Can Satellite-Based Thermal Anomalies Be Indicative of Heatwaves? An Investigation for MODIS Land Surface Temperatures in the Mediterranean Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Weather Station Observations
2.2. Satellite-Based Measurements
2.3. Heatwaves
2.4. LST Anomalies
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Code | Name | Country | Lat. | Lon. | Elevation | Land Cover 1 |
---|---|---|---|---|---|---|
BKM00014654 | Sarajevo | Bosnia and Herzegovina | 43.868 | 18.423 | 630 | 13 |
FR000007630 | Toulouse-Blagnac | France | 43.621 | 1.379 | 151 | 10 |
FR000007747 | Perpignan | France | 42.737 | 2.873 | 42 | 13 |
FRE00104112 | Embrun | France | 44.566 | 6.502 | 871 | 13 |
FRE00104116 | Tarbes-Ossun | France | 43.188 | 0 | 360 | 14 |
FRE00104124 | Bastia | France | 42.541 | 9.485 | 10 | 10 |
FRE00104907 | Montelimar | France | 44.581 | 4.733 | 73 | 13 |
FRE00106203 | Mont-De-Marsan | France | 43.909 | 0.500 | 59 | 12 |
FRE00106205 | St-Girons | France | 43.005 | 1.107 | 414 | 9 |
FRM00007535 | Gourdon | France | 44.745 | 1.397 | 260 | 9 |
GR000016716 | Hellinikon | Greece | 37.9 | 23.75 | 10 | 13 |
HRE00105217 | Split Marjan | Croatia | 43.517 | 16.433 | 122 | 13 |
IT000016239 | Roma Ciampino | Italy | 41.783 | 12.583 | 105 | 12 |
IT000016320 | Brindisi | Italy | 40.633 | 17.933 | 10 | 13 |
IT000162240 | Vigna Di Valle | Italy | 42.083 | 12.217 | 266 | 11 |
IT000162580 | Monte S. Angelo | Italy | 41.7 | 15.95 | 844 | 10 |
PO000008535 | Lisboa Geofisica | Portugal | 38.717 | −9.15 | 77 | 13 |
RIE00100814 | Nis | Serbia | 43.333 | 21.9 | 201 | 13 |
RIE00100818 | Belgrade (Observatory) | Serbia | 44.8 | 20.467 | 132 | 13 |
ROE00108889 | Bucuresti-Baneasa | Romania | 44.517 | 26.083 | 90 | 13 |
ROE00108893 | Craiova | Romania | 44.23 | 23.87 | 192 | 12 |
SP000003195 | Madrid-Retiro | Spain | 40.412 | −3.678 | 667 | 13 |
SP000006155 | Malaga Aeropuerto | Spain | 36.667 | −4.488 | 7 | 13 |
SP000008027 | San Sebastian-Igueldo | Spain | 43.307 | −2.039 | 251 | 8 |
SP000008181 | Barcelona/Aeropuerto | Spain | 41.293 | 2.0697 | 4 | 13 |
SP000008202 | Salamanca Aeropuerto | Spain | 40.959 | −5.498 | 790 | 12 |
SP000008215 | Navacerrada | Spain | 40.781 | −4.01 | 1894 | 9 |
SP000008280 | Albacete Los Llanos | Spain | 38.952 | −1.863 | 704 | 7 |
SP000008410 | Cordoba Aeropuerto | Spain | 37.844 | −4.846 | 90 | 9 |
SP000009434 | Zaragoza Aeropuerto | Spain | 41.662 | −1.008 | 247 | 7 |
SP000009981 | Tortosa-Observatorio Del Ebr | Spain | 40.821 | 0.491 | 44 | 9 |
SP000060338 | Melilla | Morocco | 35.278 | −2.955 | 47 | 13 |
SPE00119729 | Santiago De Compostela/Labacol | Spain | 42.888 | −8.411 | 370 | 8 |
SPE00119909 | Burgos-Villafria | Spain | 42.356 | −3.632 | 890 | 13 |
SPE00119945 | Jerez De La Frontera | Spain | 36.751 | −6.056 | 27 | 12 |
SPE00119990 | Santander/Parayas | Spain | 43.429 | −3.831 | 5 | 13 |
SPE00120062 | Cuenca | Spain | 40.067 | −2.138 | 945 | 13 |
SPE00120125 | Molina De Aragon | Spain | 40.844 | −1.885 | 1056 | 7 |
SPE00120161 | Huesca | Spain | 42.083 | 0.326 | 541 | 10 |
SPE00120188 | Logrono-Agoncillo | Spain | 42.452 | −2.331 | 353 | 12 |
SPE00120224 | Leon Virgen Del Camino | Spain | 42.589 | −5.649 | 916 | 10 |
SPE00120233 | Ponferrada | Spain | 42.564 | −6.6 | 534 | 9 |
SPE00120278 | Madrid/Barajas | Spain | 40.467 | −3.556 | 609 | 10 |
SPE00120287 | Madrid/Cuatrovientos | Spain | 40.378 | −3.789 | 687 | 13 |
SPE00120296 | Madrid/Getafe | Spain | 40.3 | −3.722 | 617 | 13 |
SPE00120305 | Madrid/Torrejon | Spain | 40.483 | −3.450 | 611 | 7 |
SPE00120332 | Murcia/Alcantarilla | Spain | 37.958 | −1.229 | 85 | 10 |
SPE00120350 | Pamplona (Observatorio) | Spain | 42.817 | −1.636 | 442 | 13 |
SPE00120413 | Vigo Peinador | Spain | 42.239 | −8.624 | 261 | 9 |
SPE00120503 | Moron De La Frontera | Spain | 37.158 | −5.616 | 87 | 12 |
SPE00120512 | Sevilla/San Pablo | Spain | 37.417 | −5.879 | 34 | 7 |
SPE00120521 | Soria | Spain | 41.775 | −2.483 | 1082 | 10 |
SPE00120530 | Reus/Aeropuerto | Spain | 41.149 | 1.179 | 71 | 10 |
SPE00120602 | Valladolid (Villanubla) | Spain | 41.7 | −4.85 | 846 | 12 |
SPE00120611 | Bilbao Aeropuerto | Spain | 43.298 | −2.906 | 42 | 13 |
SPE00120620 | Zamora | Spain | 41.517 | −5.733 | 656 | 13 |
SPE00120629 | Daroca | Spain | 41.114 | −1.41 | 779 | 10 |
TU000017375 | Finike | Turkey | 36.316 | 30.15 | 2 | 12 |
References
- Fischer, E.M.; Seneviratne, S.I.; Vidale, P.L.; Lüthi, D.; Schär, C. Soil Moisture–Atmosphere Interactions during the 2003 European Summer Heat Wave. J. Clim. 2007, 20, 5081–5099. [Google Scholar] [CrossRef]
- Dole, R.; Hoerling, M.; Perlwitz, J.; Eischeid, J.; Pegion, P.; Zhang, T.; Quan, X.-W.; Xu, T.; Murray, D. Was There a Basis for Anticipating the 2010 Russian Heat Wave? Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Overland, J.E. Causes of the Record-Breaking Pacific Northwest Heatwave, Late June 2021. Atmosphere 2021, 12, 1434. [Google Scholar] [CrossRef]
- Barriopedro, D.; Fischer, E.M.; Luterbacher, J.; Trigo, R.M.; García-Herrera, R. The Hot Summer of 2010: Redrawing the Temperature Record Map of Europe. Science 2011, 332, 220–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, E.M.; Sippel, S.; Knutti, R. Increasing Probability of Record-Shattering Climate Extremes. Nat. Clim. Chang. 2021, 11, 689–695. [Google Scholar] [CrossRef]
- Coumou, D.; Rahmstorf, S. A Decade of Weather Extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Dosio, A.; Mentaschi, L.; Fischer, E.M.; Wyser, K. Extreme Heat Waves under 1.5 °C and 2 °C Global Warming. Environ. Res. Lett. 2018, 13, 054006. [Google Scholar] [CrossRef] [Green Version]
- Russo, S.; Sillmann, J.; Fischer, E.M. Top Ten European Heatwaves since 1950 and Their Occurrence in the Coming Decades. Environ. Res. Lett. 2015, 10, 124003. [Google Scholar] [CrossRef]
- Anderson, G.B.; Bell, M.L. Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 US Communities. Environ. Health Perspect. 2011, 119, 210–218. [Google Scholar] [CrossRef] [Green Version]
- Koppe, C.; Kovats, S.; Jendritzky, G.; Menne, B. Heat-Waves: Risks and Responses; World Health Organization, Regional Office for Europe: Geneva, Switzerland, 2004. [Google Scholar]
- Mora, C.; Counsell, C.W.; Bielecki, C.R.; Louis, L.V. Twenty-Seven Ways a Heat Wave Can Kill You: Deadly Heat in the Era of Climate Change. Circ. Cardiovasc. Qual. Outcomes 2017, 10, e004233. [Google Scholar] [CrossRef]
- Gampe, D.; Zscheischler, J.; Reichstein, M.; O’Sullivan, M.; Smith, W.K.; Sitch, S.; Buermann, W. Increasing Impact of Warm Droughts on Northern Ecosystem Productivity over Recent Decades. Nat. Clim. Chang. 2021, 11, 772–779. [Google Scholar] [CrossRef]
- Stillman, J.H. Heat Waves, the New Normal: Summertime Temperature Extremes Will Impact Animals, Ecosystems, and Human Communities. Physiology 2019, 34, 86–100. [Google Scholar] [CrossRef] [PubMed]
- Burillo, D.; Chester, M.V.; Ruddell, B.; Johnson, N. Electricity Demand Planning Forecasts Should Consider Climate Non-Stationarity to Maintain Reserve Margins during Heat Waves. Appl. Energy 2017, 206, 267–277. [Google Scholar] [CrossRef]
- Alexander, L.V.; Zhang, X.; Peterson, T.C.; Caesar, J.; Gleason, B.; Klein Tank, A.M.G.; Haylock, M.; Collins, D.; Trewin, B.; Rahimzadeh, F.; et al. Global Observed Changes in Daily Climate Extremes of Temperature and Precipitation. J. Geophys. Res. Atmos. 2006, 111, 1042–1063. [Google Scholar] [CrossRef] [Green Version]
- Collins, D.; Della-Marta, P.; Plummer, N.; Trewin, B. Trends in Annual Frequencies of Extreme Temperature Events in Australia. Aust. Meteorol. Mag. 2000, 49, 277–292. [Google Scholar]
- Fischer, E.M.; Schär, C. Consistent Geographical Patterns of Changes in High-Impact European Heatwaves. Nat. Geosci. 2010, 3, 398–403. [Google Scholar] [CrossRef]
- Nairn, J.R.; Fawcett, R.J.B. The Excess Heat Factor: A Metric for Heatwave Intensity and Its Use in Classifying Heatwave Severity. Int. J. Environ. Res. Public. Health 2015, 12, 227–253. [Google Scholar] [CrossRef] [Green Version]
- Perkins, S.E.; Alexander, L.V. On the Measurement of Heat Waves. J. Clim. 2013, 26, 4500–4517. [Google Scholar] [CrossRef]
- Robinson, P.J. On the Definition of a Heat Wave. J. Appl. Meteorol. Climatol. 2001, 40, 762–775. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of Extreme Heat Waves in Present Climate and Their Projection in a Warming World. J. Geophys. Res. Atmos. 2014, 119, 12500–12512. [Google Scholar] [CrossRef] [Green Version]
- Perkins, S.E.; Alexander, L.V.; Nairn, J.R. Increasing Frequency, Intensity and Duration of Observed Global Heatwaves and Warm Spells. Geophys. Res. Lett. 2012, 39, 10. [Google Scholar] [CrossRef]
- Hobday, A.J.; Alexander, L.V.; Perkins, S.E.; Smale, D.A.; Straub, S.C.; Oliver, E.C.J.; Benthuysen, J.A.; Burrows, M.T.; Donat, M.G.; Feng, M.; et al. A Hierarchical Approach to Defining Marine Heatwaves. Prog. Oceanogr. 2016, 141, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Perkins, S.E. A Review on the Scientific Understanding of Heatwaves—Their Measurement, Driving Mechanisms, and Changes at the Global Scale. Atmos. Res. 2015, 164–165, 242–267. [Google Scholar] [CrossRef]
- Miralles, D.G.; Teuling, A.J.; van Heerwaarden, C.C.; Vilà-Guerau de Arellano, J. Mega-Heatwave Temperatures Due to Combined Soil Desiccation and Atmospheric Heat Accumulation. Nat. Geosci. 2014, 7, 345–349. [Google Scholar] [CrossRef]
- Zschenderlein, P.; Fink, A.H.; Pfahl, S.; Wernli, H. Processes Determining Heat Waves across Different European Climates. Q. J. R. Meteorol. Soc. 2019, 145, 2973–2989. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.; Dickinson, R.E. Land Surface Skin Temperature Climatology: Benefitting from the Strengths of Satellite Observations. Environ. Res. Lett. 2010, 5, 044004. [Google Scholar] [CrossRef] [Green Version]
- Ceccherini, G.; Russo, S.; Ameztoy, I.; Marchese, A.F.; Carmona-Moreno, C. Heat Waves in Africa 1981–2015, Observations and Reanalysis. Nat. Hazards Earth Syst. Sci. 2017, 17, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Engdaw, M.M.; Ballinger, A.P.; Hegerl, G.C.; Steiner, A.K. Changes in Temperature and Heat Waves over Africa Using Observational and Reanalysis Data Sets. Int. J. Climatol. 2022, 42, 1165–1180. [Google Scholar] [CrossRef]
- Perkins-Kirkpatrick, S.; Lewis, S. Increasing Trends in Regional Heatwaves. Nat. Commun. 2020, 11, 1–8. [Google Scholar] [CrossRef]
- Mildrexler, D.J.; Zhao, M.; Cohen, W.B.; Running, S.W.; Song, X.P.; Jones, M.O. Thermal Anomalies Detect Critical Global Land Surface Changes. J. Appl. Meteorol. Climatol. 2018, 57, 391–411. [Google Scholar] [CrossRef]
- Becker, F.; Li, Z.-L. Surface Temperature and Emissivity at Various Scales: Definition, Measurement and Related Problems. Remote Sens. Rev. 1995, 12, 225–253. [Google Scholar] [CrossRef]
- Norman, J.M.; Becker, F. Terminology in Thermal Infrared Remote Sensing of Natural Surfaces. Agric. For. Meteorol. 1995, 77, 153–166. [Google Scholar] [CrossRef]
- Hulley, G.; Ghent, D. Taking the Temperature of the Earth: Steps towards Integrated Understanding of Variability and Change; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Kuenzer, C.; Dech, S. (Eds.) Thermal Infrared Remote Sensing: Sensors, Methods, Applications; Remote Sensing and Digital Image Processing; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-6638-9. [Google Scholar]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-Derived Land Surface Temperature: Current Status and Perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Oyler, J.W.; Dobrowski, S.Z.; Holden, Z.A.; Running, S.W. Remotely Sensed Land Skin Temperature as a Spatial Predictor of Air Temperature across the Conterminous United States. J. Appl. Meteorol. Climatol. 2016, 55, 1441–1457. [Google Scholar] [CrossRef]
- Mildrexler, D.J.; Zhao, M.; Running, S.W. A Global Comparison between Station Air Temperatures and MODIS Land Surface Temperatures Reveals the Cooling Role of Forests. J. Geophys. Res. Biogeosci. 2011, 116. [Google Scholar] [CrossRef]
- Cheval, S.; Dumitrescu, A.; Bell, A. The Urban Heat Island of Bucharest during the Extreme High Temperatures of July 2007. Theor. Appl. Climatol. 2009, 97, 391–401. [Google Scholar] [CrossRef]
- Cotlier, G.I.; Jimenez, J.C. The Extreme Heat Wave over Western North America in 2021: An Assessment by Means of Land Surface Temperature. Remote Sens. 2022, 14, 561. [Google Scholar] [CrossRef]
- Dousset, B.; Gourmelon, F.; Laaidi, K.; Zeghnoun, A.; Giraudet, E.; Bretin, P.; Mauri, E.; Vandentorren, S. Satellite Monitoring of Summer Heat Waves in the Paris Metropolitan Area. Int. J. Climatol. 2011, 31, 313–323. [Google Scholar] [CrossRef]
- Hulley, G.; Shivers, S.; Wetherley, E.; Cudd, R. New ECOSTRESS and MODIS Land Surface Temperature Data Reveal Fine-Scale Heat Vulnerability in Cities: A Case Study for Los Angeles County, California. Remote Sens. 2019, 11, 2136. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Mishra, V. Decline in Surface Urban Heat Island Intensity in India during Heatwaves. Environ. Res. Commun. 2019, 1, 031001. [Google Scholar] [CrossRef] [Green Version]
- Ossola, A.; Jenerette, G.D.; McGrath, A.; Chow, W.; Hughes, L.; Leishman, M.R. Small Vegetated Patches Greatly Reduce Urban Surface Temperature during a Summer Heatwave in Adelaide, Australia. Landsc. Urban Plan. 2021, 209, 104046. [Google Scholar] [CrossRef]
- Retalis, A.; Paronis, D.; Lagouvardos, K.; Kotroni, V. The Heat Wave of June 2007 in Athens, Greece—Part 1: Study of Satellite Derived Land Surface Temperature. Atmos. Res. 2010, 98, 458–467. [Google Scholar] [CrossRef]
- Ward, K.; Lauf, S.; Kleinschmit, B.; Endlicher, W. Heat Waves and Urban Heat Islands in Europe: A Review of Relevant Drivers. Sci. Total Environ. 2016, 569–570, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Albright, T.P.; Pidgeon, A.M.; Rittenhouse, C.D.; Clayton, M.K.; Flather, C.H.; Culbert, P.D.; Radeloff, V.C. Heat Waves Measured with MODIS Land Surface Temperature Data Predict Changes in Avian Community Structure. Remote Sens. Environ. 2011, 115, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Baldi, M.; Dalu, G.; Maracchi, G.; Pasqui, M.; Cesarone, F. Heat Waves in the Mediterranean: A Local Feature or a Larger-Scale Effect? Int. J. Climatol. J. R. Meteorol. Soc. 2006, 26, 1477–1487. [Google Scholar] [CrossRef] [Green Version]
- Lionello, P. The Climate of the Mediterranean Region: From the Past to the Future; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Giorgi, F.; Lionello, P. Climate Change Projections for the Mediterranean Region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Molina, M.O.; Sánchez, E.; Gutiérrez, C. Future Heat Waves over the Mediterranean from an Euro-CORDEX Regional Climate Model Ensemble. Sci. Rep. 2020, 10, 8801. [Google Scholar] [CrossRef]
- Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An Overview of the Global Historical Climatology Network-Daily Database. J. Atmos. Ocean. Technol. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical Mapping of Annual Global Land Cover 2001 to Present: The MODIS Collection 6 Land Cover Product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. A Generalized Split-Window Algorithm for Retrieving Land-Surface Temperature from Space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Wan, Z. New Refinements and Validation of the MODIS Land-Surface Temperature/Emissivity Products. Remote Sens. Environ. 2008, 112, 59–74. [Google Scholar] [CrossRef]
- Wan, Z. New Refinements and Validation of the Collection-6 MODIS Land-Surface Temperature/Emissivity Product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Snyder, W.C.; Wan, Z.; Zhang, Y.; Feng, Y.-Z. Classification-Based Emissivity for Land Surface Temperature Measurement from Space. Int. J. Remote Sens. 1998, 19, 2753–2774. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Wu, H.; Leng, P.; Gao, M.; Wang, C. Radiance-Based Validation of Land Surface Temperature Products Derived from Collection 6 MODIS Thermal Infrared Data. Int. J. Appl. Earth Obs. Geoinf. 2018, 70, 84–92. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Li, H.; Göttsche, F.-M.; Wu, H.; Zhao, W.; Leng, P.; Zhang, X.; Coll, C. Validation of Collection 6 MODIS Land Surface Temperature Product Using in Situ Measurements. Remote Sens. Environ. 2019, 225, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Zscheischler, J.; Orth, R.; Seneviratne, S.I. A Submonthly Database for Detecting Changes in Vegetation-Atmosphere Coupling. Geophys. Res. Lett. 2015, 42, 9816–9824. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, W.S. Robust Locally Weighted Regression and Smoothing Scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Fouillet, A.; Rey, G.; Wagner, V.; Laaidi, K.; Empereur-Bissonnet, P.; Le Tertre, A.; Frayssinet, P.; Bessemoulin, P.; Laurent, F.; De Crouy-Chanel, P.; et al. Has the Impact of Heat Waves on Mortality Changed in France since the European Heat Wave of Summer 2003? A Study of the 2006 Heat Wave. Int. J. Epidemiol. 2008, 37, 309–317. [Google Scholar] [CrossRef]
- Founda, D.; Giannakopoulos, C. The Exceptionally Hot Summer of 2007 in Athens, Greece—A Typical Summer in the Future Climate? Glob. Planet. Chang. 2009, 67, 227–236. [Google Scholar] [CrossRef]
- Xu, P.; Wang, L.; Liu, Y.; Chen, W.; Huang, P. The Record-Breaking Heat Wave of June 2019 in Central Europe. Atmos. Sci. Lett. 2020, 21, e964. [Google Scholar] [CrossRef] [Green Version]
- Sheridan, S.C.; Lee, C.C.; Smith, E.T. A Comparison Between Station Observations and Reanalysis Data in the Identification of Extreme Temperature Events. Geophys. Res. Lett. 2020, 47, e2020GL088120. [Google Scholar] [CrossRef]
- Fischer, E.M.; Seneviratne, S.I.; Lüthi, D.; Schär, C. Contribution of Land-Atmosphere Coupling to Recent European Summer Heat Waves. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Miralles, D.G.; Gentine, P.; Seneviratne, S.I.; Teuling, A.J. Land–Atmospheric Feedbacks during Droughts and Heatwaves: State of the Science and Current Challenges. Ann. N. Y. Acad. Sci. 2019, 1436, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Geirinhas, J.L.; Russo, A.C.; Libonati, R.; Miralles, D.G.; Sousa, P.M.; Wouters, H.; Trigo, R.M. The Influence of Soil Dry-out on the Record-Breaking Hot 2013/2014 Summer in Southeast Brazil. Sci. Rep. 2022, 12, 5836. [Google Scholar] [CrossRef]
- Zhan, W.; Chen, Y.; Zhou, J.; Wang, J.; Liu, W.; Voogt, J.; Zhu, X.; Quan, J.; Li, J. Disaggregation of Remotely Sensed Land Surface Temperature: Literature Survey, Taxonomy, Issues, and Caveats. Remote Sens. Environ. 2013, 131, 119–139. [Google Scholar] [CrossRef]
- Malakar, N.K.; Hulley, G.C. A Water Vapor Scaling Model for Improved Land Surface Temperature and Emissivity Separation of MODIS Thermal Infrared Data. Remote Sens. Environ. 2016, 182, 252–264. [Google Scholar] [CrossRef]
Daytime | Nighttime | |
---|---|---|
Heatwaves | 7.2 | 6.7 |
MOD_P70_D3 | 9.1 | 6.7 |
MOD_P75_D3 | 7.1 | 5.0 |
MOD_P80_D2 | 8.3 | 6.4 |
MXD_P85_D3 | 6.1 | 6.8 |
MOD_P90_D1 | 6.9 | 5.8 |
MYD_P90_D1 | 6.2 | 6.0 |
MXD_P90_D2 | 6.0 | 6.7 |
MXD_P95_D1 | 6.2 | 6.3 |
Daytime | Nighttime | |||
---|---|---|---|---|
Events (%) | Days (%) | Events (%) | Days (%) | |
MXD_P85_D3 | 47.2 | 41.6 | 48.6 | 39.1 |
MXD_P90_D2 | – | 40.9 | – | 38.6 |
MXD_P95_D1 | – | 37.3 | – | 34.2 |
Daytime | Nighttime | |||
---|---|---|---|---|
Events (%) | Days (%) | Events (%) | Days (%) | |
MXD_P85_D3 | 55.8 | 51.0 | 45.2 | 38.2 |
MXD_P90_D2 | – | 49.4 | – | 38.3 |
MXD_P95_D1 | – | 43.2 | – | 35.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agathangelidis, I.; Cartalis, C.; Polydoros, A.; Mavrakou, T.; Philippopoulos, K. Can Satellite-Based Thermal Anomalies Be Indicative of Heatwaves? An Investigation for MODIS Land Surface Temperatures in the Mediterranean Region. Remote Sens. 2022, 14, 3139. https://doi.org/10.3390/rs14133139
Agathangelidis I, Cartalis C, Polydoros A, Mavrakou T, Philippopoulos K. Can Satellite-Based Thermal Anomalies Be Indicative of Heatwaves? An Investigation for MODIS Land Surface Temperatures in the Mediterranean Region. Remote Sensing. 2022; 14(13):3139. https://doi.org/10.3390/rs14133139
Chicago/Turabian StyleAgathangelidis, Ilias, Constantinos Cartalis, Anastasios Polydoros, Thaleia Mavrakou, and Kostas Philippopoulos. 2022. "Can Satellite-Based Thermal Anomalies Be Indicative of Heatwaves? An Investigation for MODIS Land Surface Temperatures in the Mediterranean Region" Remote Sensing 14, no. 13: 3139. https://doi.org/10.3390/rs14133139
APA StyleAgathangelidis, I., Cartalis, C., Polydoros, A., Mavrakou, T., & Philippopoulos, K. (2022). Can Satellite-Based Thermal Anomalies Be Indicative of Heatwaves? An Investigation for MODIS Land Surface Temperatures in the Mediterranean Region. Remote Sensing, 14(13), 3139. https://doi.org/10.3390/rs14133139