UAV Video-Based Approach to Identify Damaged Trees in Windthrow Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. Data Processing
2.3.1. Full Motion Video Processing
2.3.2. SfM Photogrammetry Processing
2.3.3. Ground Survey Processing
2.4. Comparison
3. Results
3.1. Fallen Trees
3.2. Snapped Trees
4. Discussion
4.1. Performance of FMV and Orthomosaic for Fallen Trees Identification
4.2. Performance of FMV for Snapped Trees Identification
4.3. FMV advantages and limitations for Damaged Trees Identification
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Dale, V.H.; Joyce, L.A.; McNulty, S.; Neilson, R.P.; Ayres, M.P.; Flannigan, M.D.; Hanson, P.J.; Irland, L.C.; Lugo, A.E.; Peterson, C.J.; et al. Climate Change and Forest Disturbances. Bioscience 2001, 51, 723. [Google Scholar] [CrossRef] [Green Version]
- Mabry, C.M.; Hamburg, S.P.; Lin, T.-C.; Horng, F.-W.; King, H.-B.; Hsia, Y.-J. Typhoon Disturbance and Stand-level Damage Patterns at a Subtropical Forest in Taiwan1. Biotropica 1998, 30, 238–250. [Google Scholar] [CrossRef]
- Murakami, H.; Wang, Y.; Yoshimura, H.; Mizuta, R.; Sugi, M.; Shindo, E.; Adachi, Y.; Yukimoto, S.; Hosaka, M.; Kusunoki, S.; et al. Future Changes in Tropical Cyclone Activity Projected by the New High-Resolution MRI-AGCM. J. Clim. 2012, 25, 3237–3260. [Google Scholar] [CrossRef]
- Morimoto, J.; Negishi, J. Ecological resilience of ecosystems to human impacts: Resilience of plants and animals. Landsc. Ecol. Eng. 2019, 15, 131–132. [Google Scholar] [CrossRef] [Green Version]
- Thompson, I.; Mackey, B.; Mcnulty, S.G.; Mosseler, A. Forest Resilience, Biodiversity, and Climate Change. A Synthesis of the Biodiversity/Resilience/Stability Relationship in Forest Ecosystems; Secretariat of the Convention on Biological Diversity: Montreal, QC, Canada, 2009; ISBN 9292251376. [Google Scholar]
- Waldron, K.; Ruel, J.-C.; Gauthier, S. Forest structural attributes after windthrow and consequences of salvage logging. For. Ecol. Manag. 2013, 289, 28–37. [Google Scholar] [CrossRef]
- Dobor, L.; Hlásny, T.; Rammer, W.; Zimová, S.; Barka, I.; Seidl, R. Is salvage logging effectively dampening bark beetle outbreaks and preserving forest carbon stocks? J. Appl. Ecol. 2020, 57, 67–76. [Google Scholar] [CrossRef]
- Leverkus, A.B.; Buma, B.; Wagenbrenner, J.; Burton, P.J.; Lingua, E.; Marzano, R.; Thorn, S. Tamm review: Does salvage logging mitigate subsequent forest disturbances? For. Ecol. Manag. 2021, 481, 118721. [Google Scholar] [CrossRef]
- Cooper-Ellis, S.; Foster, D.R.; Carlton, G.; Lezberg, A. Forest response to catastrophic wind: Results from an experimental hurricane. Ecology 1999, 80, 2683–2696. [Google Scholar] [CrossRef]
- Mori, A.S.; Lertzman, K.P.; Gustafsson, L. Biodiversity and ecosystem services in forest ecosystems: A research agenda for applied forest ecology. J. Appl. Ecol. 2017, 54, 12–27. [Google Scholar] [CrossRef]
- Morimoto, J.; Umebayashi, T.; Suzuki, S.N.; Owari, T.; Nishimura, N.; Ishibashi, S.; Shibuya, M.; Hara, T. Long-term effects of salvage logging after a catastrophic wind disturbance on forest structure in northern Japan. Landsc. Ecol. Eng. 2019, 15, 133–141. [Google Scholar] [CrossRef]
- Siitonen, J. Forest Management, Coarse Woody Debris and Saproxylic Organisms: Fennoscandian Boreal Forests as an Example. Ecol. Bull. Ecol. Woody Debris Boreal For. 2001, 49, 11–41. [Google Scholar] [CrossRef]
- Vítková, L.; Bače, R.; Kjučukov, P.; Svoboda, M. Deadwood management in Central European forests: Key considerations for practical implementation. For. Ecol. Manag. 2018, 429, 394–405. [Google Scholar] [CrossRef]
- Jonsson, B.; Kruys, N.; Ranius, T. Ecology of species living on dead wood—Lessons for dead wood management. Silva Fenn. 2005, 39, 289–309. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, F.; Morimoto, J.; Yoshimura, N.; Kaneko, M. Comparison of Conventional Change Detection Methodologies Using High-Resolution Imagery to Find Forest Damage Caused by Typhoons. Remote Sens. 2020, 12, 3242. [Google Scholar] [CrossRef]
- Im, J.; Park, H.; Takeuchi, W. Advances in Remote Sensing-Based Disaster Monitoring and Assessment. Remote Sens. 2019, 11, 2181. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Vanhard, E.; Corpetti, T.; Houet, T. UAV & satellite synergies for optical remote sensing applications: A literature review. Sci. Remote Sens. 2021, 3, 100019. [Google Scholar] [CrossRef]
- Mohd Daud, S.M.S.; Mohd Yusof, M.Y.P.; Heo, C.C.; Khoo, L.S.; Chainchel Singh, M.K.; Mahmood, M.S.; Nawawi, H. Applications of drone in disaster management: A scoping review. Sci. Justice 2022, 62, 30–42. [Google Scholar] [CrossRef]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion Photogrammetry in Forestry: A Review. Curr. For. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, F.; Laneng, L.A.; Ando, H.; Yoshimura, N.; Kaneko, M.; Morimoto, J. Comparison of RGB and Multispectral Unmanned Aerial Vehicle for Monitoring Vegetation Coverage Changes on a Landslide Area. Drones 2021, 5, 97. [Google Scholar] [CrossRef]
- Gomez, C.; Purdie, H. UAV- based Photogrammetry and Geocomputing for Hazards and Disaster Risk Monitoring—A Review. Geoenviron. Disasters 2016, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Berra, E.F.; Peppa, M.V. Advances and Challenges of UAV SFM MVS Photogrammetry and Remote Sensing: Short Review. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 22–26 March 2020; pp. 533–538. [Google Scholar]
- Rothmund, S.; Vouillamoz, N.; Joswig, M. Mapping slow-moving alpine landslides by UAV—Opportunities and limitations. Lead. Edge 2017, 36, 571–579. [Google Scholar] [CrossRef]
- Inoue, T.; Nagai, S.; Yamashita, S.; Fadaei, H.; Ishii, R.; Okabe, K.; Taki, H.; Honda, Y.; Kajiwara, K.; Suzuki, R. Unmanned aerial survey of fallen trees in a deciduous broadleaved forest in eastern Japan. PLoS ONE 2014, 9, e109881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goodbody, T.R.H.; Coops, N.C.; White, J.C. Digital Aerial Photogrammetry for Updating Area-Based Forest Inventories: A Review of Opportunities, Challenges, and Future Directions. Curr. For. Rep. 2019, 5, 55–75. [Google Scholar] [CrossRef] [Green Version]
- Habib, A.F.; Ghanma, M.S.; Tait, M. Integration of Lidar and Photogrammetry for Close Range Applications. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 170, 1045–1050. [Google Scholar]
- Chirici, G.; Bottalico, F.; Giannetti, F.; Del Perugia, B.; Travaglini, D.; Nocentini, S.; Kutchartt, E.; Marchi, E.; Foderi, C.; Fioravanti, M.; et al. Assessing forest windthrow damage using single-date, post-event airborne laser scanning data. For. Int. J. For. Res. 2018, 91, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Dandois, J.P.; Ellis, E.C. Remote Sensing of Vegetation Structure Using Computer Vision. Remote Sens. 2010, 2, 1157–1176. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Xu, A.; Tang, L. A Study of the Key Technology of Forest Fire Prevention Based on a Cooperation of Video Monitor and GIS. In Proceedings of the 2008 Fourth International Conference on Natural Computation, Jinan, China, 18–20 October 2008; Volume 5, pp. 391–396. [Google Scholar]
- Jacbos, D.M.; Eggen-McIntosh, S. Airborne Videography and GPS for Assessment of Forest Damage in Southern Louisiana from Hurricane AndrEW. In Proceedings of the ILJFRO Conference on Inventory and Management Techniques in the Context of Catastrophic Events, University Park, PA, USA, 21–24 June 1993. [Google Scholar]
- Esri Introduction to Full Motion Video. Available online: https://pro.arcgis.com/en/pro-app/2.7/help/analysis/image-analyst/introduction-to-full-motion-video-in-arcgis-pro.htm (accessed on 14 February 2022).
- Azmi, M.Z.M.; Sharom, M.A.A.M.; Numpang, W.; Jamil, M.; Yahaya, K.; Muazah, S.; Zin, M.; Abd, C.; Sipit, R. Landfill Identification Through High-Resolution Satellite Images and Verification Using Drone Full Motion Video (FMV). ASM Sci. J. 2022, 17, 7:1–7:11. [Google Scholar] [CrossRef]
- Demirtas, U.; Turk, Y.Z.; Ozer, M. The Role Of Intelligence, Surveillance, And Reconnaissance In Disaster And Public Health Emergency. Prehosp. Disaster Med. 2014, 29, 549–550. [Google Scholar] [CrossRef] [Green Version]
- Bennett, B.; Beliveau, D.; Snellings, M.; Harding, M.; Bussert, D. DISN Video Services for Full Motion Video. In Proceedings of the MILCOM 2008—2008 IEEE Military Communications Conference, IEEE, San Diego, CA, USA, 16–19 November 2008; pp. 1–5. [Google Scholar]
- Tsushima, T.; Saitoh, K. Background to the Windthrow by Typhoon No. 18. In Reports on the Analyses of the Windthrow by Remote Sensing; Research Group on Forest Disasters in Hokkaido: Sapporo, Japan, 2005; pp. 3–6. (In Japanese) [Google Scholar]
- Morimoto, J.; Morimoto, M.; Nakamura, F. Initial vegetation recovery following a blowdown of a conifer plantation in monsoonal East Asia: Impacts of legacy retention, salvaging, site preparation, and weeding. For. Ecol. Manag. 2011, 261, 1353–1361. [Google Scholar] [CrossRef] [Green Version]
- DJI Phantom 4 RTK. Available online: https://www.dji.com/phantom-4-rtk?site=brandsite&from=nav (accessed on 28 February 2022).
- Softbank Ichimill IoT Service. Available online: https://www.softbank.jp/biz/iot/service/ichimill/ (accessed on 16 July 2021).
- Feng, Y.; Wang, J. GPS RTK Performance Characteristics and Analysis. J. Glob. Position. Syst. 2008, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Esri Site Scan for ArcGIS. Available online: https://www.esri.com/en-us/arcgis/products/site-scan-for-arcgis/overview (accessed on 28 February 2022).
- Geospatial Intelligence Standards Working Group NSG Standards Registry. Available online: https://nsgreg.nga.mil/doc/view?i=5093 (accessed on 28 February 2022).
- BizStation Corp DG-PRO1RWS RTK W-Band Gnss Receiver. Available online: https://www.bizstation.jp/ja/drogger/dg-pro1rws_index.html (accessed on 14 July 2021).
- Morimoto, J.; Sugiura, M.; Morimoto, M.; Nakamura, F. Restoration of Natural Forests After Severe Wind Disturbance in a Cold, Snowy Region With a Deer Population: Implications From 15 Years of Field Experiments. Front. For. Glob. Chang. 2021, 4, 82. [Google Scholar] [CrossRef]
- Esri ArcGIS Pro. Available online: https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (accessed on 17 March 2022).
- Esri How To: Use Geospatial Log Files from Video Flights Captured with Site Scan Flight for ArcGIS. Available online: https://support.esri.com/en/technical-article/000024386 (accessed on 19 June 2022).
- Esri How To: Correct Drone Flight Altitude Data in Geospatial Video Log (GVL) Files in Site Scan Flight for ArcGIS. Available online: https://support.esri.com/en/technical-article/000027161 (accessed on 19 June 2022).
- Remondino, F.; Barazzetti, L.; Nex, F.; Scaioni, M.; Sarazzi, D. Uav Photogrammetry For Mapping and 3D Modeling—Current Status and Future Perspectives. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXVIII-1, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Agisoft Metashape. Available online: https://www.agisoft.com/downloads/installer/ (accessed on 4 July 2021).
- Morimoto, J.; Kajihara, K.; Shida, Y. Environment and plant regeneration at microsites created by fallen logs in plantation forests downed by wind (In Japanese with English abstract). J. Jpn. Soc. Reveg. Technol. 2014, 40, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Cribari-Neto, F.; Zeileis, A. Beta Regression in R. J. Stat. Softw. 2010, 34, 1–24. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 26 May 2022).
- Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in Remote Sensing to Forest Ecology and Management. One Earth 2020, 2, 405–412. [Google Scholar] [CrossRef]
- Meisner, D. Fundamentals of airborne video remote sensing. Remote Sens. Environ. 1986, 19, 63–79. [Google Scholar] [CrossRef]
- Koi, T.; Hotta, N.; Tanaka, Y.; Katsura, S. Generation and Subsequent Transport of Landslide-driven Large Woody Debris Induced by the 2018 Hokkaido Eastern Iburi Earthquake. Front. Earth Sci. 2022, 9, 10:1–10:16. [Google Scholar] [CrossRef]
- Lipton, A.J.; Fujiyoshi, H.; Patil, R.S. Moving target classification and tracking from real-time video. In Proceedings of the Fourth IEEE Workshop on Applications of Computer Vision. WACV’98 (Cat. No.98EX201), Princeton, NJ, USA, 19–21 October 1998; pp. 8–14. [Google Scholar]
- Garmin GPS Accuracy. Available online: https://support.garmin.com/en-US/?faq=aZc8RezeAb9LjCDpJplTY7#:~:text=Garmin (accessed on 2 February 2022).
- Lachat, T.; Bouget, C.; Bütler, R.; Müller, J.; Kraus, D.; Krumm, F. Deadwood: Quantitative and qualitative requirements for the conservation of saproxylic biodiversity. In Integrative Approaches as an Opportunity for the Conservation of Forest Biodiversity; European Forest Institute: Freiburg, Germany, 2013; pp. 92–102. [Google Scholar]
FMV | Orthomosaic | |
---|---|---|
Vegetation with leaves | 0.82 | 0.002 |
Vegetation without leaves | 0.83 | 0.72 |
Non-vegetation | 0.62 | 0.001 |
FMV | |
---|---|
Vegetation with leaves | 0.25 |
Vegetation without leaves | 0.71 |
Non-vegetation | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furukawa, F.; Morimoto, J.; Yoshimura, N.; Koi, T.; Shibata, H.; Kaneko, M. UAV Video-Based Approach to Identify Damaged Trees in Windthrow Areas. Remote Sens. 2022, 14, 3170. https://doi.org/10.3390/rs14133170
Furukawa F, Morimoto J, Yoshimura N, Koi T, Shibata H, Kaneko M. UAV Video-Based Approach to Identify Damaged Trees in Windthrow Areas. Remote Sensing. 2022; 14(13):3170. https://doi.org/10.3390/rs14133170
Chicago/Turabian StyleFurukawa, Flavio, Junko Morimoto, Nobuhiko Yoshimura, Takashi Koi, Hideaki Shibata, and Masami Kaneko. 2022. "UAV Video-Based Approach to Identify Damaged Trees in Windthrow Areas" Remote Sensing 14, no. 13: 3170. https://doi.org/10.3390/rs14133170
APA StyleFurukawa, F., Morimoto, J., Yoshimura, N., Koi, T., Shibata, H., & Kaneko, M. (2022). UAV Video-Based Approach to Identify Damaged Trees in Windthrow Areas. Remote Sensing, 14(13), 3170. https://doi.org/10.3390/rs14133170