO [20], SiamRPN [7], STRCF [54] SiamRPN++ [8], ASRCF [55],
LDES [26], GFS-DCF [56], AutoTrack [57], and CFME [36]. Table 4 summarizes the charac-
teristics and experimental results for these trackers, sorted by the AUC of the success plot.
Figure 9 shows the average success and precision plots. The proposed RAMC performs op-
timally with an AUC of 0.785 in the success plot and 0.946 in the precision plot. Algorithms
that cannot cope with object rotation (such as KCF, SAMF, AutoTrack, and CFME) generally
achieve inferior performances. The baseline KCF achieves the worst performance owing to
the limited representation of the HOG. AutoTrack outperforms SAMF by 23.3% and 21.4%
in the success and precision plots, respectively, by exploiting local and global information.
CFME obtains AUC of 0.613 and 0.855 in the success and precision plots, respectively,
because it uses the motion model to mitigate tracking drift. However, they cannot adapt
to object rotation. Generally, algorithms that can cope with rotation but cannot cope with
tracking drift (such as SiamRPN, GFS-DCF, LDES, ECO, and SiamRPN++) improve track-
ing performance. SiamRPN, GFS-DCF, ECO, and SiamRPN++ use rotation-invariant deep
features to achieve satisfactory performance. However, these algorithms ignore the motion
information hidden in adjacent frames and encounter tracking drift. Compared with the
champion ECO of the VOT2017 challenge, RAMC produces a gain of 13.4% and 0.7% in the
success and precision plots, respectively. Compared with SiamRPN++, which uses deep
networks and a multi-layer aggregation mechanism, RAMC achieves a 6.2% higher success
rate owing to the consideration of angle and motion information. The results suggest that
RAMC can synergize the AE of the rotation branch and the OFR of the translation branch
to cope with object rotation and tracking drift issues, yielding superior tracking effects.
Meanwhile, it can run at over 40 FPS. The frame rate of SVs is usually 10 FPS. A tracker
with a speed higher than 20 FPS can be considered as a real-time algorithm [38,39].

To further evaluate all the algorithms, we conducted two sets of experiments on
datasets with rotation (Rotation) and without rotation (Nrotation). Table 5 summarizes the
experimental results, and Figure 10 shows the success and precision plots. For the Rotation
dataset, the proposed RAMC obtains better accuracy than that of KCF, SAMF, AutoTrack,
and CFME due to considering the rotation issue. The LDES can estimate the rotation
angle but ignores the inter-frame motion information. In addition, slight background
jitter can affect its accuracy in estimating the angle of small-sized objects. Compared to
ECO, ASRCF, and GFS-DCF, which use rotation-invariant deep features, the proposed
RAMC exceeds them by 18.9%, 17.5%, and 14% in the success plot, respectively. RAMC has
the highest AUC of 0.796 in the success plot, followed by SiamRPN++ (0.732) in second



Remote Sens. 2022, 14, 3108 13 of 19

place, and SiamRPN (0.716) in third place. This is because it considers inter-frame motion
information on top of the AE, resulting in optimal performance. Compared with SiamRPN,
RAMC yields a reduction of only 0.6% in the precision plot. This is because the complex
background affects the direction of the optical flow vector, causing motion constraint bias.

Table 4. Details of trackers and experimental results on datasets. The top three of each met-
ric is bolded. “MR” = Mechanisms for Rotation. “MTD” = Mechanisms for Tracking Drift.
For trackers, “TGRS” = IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. For
framework, “KCF” = Kernelized Correlation Filter, “DCF” = Discriminative Correlation Filter,
“SiameseFC” = Fully Convolutional Siamese Network, “II” = Integral Image and “CCF” = Continuous
Convolution Filter. For features, “HOG” = HOG, “CN” = Color Names, “ConvFeat” = Convolutional
Features, “CH” = Color Histogram and “OF” = Optical Flow.

Trackers Framework Features MR MTD Success Plot Precision Plot FPS

KCF (TPAMI 2015) KCF HOG – – 0.296 0.568 231.53
SAMF (ECCV 2014) KCF HOG + CN – – 0.373 0.702 48.03
BACF (ICCV 2017) KCF HOG – – 0.508 0.884 52.98

STRCF (CVPR 2018) DCF ConvFeat + HOG + CN
√

– 0.550 0.851 18.89
AutoTrack (CVPR 2020) DCF HOG + CN – – 0.606 0.916 51.90

CFME (TGRS 2020) KCF HOG –
√

0.613 0.855 104.36
ASRCF (CVPR 2019) KCF ConvFeat + HOG

√
– 0.621 0.935 21.17

SiamRPN (CVPR 2018) SiameseFC ConvFeat
√

– 0.625 0.910 62.76
Staple (CVPR 2016) DCF + II HOG + CH

√
– 0.625 0.856 85.32

GFS-DCF (ICCV 2019) DCF ConvFeat + HOG + CN
√

– 0.630 0.940 3.20
LDES (AAAI 2019) DCF HOG + CH

√
– 0.647 0.824 21.72

ECO (CVPR 2017) CCF ConvFeat
√

– 0.651 0.944 2.63
SiamRPN++ (CVPR 2019) SiameseFC ConvFeat

√
– 0.723 0.951 33.03

RAMC (proposed) KCF HOG + OF
√ √

0.785 0.946 42.47
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Figure 9. Success plot (a) and precision plot (b) of all algorithms.

For the Nrotation dataset, RAMC obtains top-ranked results with AUC of 0.774 and
0.928 in the success and precision plots, respectively. SiamRPN++ produces a satisfactory
performance. However, it uses only the appearance information of objects while ignoring
motion information. Small-sized objects with similar surroundings may cause tracking
drift and degrade tracking effects. Compared to SiamRPN++, RAMC gains the AUC by
5.9% of the success plot. In comparison to ECO, RAMC achieves a 7.8% gain in the success
plot. Compared to CFME, RAMC also gains the AUC by 6% of the success plot. The LDES
achieves promising performance, with an AUC of 0.724, ranking second in the success
plot, since it employs a block coordinate descent (BCD) solver to find the best state for
coping with illumination changes and deformations. However, RAMC improves the AUC
by 5.0% in the success plot by extracting the motion information contained in adjacent
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frames. Overall, the proposed RAMC can synergize the AE of the rotation branch and OPR
of the translation branch to achieve accurate and robust tracking.

Table 5. The results of all algorithms on the Rotation and Nrotation datasets. The top three of each
metric is bolded.

Trackers
Rotation Nrotation

Success Plot Precision Plot Success Plot Precision Plot

KCF (TPAMI 2015) 0.399 0.707 0.194 0.429
SAMF (ECCV 2014) 0.464 0.815 0.283 0.589
BACF (ICCV 2017) 0.494 0.935 0.523 0.833

STRCF (CVPR 2018) 0.587 0.942 0.513 0.760
AutoTrack (CVPR 2020) 0.636 0.947 0.576 0.885

CFME (TGRS 2020) 0.513 0.769 0.714 0.940
ASRCF (CVPR 2019) 0.621 0.948 0.621 0.921

SiamRPN (CVPR 2018) 0.716 0.970 0.534 0.851
Staple (CVPR 2016) 0.681 0.956 0.568 0.757

GFS-DCF (ICCV 2019) 0.656 0.965 0.604 0.916
LDES (AAAI 2019) 0.569 0.715 0.724 0.933
ECO (CVPR 2017) 0.607 0.938 0.696 0.949

SiamRPN++ (CVPR 2019) 0.732 0.966 0.715 0.936
RAMC (proposed) 0.796 0.964 0.774 0.928
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(c) and (d) indicate the success plot and precision plot under the Nrotation datasets, respectively.

4.3.2. Qualitative Evaluation

Figure 11 presents visualization comparisons of the top four trackers. In the Dubai
data, only RAMC and SiamRPN++ successfully track the car; however, SiamRPN++ outputs
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axis-aligned bounding boxes that cannot provide the rotation angle of the object. The ECO
fails to deal with scale changes and encounters tracking drift. The LDES cannot adapt to
the object’s fast rotation and similar background and eventually loses the object. In the
Boston data, RAMC, LDES, and SiamRPN++ all locate the plane. Moreover, RAMC and
LDES can also obtain the object’s angle information. The angle estimation effects of RAMC
are superior to those of LDES, owing to the motion constraint. The ECO gradually drifts
away from the object. RAMC and ECO accurately locate the train in the Vancouver data.
Compared with ECO, RAMC can obtain more semantic representations, including the size
and motion direction. The bounding boxes of SiamRPN + + tend to be smaller and drift
away from the train. This is because motion blur deteriorates the tracking template of the
train, which affects the RPN module migrated from the faster R-CNN [58] to regress to
the correct position and scale. LDES incorrectly estimates the scale owing to motion blur.
In the other cases shown in Figure 11, RAMC is better at estimating the rotation angle
and position of the objects. The quantitative results verify its outstanding performance in
estimating the angle and preventing tracking drift.
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Figure 11. Tracking examples of the top four trackers. The symbol × means tracking failure. The
bounding boxes are thinned for better visualization of the tracking effect differences, best viewed by
zooming in.

5. Discussion

The experimental results demonstrate the effectiveness of the proposed approach in
tracking rotating and non-rotating objects in SVs. Compared to those trackers that consider
the rotation issue, the proposed method can perceive small angle deviations and provide
more accurate orientation and size information. For example, the method of [37] can also
detect the orientation of objects by computing the slope of object centroids. However, the
slope defined in [37] may be difficult to represent the orientations of objects with obvious
angle changes. The method of [40] uses the fixed-angle pool to solve object rotation and
outputs the axis-aligned bounding boxes, which ignores accurate semantic information
(e.g., real size, orientation of the object). Compared to [37,40], the proposed approach may
be suitable to represent the orientations of objects with tiny and obvious angle changes
and yield-rotating bounding boxes due to precise angle estimation effects of the rotation
branch. In contrast to those trackers that handle the tracking drift issue, it guarantees
precise localization assisted by the hybridization of angle and motion information. The
methods of [38,39] also use optical flow for tracking. However, in [38,39], the Lucas–
Kanade sparse optical flow [45] is regarded as a feature for representation, which may
make it difficult to represent pixel-level motion information. In addition, [38,39] focus
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on considering the magnitudes of the optical flow and ignore the directional information.
The proposed approach explores the effects of dense optical flow, which is capable of
representing the pixel-level motion information. Furthermore, magnitudes coupled with
directions of the optical flow are incorporated to prevent tracking drift and enhance the
tracking performance.

The advantages of the proposed method are attributed to its branches (i.e., rotation
and translation branches) in estimating the rotation angle and preventing tracking drift.
In the estimation of rotation angle (i.e., rotation branch), this study attempts to reveal
the relationship between the rotation and the translation. The rotation phenomenon is
decomposed into the translation solution to achieve adaptive rotation estimation. In this
way, the angle difference between adjacent frames can be obtained precisely by solving
the translation problem. Figure 12 shows the effect of rotation angle estimation with a
sample of the original (Figure 12a) and rotated patches (Figure 12b). In Figure 12b, the
original ones are rotated to the initial orientation of the first frame by the estimated angle.
It can ensure the spatial consistency of the adjacent patches as much as possible, allowing
stable response results. Furthermore, the appearance and motion information contained
in adjacent frames are synergized to enhance the object representations and deal with
the tracking drift issue in the translation branch with motion constraint. To achieve the
per-pixel motion constraint, the motion state of the object in the previous frame can be
remapped to the current frame using the dense optical flow feature. Moreover, the proposed
method can orient the bounding box to a more realistic object state with precise angle,
size, and location information, and the results would serve a variety of scenarios (e.g., 2-D
pose estimation of moving objects in a video, precise representations of dense objects in
remote-sensing images, etc.).
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Figure 12. Visual comparison of original patches (a) and rotated patches (b).

This paper verifies the significance of angle estimation and motion constraints for SOT
in SVs. This work will help exploit the potential of satellite videos for applications such as
traffic analysis, disaster response, and military target surveillance.

6. Conclusions

SOT in SVs has great potential for remote-sensing ground surveillance. To address
object rotation and tracking drift problems, we analyzed the task from a new perspective,
where the hybridization of angle and motion information cooperates for SOT in SVs. In
addition, an RAMC tracker consisting of rotation and translation branches was created.
By decomposing the rotation issue into translation solution, it decouples the rotation and
translation motion patterns, achieving adaptive angle estimation. Subsequently, we dug out
potential motion information and synergized it with the appearance information to prevent
tracking drift. Moreover, an IS strategy was proposed to optimize the evaluation of trackers.
Quantitative and qualitative experiments were conducted on space-born SV datasets. The
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results demonstrate that the proposed method yields state-of-the-art performance and runs
at real-time speed. Future work will focus on solving the angle jitter problem.
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