A Variable-Scale Coherent Integration Method for Moving Target Detection in Wideband Radar
Abstract
:1. Introduction
2. Signal Modeling for Extended Target in a Long-Time Coherent Integration
3. Variable-Scale Transformation of the Radar Target
3.1. Variable-Scale Transformation by Subband Decomposition
3.2. Design of Variable-Scale Transformation Filter Bank
4. Filter Bank Design for Variable-Scale Moving Target Detection (VSMTD)
5. Performance Analysis of VSMTD
5.1. Noncoherent Gain of Scale Transformation
5.2. Gain of Coherent Integration between Pulses
5.3. Comparison of SNR Gain
5.4. Comparison of Computational Complexity
6. Simulation and Experiments
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, W.; An, D.; Luo, Y.; Zhou, Z. The Fundamental Trajectory Reconstruction Results of Ground Moving Target from Single-Channel CSAR Geometry. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5647–5657. [Google Scholar] [CrossRef]
- Zhang, L.; Xing, M.; Qiu, C.; Li, J.; Bao, Z. Achieving higher resolution ISAR imaging with limited pulses via compressive sampling. IEEE Geosci. Remote Sens. Lett. 2009, 6, 567–571. [Google Scholar] [CrossRef]
- Gerlach, K.; Steiner, M.; Lin, F.C. Detection of a Spatially Distributed Target in White Noise. IEEE Signal Process. Lett. 1997, 4, 198–200. [Google Scholar] [CrossRef]
- Wehner, D.R. High-Resolution Radar, 2nd ed.; Artech House: Boston, MA, USA, 1995. [Google Scholar]
- Barton, D.K. Radar System Analysis and Modeling; Publishing House of Electronics Industry: Beijing, China, 2004. [Google Scholar]
- Skolnik, M.I. Introduction to Radar System, 3rd ed.; McGraw-Hill: Columbus, OH, USA, 2002. [Google Scholar]
- Orlenko, V.M.; Shirman, Y.D. Non-coherent integration losses of wideband target detection. In Proceedings of the European Radar Conference, Amsterdam, The Netherlands, 11–15 October 2004. [Google Scholar]
- Satzoda, R.K.; Suchitra, S.; Srikanthan, T. Parallelizing the Hough transform computation. IEEE Signal Process. Lett. 2008, 15, 297–300. [Google Scholar] [CrossRef]
- Carlson, B.D.; Evans, E.D.; Wilson, S.L. Search radar detection and track with the Hough transform Part I: System concept. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 102–108. [Google Scholar] [CrossRef]
- Carlson, B.D.; Evans, E.D.; Wilson, S.L. Search radar detection and track with the Hough transform Part II: Detection statistics. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 109–115. [Google Scholar] [CrossRef]
- Carlson, B.D.; Evans, E.D.; Wilson, S.L. Search radar detection and track with the Hough transform Part III: Detection performance with binary integration. IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 116–125. [Google Scholar] [CrossRef]
- Mo, L.; Wu, S.L.; Li, H. Radar detection of range migrated weak target through long-term integration. Chin. J. Electron. 2003, 12, 539–544. [Google Scholar]
- Perry, R.P.; Dipietro, R.C.; Fante, R.L. SAR imaging of moving targets. IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 188–200. [Google Scholar] [CrossRef]
- Perry, R.P.; Dipietro, R.C.; Fante, R.L. Coherent integration with range migration using Keystone formatting. In Proceedings of the IEEE Radar Conference, Waltham, MA, USA, 17–20 April 2007. [Google Scholar]
- Zhang, S.S.; Zeng, T. Dim target detection based on Keystone transform. In Proceedings of the IEEE International Radar Conference, Arlington, VA, USA, 9–12 May 2005. [Google Scholar]
- Xu, J.; Yu, J.; Peng, Y.N. Radon-Fourier transform for radar target detection, I: Generalized Doppler filter bank. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 1186–1200. [Google Scholar] [CrossRef]
- Xu, J.; Yu, J.; Peng, Y.N. Radon-Fourier transform for radar target detection, II: Blind speed sidelobe suppression. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 2473–2489. [Google Scholar] [CrossRef]
- Yu, J.; Xu, J.; Peng, Y.N. Radon-Fourier transform for radar target detection, III: Optimality and fast implementations. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 991–1004. [Google Scholar] [CrossRef]
- Van Der Spek, G.A. Detection of a distributed target. IEEE Trans. Aerosp. Electron. Syst. 1971, 7, 922–931. [Google Scholar] [CrossRef]
- Hughes, P.K. A high-resolution radar detection strategy. IEEE Trans. Aerosp. Electron. Syst. 1983, 19, 663–667. [Google Scholar] [CrossRef]
- Come, E.; Maio, A.D.; Ricci, G. GLRT-Based Adaptive Detection Algorithms for Range-Spread Targets. IEEE Trans. Signal Process. 2001, 49, 1336–1348. [Google Scholar]
- Ghahramani, M.; Mohseni, R.; Sheikhi, A.; Saeimanesh, F. Optimum two-pulse UWB detector for different target fluctuation models. In Proceedings of the 2008 International Conference on Radar, Adelaide, Australia, 2–5 September 2008. [Google Scholar]
- He, Y.; Gu, X.F.; Jian, T. A M out of N detector based on scattering density. IEEE Trans. Aerosp. Electron. Syst. 2007, 43, 738–752. [Google Scholar]
- Dai, F.; Liu, H.; Shui, P. Adaptive detection of wideband radar range spread target with range walking in clutter. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 2052–2064. [Google Scholar] [CrossRef]
- Sun, Z.; Li, X.; Cui, G.; Yi, W.; Kong, L. Hypersonic Target Detection and Velocity Estimation in Coherent Radar System Based on Scaled Radon Fourier Transform. IEEE Trans. Veh. Technol. 2020, 69, 6525–6540. [Google Scholar] [CrossRef]
- De Haan, J.M.; Grbic, N.; Claesson, I.; Nordholm, S.E. Filter bank design for subband adaptive microphone arrays. IEEE Trans. Speech Audio Process. 2003, 11, 14–23. [Google Scholar] [CrossRef]
- Marcum, J.I. A statistical theory of target detection by pulsed radar. IRE Trans. Inf. Theory 1960, 60, 59–267. [Google Scholar] [CrossRef]
- Peebles, P.Z. Radar Principles; John Wiley & Sons: New York, NY, USA, 1998. [Google Scholar]
- Crochiere, R.E.; Rabiner, L.R. Multirate Digital Signal Processing; Prentice-Hall: Englewood Cliffs, NJ, USA, 1983. [Google Scholar]
- Huang, D.S. High Resolution Radar Intelligent Signal Processing Technology; China Machine Press: Beijing, China, 2000. [Google Scholar]
Methods | FLOP |
---|---|
MTD | |
RFT VSMTD |
Parameters | Symbol | Value |
---|---|---|
Carrier frequency | 10 GHz | |
Pulse duration | ||
Bandwidth | 500 MHz | |
Coherent processing interval | 25.6 ms | |
Number of subbands | 128 | |
Number of pulses | 128 | |
Filter order | 256 | |
Down-sampling multiple | 64 | |
Number of scattering center | 8 | |
Velocity of the target | 270 m/s |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, T.; He, F.; Yu, L.; Wu, M. A Variable-Scale Coherent Integration Method for Moving Target Detection in Wideband Radar. Remote Sens. 2022, 14, 3156. https://doi.org/10.3390/rs14133156
Lu T, He F, Yu L, Wu M. A Variable-Scale Coherent Integration Method for Moving Target Detection in Wideband Radar. Remote Sensing. 2022; 14(13):3156. https://doi.org/10.3390/rs14133156
Chicago/Turabian StyleLu, Tingkun, Feng He, Lei Yu, and Manqing Wu. 2022. "A Variable-Scale Coherent Integration Method for Moving Target Detection in Wideband Radar" Remote Sensing 14, no. 13: 3156. https://doi.org/10.3390/rs14133156
APA StyleLu, T., He, F., Yu, L., & Wu, M. (2022). A Variable-Scale Coherent Integration Method for Moving Target Detection in Wideband Radar. Remote Sensing, 14(13), 3156. https://doi.org/10.3390/rs14133156