Analysis of the Spatial and Temporal Evolution of Land Subsidence in Wuhan, China from 2017 to 2021
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Datasets
3. Methods
3.1. SBAS-InSAR Technique
3.2. SBAS-InSAR Data Processing
- (1)
- Generating connection pairs: we selected the images of 13 January 2018 and 18 August 2020 as the master images and realigned the other images with the master images to avoid the effect of temporal and spatial decorrelation factors. For the first time period, the time threshold is 180 days, and the spatial baseline threshold is 45%. In the second time period, the time threshold is 60 days, and the critical value of spatial baseline is 45%.
- (2)
- Interferogram formation and phase unwrapping: interference processing is performed on all interferometric pairs to generate differential interferograms, remove the flat-earth and topographic phase, perform phase unwrapping and generate phase diagram.
- (3)
- Refinement and reflattening: this process mainly aims to estimate and remove the residual phases and ramp phase that still exists after phase unwrapping.
- (4)
- Generation of time series results: the phase after unwrapping is calculated by using SVD, and the atmospheric phase and other errors are removed by two inversions to obtain the accurate displacement results on the time series. The final deformation value in the LOS direction is obtained by geocoding.
4. Results
4.1. Temporal and Spatial Distribution Characteristics of Land Subsidence in Wuhan
4.2. Subsidence Changes before and after the COVID-19 in Wuhan
5. Discussion
5.1. Subway Construction
5.2. Infrastructure Construction
5.3. Influence of Hydrogeology on Land Subsidence
5.4. Impact of Groundwater and Rainfall on Land Subsidence
5.5. Relationship between River Water Level Change and Land Subsidence
5.6. Ground Uplift in Wuhan
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cigna, F.; Tapete, D. Present-day land subsidence rates, surface faulting hazard and risk in Mexico City with 2014–2020 Sentinel-1 IW InSAR. Remote Sens. Environ. 2021, 253, 112161. [Google Scholar] [CrossRef]
- Fedeski, M.; Gwilliam, J. Urban sustainability in the presence of flood and geological hazards: The development of a GIS-based vulnerability and risk assessment methodology. Landsc. Urban Plan. 2007, 83, 50–61. [Google Scholar] [CrossRef]
- Wang, R.; Yang, T.; Yang, M.; Liao, M.; Lin, J.; Zhang, L. Attribution Analysis on Deformation Feature of the Shanghai Elevated Highway by Persistent Scatterer SAR Interferometry. Geomat. Inf. Sci. Wuhan Univ. 2018, 43, 2050–2057. [Google Scholar]
- Agarwal, V.; Kumar, A.; Gee, D.; Grebby, S.; Gomes, R.L.; Marsh, S. Comparative Study of Groundwater-Induced Subsidence for London and Delhi Using PSInSAR. Remote Sens. 2021, 13, 4741. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, B.; Gong, H.; Lei, K.; Zhou, C.; Lu, Z.; Zhao, D. Inversion of Groundwater Storage Variations Considering Lag Effect in Beijing Plain, from RadarSat-2 with SBAS-InSAR Technology. Remote Sens. 2022, 14, 991. [Google Scholar] [CrossRef]
- Najafabadi, R.; Ramesht, M.; Ghazi, I.; Khajedin, S.; Seif, A.; Nohegar, A.; Mahdavi, A. Identification of natural hazards and classification of urban areas by TOPSIS model (case study: Bandar Abbas city, Iran). Geomat. Nat. Hazards Risk 2016, 7, 85–100. [Google Scholar] [CrossRef]
- Teatini, P.; Ferronato, M.; Gambolati, G.; Gonella, M. Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: Modeling the past occurrence and the future trend. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- El Bastawesy, M.; Cherif, O.; Sultan, M. The geomorphological evidences of subsidence in the Nile Delta: Analysis of high resolution topographic DEM and multi-temporal satellite images. J. Afr. Earth Sci. 2017, 136, 252–261. [Google Scholar] [CrossRef]
- Bonì, R.; Herrera, G.; Meisina, C.; Notti, D.; Béjar-Pizarro, M.; Zucca, F.; González, P.; Palano, M.; Tomás, R.; Fernández, J.; et al. Twenty-year advanced DInSAR analysis of severe land subsidence: The Alto Guadalentín Basin (Spain) case study. Eng. Geol. 2015, 198, 40–52. [Google Scholar] [CrossRef] [Green Version]
- Herrera, G.; Fernández, J.; Tomás, R.; Cooksley, G.; Mulas, J. Advanced interpretation of subsidence in Murcia (SE Spain) using A-DInSAR data-modelling and validation. Nat. Hazards Earth Syst. Sci. 2009, 9, 647–661. [Google Scholar] [CrossRef] [Green Version]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Qu, F.; Lu, Z.; Zhang, Q.; Bawden, G.; Kim, J.; Zhao, C.; Qu, W. Mapping ground deformation over Houston–Galveston, Texas using multi-temporal InSAR. Remote Sens. Environ. 2015, 169, 290–306. [Google Scholar] [CrossRef]
- Ng, A.; Ge, L.; Li, X.; Abidin, H.; Andreas, H.; Zhang, K. Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR. Int. J. Appl. Earth Obs. 2012, 18, 232–242. [Google Scholar] [CrossRef]
- Zhu, L.; Gong, H.; Li, X.; Wang, R.; Chen, B.; Dai, Z.; Teatini, P. Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Eng. Geol. 2015, 193, 243–255. [Google Scholar] [CrossRef]
- Qu, F.; Zhang, Q.; Lu, Z.; Zhao, C.; Yang, C.; Zhang, J. Land subsidence and ground fissures in Xi’an, China 2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sens. Environ. 2014, 155, 366–376. [Google Scholar] [CrossRef]
- Gao, M.; Gong, H.; Li, X.; Chen, B.; Zhou, C.; Shi, M.; Guo, L.; Chen, Z.; Ni, Z.; Duan, G. Land Subsidence and Ground Fissures in Beijing Capital International Airport (BCIA): Evidence from Quasi-PS InSAR Analysis. Remote Sens. 2019, 11, 1466. [Google Scholar] [CrossRef] [Green Version]
- Gerardo, H.; Pablo, E.; Roberto, T.; Marta, B.; Juan, L.; Mauro, R.; Maria, M.; Dora, C.; John, L.; Pietro, T.; et al. Mapping the global threat of land subsidence. Science 2021, 371, 34–36. [Google Scholar]
- Hu, R.; Yue, Z.; Wang, L.; Wang, S. Review on current status and challenging issues of land subsidence in china. Eng. Geol. 2004, 76, 65–77. [Google Scholar] [CrossRef]
- Zhang, T.; Shen, W.-B.; Wu, W.; Zhang, B.; Pan, Y. Recent Surface Deformation in the Tianjin Area Revealed by Sentinel-1A Data. Remote Sens. 2019, 11, 130. [Google Scholar] [CrossRef] [Green Version]
- Xiang, W.; Zhang, R.; Liu, G.; Wang, X.; Mao, W.; Zhang, B.; Cai, J.; Bao, J.; Fu, X. Extraction and analysis of saline soil deformation in the Qarhan Salt Lake region (in Qinghai, China) by the sentinel SBAS-InSAR technique. Geod. Geodyn. 2022, 13, 127–137. [Google Scholar] [CrossRef]
- Du, Y.; Feng, G.; Liu, L.; Fu, H.; Peng, X.; Wen, D. Understanding Land Subsidence Along the Coastal Areas of Guangdong, China, by Analyzing Multi-Track MTInSAR Data. Remote Sens. 2020, 12, 299. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Yue, G.; Ding, X.; Yang, K.; Feng, G.; Xiong, Z. Temporal and Spatial Characteristics Analysis of Deformation Along Foshan Subway Using Time Series InSAR. Geomat. Inf. Sci. Wuhan Univ. 2019, 44, 1099–1106. [Google Scholar]
- Li, W.; Wang, L.; Guo, H.; Wang, H.; Wang, Y.; Zhu, J.; Zang, X. Effectiveness and countermeasures of land subsidence control in China. China Water Resour. 2021, 7, 32–35. [Google Scholar]
- Huang, J.; Guo, Y.; Luo, W. Monitoring land subsidence in Wuhan city based on Sentinel-1. Bull. Surv. Map. 2021, 9, 53–58. [Google Scholar]
- Hu, J.; Motagh, M.; Wang, J.; Qin, F.; Zhang, J.; Wu, W.; Han, Y. Karst Collapse Risk Zonation and Evaluation in Wuhan, China Based on Analytic Hierarchy Process, Logistic Regression, and InSAR Angular Distortion Approaches. Remote Sens. 2021, 13, 5063. [Google Scholar] [CrossRef]
- Fan, S. A Discussion on Karst Collapse in Wuhan (Hubei). Resour. Environ. Eng. 2006, 20, 608–616. [Google Scholar]
- Benattou, M.; Balz, T.; Liao, M. Measuring Surface Subsidence in Wuhan, China with Sentinel-1 Data using PSInSAR. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-3, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Balz, T.; Cigna, F.; Tapete, D. Land Subsidence in Wuhan Revealed Using a Non-Linear PSInSAR Approach with Long Time Series of COSMO-SkyMed SAR Data. Remote Sens. 2021, 13, 1256. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, L.; Yao, C.; Hu, J. Surface Subsidence Analysis by Multi-Temporal InSAR and GRACE: A Case Study in Beijing. Sensors 2016, 16, 1495. [Google Scholar] [CrossRef] [Green Version]
- Wu, C. Research and Analysis on the Subsidence of Houhu Real Estate in Wuhan. Technol. Inno. Appl. 2014, 22, 216. [Google Scholar]
- Han, Y.; Zou, J.; Lu, Z.; Qu, F.; Kang, Y.; Li, J. Ground Deformation of Wuhan, China, Revealed by Multi-Temporal InSAR Analysis. Remote Sens. 2020, 12, 3788. [Google Scholar] [CrossRef]
- Zhou, L.; Lu, J.; Wen, X.; Zhang, D.; Wang, C.; Yang, F. Spatial-temporal Characteristics Analysis of Ground Subsidence in Central Urban Areas of Wuhan Based on Small Baseline Subset lnterferometric Synthetic Aperture Radar. Sci. Technol. Eng. 2021, 21, 40–46. [Google Scholar]
- Huang, B.; Zheng, F.; Bai, J.; Wang, Y. Feasibility of land surface deformation monitoring by regional CORS. J. Geomat. Sci. Technol. 2011, 28, 169–172. [Google Scholar]
- Chen, Q.; Liu, G.; Hu, Z.; Ding, X.; Yang, Y. Mapping ground 3-D displacement with GPS and PS-InSAR networking in the Pingtung area, southwestern Taiwan. Chin. J. Geophys. 2012, 55, 3248–3258. [Google Scholar]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Chaussard, E.; Amelung, F.; Abidin, H.; Hong, S. Sinking cities in Indonesia: ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ. 2013, 128, 150–161. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, Z.; Li, Z. Recent progress in retrieving and predicting mining-induced 3D displacements using InSAR. Acta Geod. Cartogr. Sin. 2019, 48, 135–144. [Google Scholar] [CrossRef] [Green Version]
- Karanam, V.; Motagh, M.; Garg, S.; Jain, K. Multi-sensor remote sensing analysis of coalfire induced land subsidence in Jharia Coalfields, Jharkhand, India. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102439. [Google Scholar]
- Liu, Z.; Xu, B.; Wang, Q.; Yu, W.; Miao, Z. Monitoring landslide associated with reservoir impoundment using synthetic aperture radar interferometry: A case study of the Yalong reservoir. Geod. Geodyn. 2022, 13, 138–150. [Google Scholar] [CrossRef]
- Perissin, D.; Wang, Z.Y.; Lin, H. Shanghai subway tunnels and highways monitoring through cosmo-skymed persistent scatterers. ISPRS J. Photogramm. Remote Sens. 2012, 73, 58–67. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, Y.; Zeng, R.; Yang, Z.; Chen, X.; Zhao, F.; Meng, X. Detection of Land Subsidence Associated with Land Creation and Rapid Urbanization in the Chinese Loess Plateau Using Time Series InSAR: A Case Study of Lanzhou New District. Remote Sens. 2018, 10, 270. [Google Scholar] [CrossRef] [Green Version]
- Pratesi, F.; Tapete, D.; Del Ventisette, C.; Moretti, S. Mapping interactions between geology, subsurface resource exploitation and urban development in transforming cities using insar persistent scatterers: Two decades of change in Florence, Italy. Appl. Geogr. 2016, 77, 20–37. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Beradino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for Surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Li, J.H.; Zhou, L.; Ren, C.; Liu, L.L.; Zhang, D.; Shi, Y.J. Spatiotemporal Inversion and Mechanism Analysis of Surface Subsidence in Shanghai Area Based on Time-Series InSAR. Appl. Sci. 2021, 11, 7460. [Google Scholar] [CrossRef]
- Bai, L.; Jiang, L.M.; Wang, H.S.; Sun, Q.S. Spatiotemporal characterization of land subsidence and uplift (2009–2010) over wuhan in central China revealed by terrasar-x insar analysis. Remote Sens. 2016, 8, 350. [Google Scholar] [CrossRef] [Green Version]
- Costantini, M.; Bai, J.; Malvarosa, F.; Minati, F.; Vecchioli, F.; Wang, R.; Hu, Q.; Xiao, J.; Li, J. Ground deformations and building stability monitoring by COSMO-SkyMed PSP SAR interferometry: Results and validation with field measurements and surveys. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6847–6850. [Google Scholar]
- Zhou, L.; Guo, J.; Hu, J.; Li, J.; Xu, Y.; Pan, Y.; Shi, M. Wuhan Surface Subsidence Analysis in 2015–2016 Based on Sentinel-1A Data by SBAS-InSAR. Remote Sens. 2017, 9, 982. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, Y.; Jin, M.; Jing, Y.; Liu, Y.; Liu, Y.; Sun, W.; Wei, J.; Chen, Y. Monitoring Land Subsidence in Wuhan city (China) using the SBAS-InSAR Method with Radarsat-2 Imagery Data. Sensors 2019, 19, 743. [Google Scholar] [CrossRef] [Green Version]
- Xie, P.; Zhang, S.; Zhou, L.; Li, Q.; Xiao, J.; Cai, J. Detection of the Urban Surface Deformation and New Strategy for Flood Prevention in Wuhan Central District. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 1015–1024. [Google Scholar]
- Shi, X.; Zhang, S.; Jiang, M.; Pei, Y.; Yang, C. Spatial and temporal subsidence characteristics in Wuhan city (China) during 2015–2019 inferred from Sentinel-1 SAR Interferometry. Nat. Hazards Earth Syst. Sci. 2021, 21, 2285–2297. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Wang, H.; Zhao, D. The statistical analysis of rainfall in wuhan in the past 50 years. J. Hubei Univ. Technol. 2006, 21, 98–100. [Google Scholar]
- Zhao, Q.; Liu, Y.; Yao, W.; Yao, Y. Hourly Rainfall Forecast Model Using Supervised Learning Algorithm. IEEE Trans. Geosci. Remote 2021, 99, 4100509. [Google Scholar] [CrossRef]
- Luo, X. Division of “six belts and five types” of carbonate region and control of karst geological disaster in Wuhan. J. Hydraul. Eng. 2014, 45, 171–179. [Google Scholar]
Parameter | Value | Parameter | Value |
---|---|---|---|
Product type | Sentinel-1A | Incidence angle | 39° |
Wavelength | C-band | Path | 113 |
Flight direction | Ascending | Resolution | 2.7 m × 22 m |
Polarization | VH | Number of images | 80 |
Beam mode | IW | Time range | 17 July 2017– 30 September 2021 |
Study | Method | Dataset | Deformation Rate | Main Subsidence Area |
---|---|---|---|---|
Bai et al. (2016) [46] | PS-InSAR | 12 TerraSAR images (October 2009–August 2010) | 67 to 17.5 mm/yr | The largest subsidence area in Wuhan is located in Hankou |
Costantini et al. (2016) [47] | PSP-InSAR approach | 45 Cosmo-SkyMed images (June 2013–June 2014) | 80 to 40 mm/yr | Most areas of Hankou |
Zhou et al. (2017) [48] | SBAS-InSAR | 15 Sentinel-1 images (Aprirl 2015–April 2016) | 82 to 18 mm/yr | Houhu, Wuchang, Hanyang, Qingshan |
Zhang et al. (2019) [49] | SBAS-InSAR | 20 Radarsat-2 images (October 2015–June 2018) | 52 to 28 mm/yr | Houhu, Qingshan Industrial Park, Baishazhou |
Shi et al. (2021) [51] | SBAS-InSAR | 113 Sentinel-1 Images (April 2015–September 2019) | 30 to 30 mm/yr | Qingshan, Houhu, Dongxihu, Qingling |
Name | Starting Point | End Point | Mileage | Construction Time |
---|---|---|---|---|
Metro Line 5 | Hubei University of Chinese Medicine Station | East Square of Wuhan Railway Station | 32.5 km | 3 December 2015–10 December 2021 |
Metro Line 6 | Jinyinhu Station | Xincheng 11th Road Station | 7 km | 28 July 2017–19 March 2021 |
Metro Line 12 | Qingling Station | Qingling Station | 59.876 km | 18 December 2017–2024 |
Metro Line 16 | South International Expo Center Station | Zhoujiahe Station | 33.1 km | December 2018–September 2021 |
Metro Line 19 | Wuhan Railway Station | Gaoxin 2nd Road Station | 23.3 km | 19 February 2019–2023 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Zhou, L.; Wang, C.; Li, J.; Qin, J.; Sheng, H.; Huang, L.; Li, X. Analysis of the Spatial and Temporal Evolution of Land Subsidence in Wuhan, China from 2017 to 2021. Remote Sens. 2022, 14, 3142. https://doi.org/10.3390/rs14133142
Zhao Y, Zhou L, Wang C, Li J, Qin J, Sheng H, Huang L, Li X. Analysis of the Spatial and Temporal Evolution of Land Subsidence in Wuhan, China from 2017 to 2021. Remote Sensing. 2022; 14(13):3142. https://doi.org/10.3390/rs14133142
Chicago/Turabian StyleZhao, Yizhan, Lv Zhou, Cheng Wang, Jiahao Li, Jie Qin, Haiquan Sheng, Liangke Huang, and Xin Li. 2022. "Analysis of the Spatial and Temporal Evolution of Land Subsidence in Wuhan, China from 2017 to 2021" Remote Sensing 14, no. 13: 3142. https://doi.org/10.3390/rs14133142
APA StyleZhao, Y., Zhou, L., Wang, C., Li, J., Qin, J., Sheng, H., Huang, L., & Li, X. (2022). Analysis of the Spatial and Temporal Evolution of Land Subsidence in Wuhan, China from 2017 to 2021. Remote Sensing, 14(13), 3142. https://doi.org/10.3390/rs14133142