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Abstract: For quantitative precipitation estimation (QPE) based on polarimetric radar (PR) and rain
gauges (RGs), the quality of the radar data is crucial for estimation accuracy. This paper proposes a
combined radar quality index (CRQI) to represent the quality of the radar data used for QPE and an
algorithm that uses CRQI to improve the QPE performance. Nine heavy rainfall events that occurred
in Guangdong Province, China, were used to evaluate the QPE performance in five contrast tests. The
QPE performance was evaluated in terms of the overall statistics, spatial distribution, near real-time
statistics, and microphysics. CRQI was used to identify good-quality data pairs (i.e., PR-based QPE
and RG observation) for correcting estimators (i.e., relationships between the rainfall rate and the PR
parameters) in real-time. The PR-based QPE performance was improved because estimators were
corrected according to variations in the drop size distribution, especially for data corresponding to
1.1 mm < average Dm < 1.4 mm, and 4 < average log10 Nw < 4.5. Some underestimations caused by
the beam broadening effect, excessive beam height, and partial beam blockages, which could not be
mitigated by traditional algorithms, were significantly mitigated by the proposed algorithm using
CRQI. The proposed algorithm reduced the root mean square error by 17.5% for all heavy rainfall
events, which included three precipitation types: convective precipitation (very heavy rainfall), squall
line (huge raindrops), and stratocumulus precipitation (small but dense raindrops). Although the
best QPE performance was observed for stratocumulus precipitation, the biggest improvement in
performance with the proposed algorithm was observed for the squall line.

Keywords: polarimetric radar; rain gauge; quantitative precipitation estimation; combined radar
quality index; microphysical analysis

1. Introduction

Many quantitative precipitation estimation (QPE) products are widely available for
applications in hydrology, nowcasting, and agriculture. Weather radar provides QPE with
a higher spatial resolution over a wider area than rain gauges (RGs). However, weather
radar-based QPE is subject to errors associated with an unrepresentative reflectivity–rainfall
rate (Z–R) relationship. Polarimetric radar (PR) is an upgrade over conventional weather
radar and various PR parameters such as the horizontal reflectivity factor ZH, differential
reflectivity factor ZDR, specific differential phase KDP, and correlation coefficient ρHV can
be used for QPE. However, several sources of errors still affect the accuracy of PR-based
QPE products [1–4], such as calibration biases, contamination by partial beam blockages,
the bright band (BB), low signal-to-noise ratio (SNR), non-meteorological echoes, and beam
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broadening effect [4,5]. Meanwhile, RG offers a direct measurement of the precipitation
and is more accurate than PR-based QPE for a specific location [6]. An interesting approach
is to combine PR with a network of RG stations to improve the accuracy of QPE.

RG stations improve PR-based QPE in two ways. The first is by optimizing the es-
timators, which are relationships between the rainfall rate and the PR parameters ZH,
ZDR, and KDP. Several studies have used RG stations to optimize the Z–R relationship for
weather radar in real-time [7,8]. QPE data and RG data are used to correct the coefficient
“A” in the Z–R relationship in real-time. This method has been proven effective for QPE of
stratiform precipitation, mei-yu precipitation, squall line, and typhoon precipitation [7–9].
Zhang [10] used a similar method to improve the performance of PR-based QPE by correct-
ing the estimators according to variations in the drop size distribution (DSD). However, the
above studies did not explicitly consider the quality of the radar data and its effect on the
correction performance. The second is by merging radar-based QPE products and gauge-
based observation data. Many studies have considered different methods for merging
radar-based and gauge-based QPE products, such as mean field bias correction, spatially
interpolated radar-gauge bias correction using inverse distance weighting-type functions,
and geostatistical interpolation (e.g., kriging or optimal interpolation) [4,6,8,11–21]. The
basic concept is to use RG data for the spatial correction of radar-based QPE. In general,
a strong correlation between radar and RG data is a prerequisite for successful spatial
correction [19]. Thus, radar data quality is important for merging QPE products. One
study showed that including poor-quality radar data was worse for a high-resolution
merging QPE product (<120 min) than when the poor-quality data were excluded [19].
The quality of the radar data affects the quality of the final QPE product. Thus, an index
that quantifies the radar data quality may be helpful for combining PR and RG stations to
obtain QPE products.

Many studies have developed indices that quantify the influence of various factors
on radar data quality, such as the beam broadening effect, partial beam blockages, the
BB, SNR, non-meteorological echoes, and attenuation of electromagnetic energy by hy-
drometeors [4,5,22–24]. Vulpiani et al. [23] developed the quality map Q to discriminate
non-meteorological targets from weather returns. Similar quality indices have been used by
a French radar mosaic system [12] to weight the best rainfall estimates and by an American
radar mosaic system [24] to select good-quality ZH to mosaic. Zhang et al. [5] used quality
indices to weight mosaic PR parameters and optimize the QPE products. They observed a
good correlation between the QPE accuracy and quality indices, which was also supported
by the results of Chen et al. [25] and Zhang et al. [26]. These results indicate that radar
quality indices may be important for guiding the combination of PR and RG stations to
obtain QPE products with high accuracy over a large scale.

In this study, QPE was performed by combining the data from RG and PR networks
in Guangdong Province, China. The combined radar quality index (CRQI) is proposed to
represent the radar quality, and an algorithm using CRQI is proposed to improve the QPE
performance. Nine rainfall events were used to evaluate the performance of the proposed
algorithm. The objective of this study was to demonstrate the potential and advantages
of the proposed CRQI and algorithm. Section 2 describes the data and methodology
used in this study and the details of the proposed algorithm. Section 3 presents the QPE
performance of the proposed algorithm for the rainfall events in the study area. Section 4
discusses the QPE performance for the three precipitation types identified for the rainfall
events, and Section 5 concludes the paper.

2. Materials and Methods
2.1. Polarimetric Radar Data and Quality Control

Some S-band single-polarization radar stations in Guangdong Province have been
upgraded to PR since 2016. Table 1 presents the main specifications.
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Table 1. Main specifications of the S-band PR.

Parameter Type Setting

Antenna diameter (m) 8.54
Antenna gain (dB) 45.31

Beam width (◦) <0.98
First side lobe (dB) <−30
Wavelength (cm) 10.3

Operating mode Simultaneous horizontal and
vertical transmission and reception

Minimum detectable power (dBm) −117.8
Volume scan mode VCP21 (9 tilts)

Range resolution (km) 0.25
Scan period (min) 6

A series of tests was conducted to calibrate the transmitter and receiver of the S-band
PR. The difference between the expected and measured values of the radar constant was
calculated based on the radar transmit power and radar equation, and the difference was
corrected in real-time to calibrate the transmitter. The receiver was calibrated by using
a built-in test and the sun-calibration method. The test results indicated that ZH had an
accuracy of less than 1 dB, which met the requirements for QPE. ZDR was also calibrated
by the vertical pointed calibration method before radar operation.

Figure 1 shows the four PR stations used in this study, which are represented by black
triangles: Heyuan, Guangzhou, Yangjiang, and Zhanjiang. From April to July 2019, nine
rainfall events were observed by the four PR stations and the RG stations around them.
Table 2 presents the details of these rainfall events. The rainfall events fell into three types
of precipitation: convective, squall line, and stratocumulus. Each rainfall type had three
rainfall events.

Remote Sens. 2022, 14, 3154 3 of 22 
 

 

Table 1. Main specifications of the S-band PR. 

Parameter Type Setting 
Antenna diameter (m) 8.54 

Antenna gain (dB) 45.31 
Beam width (°) <0.98 

First side lobe (dB) <−30 
Wavelength (cm) 10.3 

Operating mode 
Simultaneous horizontal and 

vertical transmission and reception 
Minimum detectable power (dBm) −117.8 

Volume scan mode VCP21 (9 tilts) 
Range resolution (km) 0.25 

Scan period (min) 6 

A series of tests was conducted to calibrate the transmitter and receiver of the S-band 
PR. The difference between the expected and measured values of the radar constant was 
calculated based on the radar transmit power and radar equation, and the difference was 
corrected in real-time to calibrate the transmitter. The receiver was calibrated by using a 
built-in test and the sun-calibration method. The test results indicated that ZH had an ac-
curacy of less than 1 dB, which met the requirements for QPE. ZDR was also calibrated by 
the vertical pointed calibration method before radar operation. 

Figure 1 shows the four PR stations used in this study, which are represented by 
black triangles: Heyuan, Guangzhou, Yangjiang, and Zhanjiang. From April to July 2019, 
nine rainfall events were observed by the four PR stations and the RG stations around 
them. Table 2 presents the details of these rainfall events. The rainfall events fell into three 
types of precipitation: convective, squall line, and stratocumulus. Each rainfall type had 
three rainfall events. 

 
Figure 1. Distributions of the (a) S-band PR stations at Heyuan (HY), Guangzhou (GZ), Yangjiang 
(YJ), and Zhanjiang (ZJ) (black triangles and labeled as SPOL) and (b) RG stations (green and purple 
circles). The background colors in (a) indicate the mosaic height. The 5348 RG stations were evenly 
divided into two groups (green: 2681, purple: 2667) according to the spatial distribution. The gray 
rectangles in the insets show the extent of the study area and its location in Southern China. 

Figure 1. Distributions of the (a) S-band PR stations at Heyuan (HY), Guangzhou (GZ), Yangjiang
(YJ), and Zhanjiang (ZJ) (black triangles and labeled as SPOL) and (b) RG stations (green and purple
circles). The background colors in (a) indicate the mosaic height. The 5348 RG stations were evenly
divided into two groups (green: 2681, purple: 2667) according to the spatial distribution. The gray
rectangles in the insets show the extent of the study area and its location in Southern China.
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Table 2. Nine rainfall events used in this study.

# Date (UTC) Total Time
(h)

No. of Valued
Gauges

Mean Gauge
Accumulation (mm)

Max Gauge
Accumulation (mm)

Precipitation
Type

1 11–12 April 2019 14 3873 16.66 144.7 squall line
2 27 April 2019 13 2996 22.08 189.2 squall line
3 7–8 May 2019 16 4114 17.42 237.6 stratocumulus
4 26–27 May 2019 16 3506 19.64 542.6 convective
5 9–10 June 2019 26 3684 35.53 297.6 convective
6 12–13 June 2019 20 3982 25.09 239.8 convective
7 23 June 2019 12 2905 9.14 75.6 squall line
8 23–24 June 2019 20 3182 40.44 211.6 stratocumulus
9 9–10 July 2019 21 3577 24.84 176.6 stratocumulus

The PR data of the nine rainfall events are quality controlled and mosaiced by using
the method of Zhang et al. [5]. The mosaic height is shown in Figure 1 with different colors.
Typical mosaic echoes of the nine rainfall events are shown in Figure 2, which were used
to identify the characteristics of three precipitation types. Rainfall events 1, 2, and 7 were
squall line events based on their narrow and strong echoes. Rainfall events 4, 5, and 6 were
convective precipitation. Note that, in this study, convective precipitation excluded squall
line. Rainfall events 3, 8, and 9 were stratocumulus precipitation.
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2.2. Rain Gauge Data and Quality Control

Figure 1b shows the 5348 RG stations used in this study, which were evenly divided
into two groups (green and purple) according to their spatial distribution. The cross-
validation method was used on the two groups of RG stations to evaluate the QPE results.
RG data inevitably contain observation errors, so quality control was needed to eliminate
unnecessary errors. This was performed by comparing the spatial consistency of the RG
data, which generally should not differ very much among adjacent RG stations. Once
the difference exceeds a certain range, the rainfall data of a given RG station should be
considered abnormal, and the outlier needs to be removed. The spatial consistency was
evaluated for each station. The calculated rainfall from the observations of surrounding
stations was taken as the estimated rainfall at a target station. This was then compared
with the observed rainfall at the target station [8,27–31]. The estimated rainfall at a target
station can be calculated as follows [8,30,31]:

gA =
∑n

i=1 giwi

∑n
i=1 wi

(1)

where gA (mm) is the estimated rainfall of the target station, and gi (mm) is the observed
rainfall of the surrounding stations. wi is the weight applied to each of the surrounding
stations and is linearly attenuated (i.e., the weight decreases with increasing distance from
the target station)). n is the number of RG stations around the target station and was
determined by counting the surrounding RG stations within a 13 km radius. The spatial
consistency ∆ was judged according to

∆ =
|gA − go|

σ
(2)

where go (mm) was the observed rainfall of the target station and σ (mm) was the standard
deviation of the observed rainfall from the 12 nearest RG stations. The threshold for
judging spatial consistency is an empirical value, and it has been set to ∆ = 3 in some
studies [8,27,32]. This means that when ∆ > 3, the observed rainfall of the target station
is of poor quality and needs to be removed. Setting the threshold too low will remove
normal data while setting the threshold too high will retain abnormal data. In this study,
the threshold was set to ∆ = 3.5 based on previous experience with the local data.

In addition, the following two parameters were added for quality control [8]:

ratioG =
gA

go
(3)

di f G = |gA − go| (4)

where ratioG is the ratio of the estimated rainfall to the observed rainfall of the target station,
and di f G is the absolute deviation of the estimated rainfall from the observed rainfall at
the target station. The observed rainfall was considered abnormal when ratioG > 4 and
di f G > 5 mm.

2.3. Polarimetric Radars and Rain Gauges Mosaic QPE Algorithm
2.3.1. Algorithm Introduction

Zhang et al. [5] proposed a radar quality index (RQI) to weight mosaic PR parameters
and optimize the QPE performance. The results indicated a good correlation between the
QPE accuracy and RQI. This implies that RQI can be used to guide the combination of PR
and RG data for accurate and large-scale QPE. However, several PR parameters are used
for QPE, and their contributions vary by the hour. In addition, the different PR parameters
have different RQIs. To address these issues, the combined radar quality index (CRQI) was
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developed in the present study. CRQI represents the quality of PR-based QPE for a given
hour as the weighted average of the individual RQIs:

CRQI =
1
10
× (∑10

j1=1 wj1RQI j1
ZH

+ ∑10
j2=1 wj2RQI j2

ZDR
+ ∑10

j3=1 wj3RQI j3
KDP

) (5)

where j1, j2, and j3 represent the data series of ZH, ZDR, and KDP, respectively. RQI j1
ZH

,

RQI j2
ZDR

, and RQI j3
KDP

represent the RQIs of ZH, ZDR, and KDP, respectively. The weighting
factors wj1, wj2, and wj3 represent the degrees to which ZH, ZDR, and KDP participate in
QPE, respectively. For example, wj1, wj2, and wj3 are 1, 0, and 0, respectively, when R(ZH)
is used and are 0, 0.5, and 0.5, respectively, when R(ZDR, KDP) is used. The sum of wj1, wj2,
and wj3 is 1. CRQI plays a key role in the proposed algorithm. Figure 3 shows the flowchart
of the proposed algorithm, which combines PR and RG data for QPE.
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The purple blocks represent the process of using RG data to correct estimators in
real-time. To avoid instability in the rainfall rate, the hourly accumulated precipitation is
evaluated. The rainfall estimators are corrected hourly to improve the QPE accuracy. The
bias ratio between QPE and the RG observation (b_r) is calculated first:

b_r =
∑n

i=1 RAQPE
i

∑n
i=1 RAgauge

i
(6)

where RA is the accumulated rainfall from either QPE or RG observation. n is the number of
RAQPE

i –RAgauge
i pairs. The correction coefficients of rainfall estimators for rainfall rates in

the ranges of 0–10, 10–20, 20–30, 30–40, 40–50, and 50–500 mm/h are obtained to optimize
the next b_r, which means trying to make QPE equal to RG observation (b_r = 1). To achieve
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this goal, the multiplier coefficient for each rainfall estimator is corrected, and the index
coefficients remain unchanged. The corrected multiplier coefficient is given by

ai= a0 ×∏n
j=1 ξ

j
i (7)

ξi =
1

b_ri
(ξi min = 0.5, ξi max = 1.5) (8)

where i represents the ith segment of rainfall rate corresponding to the above ranges. a0 is
the default multiplier of the rainfall estimator, which is the initial value before correction.
ξ

j
i represents the correction coefficient after the jth evaluation, which is calculated by using

the b_r for the ith segment. The minimum and maximum of ξ
j

i are 0.5 and 1.5, respectively.
This method was previously used by Zhang [10], but it does not limit the data pairs of
PR-based QPE and RG observation used for correcting estimators. The proposed algorithm
limits the correction for estimators to data pairs with CRQI > 0.95. This mitigates the
negative influence of poor-quality data and allows the estimators to be corrected according
to changes in DSD in real-time.

The green blocks represent the spatial correction process using RG data. The optimal
interpolation (OI) method can achieve better correction results than PR-based QPE with
good-quality radar data [20,21]. Therefore, the OI method is used when CRQI > 0.9.
However, the OI method results in serious errors when the radar data has poor quality.
Traditional correction methods take the radar-based QPE as the final result when the
difference between the radar-based QPE and RG observation is too large. In contrast, the
proposed algorithm detects poor-quality radar data when CRQI ≤ 0.4. In this case, the
Cressman interpolation method is used to interpolate the RG data into the corresponding
grids as the final result. When 0.4 < CRQI ≤ 0.9, CRQI is treated as a weighting factor to
merge the above results:

RQPE-Gauge = (1.8− 2CRQI)Rc + (2CRQI− 0.8)Ro (9)

where Rc represents the interpolation of data from nearby RG stations using the Cressman
interpolation method, Ro represents the result derived from PR-based QPE and data from
nearby RG stations using the OI method, and RQPE-Gauge represents the merged data.

2.3.2. Contrast Tests

Several contrast tests were carried out to verify the effectiveness of the proposed
algorithm. Table 3 presents the experimental details.

Table 3. Contrast tests.

# Estimators Correction Method Spatial Correction Method

1 No correction for estimators No spatial correction
2 Correct estimators with all data pairs No spatial correction

3 Correct estimators with good-quality
data pairs (CRQI > 0.95) No spatial correction

4 Correct estimators with good-quality
data pairs (CRQI > 0.95)

Spatial correction
via the traditional OI method

5 Correct estimators with good-quality
data pairs (CRQI > 0.95)

Spatial correction
via the proposed algorithm

In test 1, only PR data were used for QPE. In tests 2 and 3, RG data were used to
correct estimators in real-time. All data pairs (i.e., PR-based QPE and RG observation) were
used in test 2, while only good-quality data pairs (CRQI > 0.95) were used in test 3. The
effect of CRQI on correcting estimators was verified by comparing the results of tests 2
and 3. Tests 4 and 5 were based on test 3. In test 4, the spatial correction was implemented
by using the traditional OI method. In test 5, the spatial correction was implemented by
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using the proposed algorithm. The effect of CRQI on spatial correction was verified by
comparing the results of tests 4 and 5.

2.3.3. Evaluation Method for QPE Products

The rainfall rate estimated from the S-band PR at a temporal resolution of 6 min was
used to calculate the hourly accumulated rainfall. The accumulated rainfall measured by
the RG stations was taken as the true value. The average QPE of the nine grids nearest to an
RG station was used to evaluate the QPE performance. The RG stations were divided into
two groups for cross-validation. Since the minimum rainfall measurement of an RG station
is 0.1 mm, only rainfall measurements that exceeded 0.1 mm were used for the evaluation.
The QPE performance was evaluated according to the following statistical indicators: the
correlation coefficient (CC), root mean square error (RMSE), normalized relative bias (NB),
normalized absolute error (NE), and b_r (Equation (6)):

CC =
∑n

i=1

(
RAQPE

i − RAQPE
i

)(
RAgauge

i − RAgauge
i

)
√

∑n
i=1 (RAQPE

i − RAQPE
i )

2
∑n

i=1 (RAgauge
i − RAgauge

i )
2

(10)

RMSE =

√
∑n

i=1 (RAQPE
i − RAgauge

i )
2

n
(11)

NB =
∑n

i=1(RAQPE
i − RAgauge

i )

∑n
i=1 RAgauge

i
× 100 (12)

NE =
∑n

i=1

∣∣∣RAQPE
i − RAgauge

i

∣∣∣
∑n

i=1 RAgauge
i

× 100 (13)

where RA is the accumulated rainfall from either QPE or RG observation. An overbar
represents a mean value. n is the number of RAQPE

i –RAgauge
i pairs. RMSE is in millimeters,

and NE and NB are both percentages. A smaller RMSE or NE indicates a better QPE
performance. RMSE is influenced by the rainfall rate, while NE is not. NB values of
greater than and less than zero indicate overestimation and underestimation, respectively.
Similarly, b_rs greater than and less than one indicate overestimation and underestimation,
respectively. The b_r was mainly used to analyze the spatial distribution of biases.

3. Results
3.1. Spatial Distribution of B_rs

The data from all rainfall events were used to evaluate the QPE performance. The b_r
was calculated for each RG station, and Figure 4a–e show the spatial distributions of the
b_rs in each test. Figure 4f shows the spatial distribution of the average CRQI values at
each RG station.

A good correlation was observed between the PR-based QPE accuracy and the average
CRQI value. To quantify the correlation between the QPE accuracy and CRQI in test 1, a
new b_r was calculated based on the work of Zhang et al. [5]:

new b_r =
{

b_r b_r ≤ 1
1

b_r b_r > 1
(14)

The value of new b_r can represent the QPE accuracy. A greater new b_r indicates a
better QPE performance. The CC between the new b_r and average CRQI value was 0.73,
which confirmed the good correlation between the PR-based QPE accuracy and CRQI. The
correlation can be attributed to CRQI modeling the uncertainties of QPE due to radar data
contamination by partial beam blockages, the BB, low SNR, non-meteorological echoes,
and beam broadening effect.
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Figure 4. B_r distributions of the mosaic QPE in tests (a) 1, (b) 2, (c) 3, (d) 4, and (e) 5. The b_r
was calculated between the QPE and observed precipitation at a given RG station. The evaluation
results were based on all nine of the rainfall events. The bubble indicates the b_r at an RG station.
Different colors indicate different b_r values. Red indicates underestimation, and purple indicates
overestimation. (f) Average CRQI distribution for the nine rainfall events. The colors of the bubbles
indicate the average CRQI values at the RG stations. The bubble size indicates the average hourly
accumulated rainfall at each RG station.

Figure 4a shows the spatial distribution of b_rs derived from PR-based QPE. Underes-
timation was observed in areas far from PR stations because of the beam broadening effect
and excessive beam height, which may lead the beam to overshoot the top of the echo or
only observe a weak echo. The area marked by a rectangle indicates where underestimation
was observed due to partial beam blockages. In addition, overestimation was observed
near coastal cities, which may have been caused by ground clutter contamination near
PR stations. Figure 4b shows that the overestimation areas expanded in test 2 compared
with the areas in test 1. This suggests that using all data pairs to correct estimators was
ineffective because the inclusion of poor-quality data pairs led to incorrect corrections. In
contrast, the coefficients of estimators are effectively corrected by using good quality data
pairs. The estimators changed with the DSD, so overestimation was mitigated in test 3
(Figure 4c). Figure 4d shows that using the OI method in test 4 resulted in no obvious
overestimation or underestimation in areas with CRQI > 0.9. Figure 4e shows that the
correct estimation was expanded to the entire study area in test 5 with the proposed algo-
rithm. The proposed algorithm not only mitigated underestimation caused by the beam
broadening effect and excessive beam height but also mitigated underestimation caused by
partial beam blockages. This is a significant advantage over the traditional method.

3.2. Evaluated Statistical Scores

Figure 4 indicates obvious biases in areas with low CRQI values for tests 1–4. Using
QPE products from these areas to calculate statistical scores would increase the bias signifi-
cantly, which would mask the improvement in the QPE performance due to the correction
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methods considered in tests 2–4. Therefore, only QPE products corresponding to CRQI >
0.9 were used to compare the results of tests 1–4. Table 4 presents the statistical scores.

Table 4. Statistical scores of tests 1–5.

Test CRQI CC NB (%) NE (%) RMSE (mm)

1 >0.9 0.87 1.22 40.18 3.68
2 >0.9 0.87 10.84 43.00 3.83
3 >0.9 0.87 −2.96 39.31 3.66
4 >0.9 0.89 −0.45 34.78 3.41
5 >0.9 0.89 −0.44 34.79 3.41
1 >0.0 0.78 −15.67 50.67 4.40
4 >0.0 0.81 −14.93 45.04 4.18
5 >0.0 0.86 −2.57 38.89 3.63

The QPE performance was worse in test 2 than in test 1, as indicated by the greater NB,
NE, and RMSE. In contrast, the QPE performance was slightly better in test 3 than in test 1,
as indicated by the smaller NE and RMSE. Using all data pairs to correct estimators did not
result in better estimates because the poor-quality data pairs interfered with the correction
results. The compared results indicate only good-quality data pairs are used to correct
estimators; the estimators can become closer to “true estimators” and reflect the changes
in the DSD. However, the QPE improvement in test 3 was not as obvious as expected. It
may be because this correction method was not effective for all precipitation types; this
will be discussed in Section 3.6. The QPE accuracy was further improved after the spatial
correction was implemented. Thus, the QPE performance was better in test 4 than in test 3,
as indicated by the larger CC and smaller NE and RMSE. The RMSE in test 4 decreased by
7.34% compared with test 1.

The proposed algorithm significantly mitigated underestimation in areas where
CRQI < 0.9, as shown in Figure 4d,e. When the entire study area was evaluated (CRQI > 0.0),
QPE showed obvious underestimation in test 4 in terms of NB. In contrast, NB was close to
zero in test 5. In addition, the RMSE in test 5 decreased by 17.5% and 13.16% compared
with tests 1 and 4, respectively. These results confirm that the proposed algorithm greatly
improved the QPE performance.

3.3. Evaluation Results over Time

To evaluate the real-time QPE performance, the NE values for the nine rainfall events
were obtained in near real-time. Similar to the evaluation described in Section 3.2, only
the QPE corresponding to CRQI > 0.9 was evaluated to compare the results of tests 1–4, as
shown in Figure 5.

For rainfall events 1, 2, and 5, the QPE performance was better in tests 2 and 3 than in
test 1 for some time. This indicates that the correction for estimators improved the QPE
performance regardless of the data quality for this time. For the other rainfall events, NE in
test 3 was slightly less or comparable to that in test 1. In contrast, for rainfall events 3, 5, 6,
8, and 9, NE was generally larger in test 2 than in test 1 most of the time. This indicates
that using all data pairs to correct estimators cannot improve QPE all the time. In fact, this
approach often increases biases because of the interference from poor-quality data pairs.
These results illustrate the necessity of using good-quality data pairs to correct estimators.
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Figure 5. (a–i) Time series of NE values for the rainfall event 1–9. The QPE performance at CRQI > 0.9
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4, respectively.

The NE values for tests 4 and 3 show that spatial correction improved the QPE
performance for all rainfall events. The QPE performance was best in test 4 among tests 1–4,
although this evaluation only considered QPE corresponding to CRQI > 0.9. To compare
tests 4 and 5, QPE corresponding to CRQI > 0.0 was evaluated, as shown in Figure 6. The
QPE performance was better in test 5 than in test 4 for all rainfall events, as indicated by
the smaller NE values. These results demonstrate the advantage of the proposed algorithm
for real-time QPE.
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3.4. Biases Analysis Based on Microphysical Parameters

To analyze the QPE performance of the proposed algorithm in terms of microphysics,
Dm and Nw were calculated from ZH and ZDR for all rainfall events based on the method of
Zhang et al. [33]. When all the ZH and ZDR data in an hour were available with CRQI > 0.9,
the average Dm and Nw in this hour were calculated to guarantee the credibility of the re-
sults. Figure 7 shows the normalized occurrence frequency (NF), CRQI, hourly accumulated
precipitation, NE, and b_r for the QPE in tests 1, 3, and 5.
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concentration. This indicates that radar observations of precipitation particles with sparse 
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Figure 7. (a) Normalized occurrence frequency (NF) of log10 Nw versus Dm. (b) CRQI of log10 Nw

versus Dm. (c) Hourly accumulated precipitation observed by RG stations of log10 Nw versus Dm.
(d–f) NE of log10 Nw versus Dm for QPE in tests 1, 3, and 5. (g–i) B_rs of log10 Nw versus Dm for QPE
in tests 1, 3, and 5. Dm and Nw were derived from good-quality ZH and ZDR for all rainfall events.
The dashed lines indicate data with high NF.
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A certain correlation was observed between CRQI and the diameter of the precipitation
particles when CRQI > 0.9. Larger particles generally corresponded to a lower CRQI and
worse radar data quality. CRQI was very low for large particles with a low number
concentration. This indicates that radar observations of precipitation particles with sparse
but large diameters are not very accurate. Thus, the QPE performance was inadequate
for these particles. Although CRQI generally showed a positive correlation with the QPE
performance, this positive correlation was not obvious when CRQI > 0.9. This is because
CRQI was designed without considering the effect of the DSD on PR-based QPE quality.
DSD became the main factor influencing the QPE performance when CRQI > 0.9. The
PR-based QPE performance and hourly accumulated precipitation also showed a certain
amount of correlation: heavy rain was underestimated, while light rain was overestimated.
NE was significantly greater for light rain than for heavy rain.

In this situation of PR-based QPE biases described above, the method of correcting
estimators is implemented. The overestimation for light rain changes to underestimation for
light rain after correcting estimators (Figure 7h). However, the QPE performance showed
a significant improvement in the high normalized occurrence frequencies (NF) area. The
high-NF area is marked with dashed lines, where 1.1 mm < Dm < 1.4 mm and 4 < log10
Nw < 4.5. About 21.82% of the data were in this high-NF area, where b_r was closer to one
with the correction for estimators (1.0370) than with PR-based QPE alone (b_r = 1.0974), as
shown in Figure 7g,h. NE also decreased by 8.01% with the correction for estimators than
with PR-based QPE alone. This is because the method of correcting estimators is based
on statistical biases. It tends to reduce the biases present in most QPE results. In addition,
spatial correction (i.e., test 5) further mitigated the underestimation of light rain. Almost all
QPE products were improved in that NE decreased for all QPE results except in low-NF
areas. The lack of effectiveness in low-NF areas may be because the statistical data were
relatively sparse and not well represented.

3.5. Microphysical Characteristics of Three Types of Precipitation

The nine rainfall events used in this study could be divided into three precipitation
types: convective precipitation, squall line, and stratocumulus precipitation. Figure 8
shows the NF, CRQI, and hourly accumulated precipitation for these three precipitation
types. The yellow cross, rhombus, and plus signs represent the average Dm–log10 Nw for
convective precipitation, squall line, and stratocumulus precipitation, respectively. The
average Dm was smaller for stratocumulus precipitation (1.10 mm) than for convective
precipitation (1.15 mm). These two precipitation types had very similar average log10
Nw at 4.24 and 4.25, respectively. This is consistent with the findings of Huo et al. [34],
who utilized DSD observations from disdrometers in Southern China. In contrast with
the previous two precipitation types, squall line had larger (Dm = 1.37 mm) but sparser
(log10 Nw = 4.00) particles. Chen et al. [35] studied the microphysical characteristics of a
mei-yu rainband, typhoon rainband, and squall line by using DSD observations from a
two-dimensional video disdrometer in Eastern China. They found that the squall line had
larger ZDR than other precipitation types at the same ZH, which also indicates that squall
line has larger but sparser particles. Meanwhile, the mei-yu and typhoon rainbands mostly
comprised convective and stratocumulus precipitation. Therefore, the results of Chen et al.
for squall line characteristics are consistent with the observations in the present study.

All of the three types of precipitation can lead to heavy rain (hourly accumulated
precipitation > 35 mm), but the raindrop characteristics are different. For convective
precipitation, Dm was distributed at 1.5–2.2 mm, and the rainfall is often extremely heavy
(hourly accumulated precipitation > 50 mm). Dm for extremely heavy rain was distributed
at 1.5–2.0 mm. Compared to the other types of precipitation, there are more pixels of
extremely heavy rain in convective precipitation (Figure 8c). These results indicate that
convective precipitation is more likely to result in extremely heavy rain than the other
precipitation types. For heavy rain of squall line, Dm was distributed at 1.5–2.4 mm. Squall
line had huge particles, which is in line with previous observations [35]. For heavy rain of
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stratocumulus precipitation, Dm was distributed at 1.3–2.1 mm. This indicates that small
or medium-sized particles could lead to heavy rain, but this would mean that the number
concentration must be very high. Only stratocumulus rainfall events had heavy rain under
the conditions of Dm < 1.5 and log10 Nw > 5. Thus, heavy rain caused by small but dense
particles is characteristic of stratocumulus rainfall events.
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Figure 8. (a,d,g) Normalized occurrence frequency (NF) of log10 Nw versus Dm. (b,e,h) CRQI of
log10 Nw versus Dm. (c,f,i) Hourly accumulated precipitation observed by RG stations of log10 Nw

versus Dm. The top, middle, and bottom rows show the parameters for convective precipitation,
squall line, and stratocumulus precipitation, respectively. Dm and Nw were derived from good-
quality ZH and ZDR for all rainfall events. The dashed lines mark the area with heavy rain due to
convective precipitation.
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3.6. QPE Performances for Three Types of Precipitation

The QPE performances in tests 1, 3, and 5 were compared for the three types of
precipitation. Table 5 presents the statistical scores. The CC and the absolute value of
NB were similar for all three precipitation types in test 1. However, NE was the smallest
for stratocumulus precipitation, followed by squall line and then convective precipitation.
Therefore, the QPE performance was best for stratocumulus precipitation, followed by
squall line and then convective precipitation. These results are consistent with the data
quality of the three precipitation types according to CRQI, as shown in Figure 8b,e,h.

Table 5. Statistical scores of three types of precipitation in tests 1, 3, and 5.

Type Test CC NB (%) NE (%) RMSE (mm)

convective 1 0.86 6.57 42.92 4.30
convective 3 0.86 −1.38 41.15 4.28
convective 5 0.88 0.67 37.39 4.05
squall line 1 0.87 8.39 41.80 4.04
squall line 3 0.88 0.88 39.77 3.98
squall line 5 0.90 2.33 34.23 3.65

stratocumulus 1 0.88 −7.43 37.01 3.00
stratocumulus 3 0.88 −6.57 37.58 3.02
stratocumulus 5 0.90 −3.03 33.08 2.79

After correcting estimators in real-time (i.e., test 3), NB became closer to zero for
convective precipitation and squall line. The overestimation of convective precipitation
and squall line was significantly mitigated. The bias was also decreased in terms of NE and
RMSE. Figures 9 and 10 show the NE and b_r, respectively, of log10 Nw versus Dm. The
overestimation caused by the small and medium-sized but sparse particles of convective
precipitation was mitigated. In addition, the overestimation caused by the small but dense
particles of squall line was mitigated. These results improved the QPE performances for
convective precipitation and squall line. However, the QPE performance was not improved
for stratocumulus precipitation. Through the correction for estimators, the estimators can
follow the changes in DSD in real-time. The DSDs of convective precipitation and squall
line are susceptible to change. This explains why the correction for estimators helped
improve the QPE performance for these two precipitation types. In contrast, this method
did not improve the QPE performance for stratocumulus precipitation because its DSD is
relatively stable.

Spatial correction (i.e., test 5) improved the QPE performance significantly for all
precipitation types according to all statistical scores listed in Table 5. NE and the b_r of
log10 Nw versus Dm improved except in low-NF areas. The NB for QPE of stratocumulus
precipitation became close to zero. The RMSE for convective precipitation, squall line,
and stratocumulus precipitation decreased by 5.81%, 9.65%, and 7.00%, respectively, com-
pared with PR-based QPE alone (i.e., test 1). Although the QPE performance was best for
stratocumulus precipitation, the improvement in QPE performance was most obvious for
squall line.
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from good-quality ZH and ZDR for the corresponding events. 

Figure 9. (a–i) NEs of log10 Nw versus Dm. The top, middle, and bottom rows show the results for
convective precipitation, squall line, and stratocumulus precipitation, respectively. The left, middle,
and right columns show the results from tests 1, 3, and 5, respectively. Dm and Nw were derived
from good-quality ZH and ZDR for the corresponding events.
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For the proposed method, only multiplier coefficients of rainfall estimators are corrected 
in different rainfall rate ranges, and the index coefficients remain unchanged. This not 
only makes the method simple and feasible but also ensures the adaptability of the esti-
mators to different intensities of precipitation. Although the method of correcting 

Figure 10. (a–i) B_rs of log10 Nw versus Dm. The top, middle, and bottom rows show the results for
convective precipitation, squall line, and stratocumulus precipitation, respectively. The left, middle,
and right columns show the results from tests 1, 3, and 5, respectively. Dm and Nw were derived
from good-quality ZH and ZDR for the corresponding events.

4. Discussion

The method of correcting estimators in real-time for PRs is not common because of
its complexity in theory. There are too many estimators in a QPE algorithm and too many
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coefficients in an estimator (e.g., R(ZH, ZDR), R(KDP, ZDR)). If all coefficients need to be
corrected with the variation of DSD, it is hard to find a simple way to change them correctly.
For the proposed method, only multiplier coefficients of rainfall estimators are corrected in
different rainfall rate ranges, and the index coefficients remain unchanged. This not only
makes the method simple and feasible but also ensures the adaptability of the estimators
to different intensities of precipitation. Although the method of correcting estimators
in real-time for PRs is not common, the method of correcting the Z–R relationship for
weather radar was used in some studies. Wang et al. [7] used this method to improve
QPE performance for two heavy rainfall events in the Huaihe River Basin of China. The
RMSE of the two rainfall events decreased from 13.84 and 10.48 mm to 12.56 and 10.45 mm
for 24-h accumulated rainfall, respectively. It indicates that the method of correcting the
Z–R relationship has different effects on different rainfall events. The same phenomenon
occurred in the study of Gou et al. [8]. The mean bias decreased from 2.54 to 0.57 mm
by using the method of correcting the Z–R relationship for squall line, while it increased
from 0.38 to 0.42 mm for stratiform precipitation. The DSDs of squall line are susceptible
to change, but the DSDs of stratiform precipitation are relatively stable. The method of
correcting the Z–R relationship did not improve the QPE performance of the rainfall event
with relatively stable DSDs, which is consistent with the results of this study.

The method of spatial correction proposed in this study is a geostatistical approach.
Geostatistical approaches are sensitive to the quality and density of the data [4,6,17,19].
To reduce the influence of poor-quality radar data on QPE, Zhang et al. [6] used a radar
quality index to help combine radar, RG, and orographic precipitation climatology. The
merged QPE retained the high-resolution spatial structure of precipitation observed by
radars and minimized the bias in the PR-based QPE. In addition, in the complex terrain
where RG distributions are sparse, and radars have relatively poor coverage, a monthly
precipitation climatology was used to provide a physically reasonable and spatially con-
tinuous precipitation map. It is a way to take advantage of good-quality data and avoid
the disadvantages of poor-quality data, which is also the general idea of the proposed
algorithm. In the proposed method of spatial correction, the OI method is implemented to
take advantage of the good-quality PR data, and the Cressman interpolation method is im-
plemented on RG data to avoid the disadvantage of the poor-quality PR data. The density
of RGs is another factor influencing geostatistical approaches. The study of Goudenhoofdt
and Delobbe [4] showed that the geostatistical merging methods performed better with the
increasing density. When the density increased to a certain value, the rate of bias reduction
slowed down. This certain value is one RG per 400 km2 in the study of Zhang [10] for the
traditional OI method in Guangdong Province, China. The density of RGs used in this
study is about one RG per 200 km2, which is much higher than one RG per 400 km2. It
seems that the density is sufficiently high for the proposed algorithm, but it needs further
research to confirm.

5. Conclusions

A QPE algorithm is proposed that combines data from PR and RG stations. The
algorithm uses CRQI to improve the QPE performance. Five contrast tests were performed
to evaluate the effect of CRQI. The test data are from nine rainfall events in Guangdong
province, China, and detected by the PRs at Heyuan, Guangzhou, Yangjiang, and Zhanjiang
stations and the nearby RGs. The QPE performance was evaluated in terms of the overall
statistics, spatial distribution, near real-time statistics, and microphysics. The microphysical
characteristics and QPE performances for three different precipitation types were analyzed:
convective precipitation, squall line, and stratocumulus precipitation. The main conclusions
can be summarized as follows:

CRQI was designed to represent the quality of the QPE without considering the effect
of DSD. The CC between the new b_r and the average CRQI was 0.73, which indicates a
good correlation between the QPE performance and CRQI. This fulfills the original design
purpose. However, DSD became the main factor influencing the QPE performance when
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CRQI > 0.9. Thus, CRQI can also be used to determine when the QPE is mainly affected by
the DSD or radar data quality. Therefore, CRQI was also used to help correct estimators
with the variation of DSD in real-time and to help with merging data for spatial correction.

When all data pairs were used to correct estimators in real-time, the QPE performance
was worsened because of the influence of poor-quality data pairs. CRQI was used to select
only good-quality data pairs for correcting estimators, which improved the QPE perfor-
mance, especially for data corresponding to 1.1 mm < average Dm < 1.4 mm and 4 < average
log10 Nw < 4.5. With a traditional spatial correction method, the QPE performance was
improved in areas with CRQI > 0.9. Some underestimations still occurred in areas with
CRQI < 0.9 because of the beam broadening effect, excessive beam height, and partial
beam blockages. In contrast, the proposed algorithm improved the QPE performance for
all areas (CRQI > 0.0) and decreased RMSE by 17.5%. The above improvements with the
proposed algorithm were observed not only in the overall statistical results but also in the
near real-time statistical results. This is important for the operational application of the
proposed algorithm.

There are some different microphysical characteristics for heavy rain (hourly accu-
mulated precipitation > 30 mm) in the three different types of precipitation. Convective
precipitation had more particles, which could lead to extremely heavy rain (hourly ac-
cumulated precipitation > 50 mm). Squall line generally had huge particles (average
Dm > 2.3 mm). Only in stratocumulus rainfall events are there small but dense particles
(average Dm < 1.5 and log10 Nw > 5) leading to heavy rain.

The correction for estimators improved the QPE performance when the DSD was
susceptible to change. In contrast, it did not work very well when the DSD was relatively
stable. Therefore, the correction for estimators significantly mitigated the overestimation
of convective precipitation and squall line but did not improve the QPE performance for
stratocumulus precipitation. Thus, the overall improvement for all rainfall events was
not obvious. Although the QPE performance was best for stratocumulus precipitation,
the improvement in QPE performance with the proposed algorithm was most obvious for
squall line.

The results of this study demonstrated the advantages of the proposed algorithm with
CRQI for QPE using PR and RG data. The correction for estimators did not improve the
QPE performance for stratocumulus precipitation. Further study is needed to address this
problem and further improve the QPE performance.
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