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Abstract: The precise localization of the infrasound source is important for infrasound event monitor-
ing. The localization of infrasound sources is influenced by the atmospheric propagation environment
and infrasound measurement equipment in the large-scale global distribution of infrasound arrays.
A distributed infrasound source localization method based on sparse Bayesian learning (SBL) and
Bayesian information fusion is proposed to reduce the localization error. First, the arrival azimuth
of the infrasound source is obtained based on the SBL algorithm. Then, the infrasound source
localization result is obtained by the Bayesian information fusion algorithm. The localization error
of the infrasound source can be reduced by this infrasound source method, which incorporates the
uncertainty of the infrasound propagation environment and infrasound measurement equipment into
the infrasound source localization results. The effectiveness of the proposed algorithm was validated
using rocket motor explosion data from the Utah Test and Training Range (UTTR). The experimental
results show that the arrival azimuth estimation error can be within 2° and the localization distance
error is 3.5 km.

Keywords: infrasound source localization; sparse Bayesian learning; Bayesian information fusion

1. Introduction

The infrasound is a sound wave characterized by low frequencies (below 20 Hz) and
long wavelengths. The infrasound waves are mainly divided into two categories according
to their sources: natural infrasound sources and artificial infrasound sources [1]. The
natural infrasound sources are caused primarily by tsunamis, earthquakes, storms, etc. The
artificial infrasound sources are mainly caused by nuclear explosions, other large explo-
sions, and rocket launches. The infrasound is used by the comprehensive nuclear-test-ban
treaty organization (CTBTO) to detect infrasound events in the atmospheric environment,
such as explosions and nuclear tests. The global infrasound monitoring network IMS (in-
frasound monitoring system) was established by the CTBTO to monitor nuclear explosions,
earthquakes, and atmospheric climate [1]. The infrasound source localization technology is
mainly used to monitor volcanic eruptions [2–5], earthquakes [6,7], thunderstorms [1] and
other geological disasters [8].

The localization of the infrasound source is obtained by fusing the results of the arrival
azimuth estimation from multiple infrasound stations in the context of the large-scale
global distribution [6]. The final infrasound source localization results are influenced by the
accuracy of the arrival azimuth estimation of individual infrasound stations. A conventional
estimation algorithm for infrasound arrival azimuth is the frequency-wave number analysis
(FK analysis) [9]. The power spectral density distribution of the infrasound signal between
different slownesses and azimuths is calculated, and the azimuth corresponding to the

Remote Sens. 2022, 14, 3181. https://doi.org/10.3390/rs14133181 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14133181
https://doi.org/10.3390/rs14133181
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-6524-9099
https://orcid.org/0000-0001-9846-9154
https://orcid.org/0000-0001-7860-5315
https://doi.org/10.3390/rs14133181
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14133181?type=check_update&version=4


Remote Sens. 2022, 14, 3181 2 of 25

value with the highest power is the result of the arrival azimuth estimation. The FK analysis
can only handle a short infrasound signal time window (a few seconds). This method deals
with large time windows because the window may contain multiple interference phases
on different slow vectors, making it difficult to accurately identify the arrival azimuth
information of the infrasound source [9].

The sparse Bayesian learning (SBL) algorithm was proposed in a probability frame-
work for solving regression and classification problems to obtain sparse solutions [10–12]
and was then applied to the field of acoustic array signal processing for direction-of-arrival
(DOA) estimation [13–16]. Many advantages are captured by the SBL algorithm. The co-
variances of the weights are estimated directly by the SBL algorithm, thus greatly reducing
the number of parameters to be estimated. The sparsity is automatically estimated by the
SBL algorithm without any user input [17]. Better performance can be shown by the SBL
algorithm with fewer snapshots, compared to the multiple signal classification (MUSIC)
algorithm [13]. It is also less sensitive to array geometry, which usually requires a uniform
linear array (ULA). The incoming wave azimuth of infrasound is sparse for the angularly
discretized infrasound source plane, so the SBL algorithm is suitable for estimating the
incoming wave azimuth of infrasound sources with sparsity and thus obtaining sparse
solutions. The potential to improve the accuracy of the infrasound source arrival azimuth
estimation is possessed by the SBL algorithm based on the above advantages.

The infrasound stations are usually distributed and arranged in outdoor environments
due to the strict requirements of the infrasound stations for outdoor environmental con-
ditions. The arrival azimuth, rather than the exact location of the infrasound source, can
be obtained by individual infrasound stations. The estimation error of the arrival azimuth
of a single infrasound station can be reduced by the arrival azimuth estimation algorithm
for infrasound. The next consideration is how to fuse the arrival azimuth estimations
from multiple infrasound stations, the uncertainty of the propagation environment, and
the uncertainty of the measurement equipment in order to obtain more accurate results
of infrasound source localization. Accurate infrasound source localization results are
difficult to obtain because of the following uncertainties [6]: (1) the uncertainty of the
infrasound propagation environment, such as temperature, wind speed, and atmospheric
pressure [18]; and (2) uncertainties in the infrasound measurement equipment, such as the
size of the array aperture, the sampling frequency, and the wavelength of the infrasound
station [19]. Multiple types of information can be fused by the Bayesian information fusion
algorithm [19] based on the Bayesian statistical model. The posterior probability density
function and Bayesian credibility contours are obtained by the algorithm through Bayesian
inference. Therefore, the SBL algorithm and Bayesian information fusion algorithm are
combined to improve the accuracy of the infrasound localization.

The purpose of this paper is to improve the accuracy of infrasound source localiza-
tion in the presence of the atmospheric uncertainty of infrasound propagation and the
uncertainty of infrasound measurement equipment. An infrasound source localization
method based on the SBL algorithm and Bayesian information fusion is proposed in this
paper. First, the infrasound source arrival azimuth estimation for the individual infrasound
station is acquired by the SBL algorithm. Second, the arrival azimuth estimation results
of multiple stations, the uncertainty of the propagation environment, and the uncertainty
of the measurement equipment are fused by the Bayesian information fusion algorithm
into the infrasound source localization results. The rocket motor explosion data obtained in
the Utah Test and Training Range (UTTR) are used to verify the feasibility of the algorithm.
The main contributions of this paper are as follows:

1. An infrasound source localization method is developed based on the SBL algorithm
under the plane wave assumption of infrasound propagation.

2. The arrival azimuth estimation results, the uncertainty of the infrasound propagation
environment, and the uncertainty of the measurement equipment are fused by the
Bayesian information fusion algorithm to obtain the localization, making the infra-



Remote Sens. 2022, 14, 3181 3 of 25

sound source localization results robust to the actual atmosphere and measurement
environment.

3. The validity and feasibility of the proposed method are verified using a rocket motor
explosion at the Utah Test and Training Range (UTTR).

The rest of this paper is organized as follows. In Section 2.1, The tau-p model for
the infrasound propagation and problem statement is given. In Section 2.2, the method
for estimating the arrival azimuth of infrasound sources by one arrayed station based on
sources by one arrayed station based on the SBL algorithm is introduced. In Section 2.3, the
Bayesian information fusion for infrasound source localization by using multiple stations
is introduced. In Section 2.4, the technical flowchart for the infrasound source localization
algorithm is introduced. In Section 3, the validity and feasibility of the algorithm are verified
using measured infrasound data. The SBL algorithm is compared with the conventional
infrasound arrival azimuth estimation algorithm. In Section 4, the availability of the
proposed infrasound source localization algorithm is discussed.

2. Materials and Methods
2.1. The Tau-p Model for the Infrasound Propagation and Problem Statement
2.1.1. The Tau-p Model for the Infrasound Propagation

The tau-p model [18,20] is commonly used to simulate the trajectory of infrasound
propagation in the atmosphere. It is a forward model of infasound propagation, which
is suitable for visualizing the process of infrasound propagation. The principle of tau-p
model is as follows.

The ray parameter p in tau-p model is

p =
sin(φ)

c0

(
1 +

sin(φ)u0

c0

)−1

, (1)

where (1) c0 is the static sound velocity at the receiving point, (2) u0 is the horizontal wind
speed along the infrasound propagation direction at the receiving point, and (3) φ is the
elevation angle of the emission.

The range along the ray direction in a phase loop is R. The characteristic function is ψ ,
which is formulated as

R(z, p) = 2
∫ z(p)

z0

ψ(z, p)

[
p

(1− u(z)p)
+

u(z)

c(z)2

]
dz, (2)

ψ(z, p) =

[
1

c(z)2 −
p2

(1− u(z)p)2

]−1/2

, (3)

where (1) z0 is lower limit of the integration (usually zero or the surface height of the
infrasound source); (2) z(p) is the upper limit of the integration, i.e., the maximum height
of the infrasound propagation; (3) ψ(z, p) is the characteristic function for which the
maximum height zmax of the infrasound trajectory can be obtained by rooting the function;

(4) c(z) =
√

γkT
m is the adiabatic sound speed; and (5) u(z) is the horizontal wind speed

along the propagation direction.
The transverse offset Q of the infrasound propagation model is

Q(z, p) =
∫ z(p)

zo

1

c(z)2 ψ(z, p)v(z)dz, (4)

where v(z) represents the horizontal wind speed in the vertical propagation direction, and
the root of ψ(z, p) represents the turning point of the propagating sound line.
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The diagram of the infrasound propagation model is shown in Figure 1. The infra-
sound propagation model is derived from the classical Wentzel–Kramers–Brillouin (WKB)
sound line theory, which suggests that the sound line will turn when the horizontal phase
velocity Vθ matches the background effective sound velocity c(z) + u(z). The propaga-
tion trajectory of the tau-p model in a phase loop is shown in Figure 1. The tau-p is a
forward model, which is not applicable to the infrasound source localization problem. For
this reason, infrasound is assumed to be a plane wave in the following. The infrasound
source localization problem is only concerned with the source of infrasound, not with the
propagation trajectory of infrasound.

 R

Q

Figure 1. Propagation trajectory of the tau-p model in a phase loop, the azimuth angle θ, the angle
of elevation φ, the altitude of infrasound propagation z, the infrasound propagation distance R of
a phase loop in Equation (2), the maximum altitude zmax that a phase loop can propagate, and the
transverse offset Q of infrasound propagation in Equation (4) (the red arrow and red dot indicate the
direction of infrasound propagation at the starting point and the location of the maximum elevation
of infrasound propagation, respectively).

2.1.2. Problem Statement for the Infrasound Source Localization

The arrival azimuth information of infrasound can be obtained from a single infra-
sound station, while the location information of the infrasound source is not available. From
the above tau-p model, it can be seen that the accuracy of the arrival azimuth estimation
of a single station is difficult to be guaranteed due to the complexity of infrasound prop-
agation. The arrival azimuth estimation results of individual infrasound stations greatly
influence the final infrasound localization results. Accurate arrival azimuth estimations
are the basis for the subsequent fusion of information from multiple infrasound stations to
obtain accurate infrasound source localization results.

In addition, the infrasound stations are usually distributed in the field. The localiza-
tion error of the infrasound source is also affected by the uncertainty of the infrasound
propagation environment and the uncertainty of the infrasound measurement equipment.

2.2. Estimating the Arrival Azimuth of Infrasound Source Based on the SBL Algorithm

The infrasound forward propagation model, i.e., the tau-p model, is introduced in
Section 2.1. The trajectory of infrasound propagation can be visualized by this model. How-
ever, this model is not applicable to the arrival azimuth estimation algorithm of infrasound
sources. A plane wave assumption is adopted for infrasound waves due to the ultralong
distance propagation of infrasound waves, and a signal model for infrasound propagation
is constructed. The infrasound source localization algorithm based on the SBL algorithm is
proposed on the basis of the constructed signal model of infrasound propagation.
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2.2.1. Signal Model for Arrival Azimuth Estimation Based on Plane Wave Assumption

It is difficult to infer the infrasound source signal from the measured signal of the
infrasound station and thus obtain the arrival azimuth of the infrasound source. The
above problem can be solved by building the signal model in the Equation (5) to obtain the
infrasound source arrival azimuth estimation results. In this model, infrasound is assumed
to be a plane wave due to the far-field propagation characteristics of infrasound in the
atmosphere. The schematic diagram of three-dimensional infrasound propagation under
the assumption of plane waves is shown in Figure 2. P is the acoustic signal when the
initial time is t and the propagation distance is r. The horizontal azimuth information α is
contained in the unit normal to the wavefront ~u.

Wave number vector: u

( , , )x y zu u u u=

z

x

Acoustic signal

cos sin  cos

sin sin 
y

u ( , ) ( )
u

P t s t
c


= +

r
r





Figure 2. Schematic diagram of infrasound three-dimensional propagation under the assumption
of plane waves. (The z-axis is the infrasound propagation height, which corresponds to the z-axis
in Figure 1. ~u is the wave number vector; c is the sound velocity; r is the position vector; P is the
acoustic signal when the initial time is t; and α, β are the angle values).

The infrasound source signal in Equation (5) is linked to the infrasound measure-
ment signal by the signal model through a linear regression model. The measured in-
frasound signal is Fourier transformed to obtain a multi-snapshot of the measured data
Y = [y1, . . . , yL] ∈ CN×L (N is the number of infrasound sensor and L is the number of
snapshots) since the infrasound signal monitored by the infrasound station is a non-smooth
signal. Large time windows of infrasound signals can be processed by this infrasound
source localization algorithm using a multi-snapshot approach.

Y = AX + N, (5)

where X = [x1, . . . , xL] ∈ CM×L are the actual infrasound source amplitudes and xml
denotes the infrasound source amplitude at the m-th discretization angle under the plane
wave assumption (e.g., θm = −90◦ + m−1

M 180◦) and at the l-th snapshot; M is the number
of discretizations in the plane of the infrasound incoming wave direction (the plane ranges
from [−90°, 90°]) discretized by the angular resolution ∆θ; and N = [n1, . . . ,nL] ∈ CN×L is
additive noise, which is independent across the infrasound sensors and snapshots L. The
additive noise N of each infrasound sensor is assumed to follow a zero-averaged circularly
symmetric complex Gaussian. A = [a1, . . . , aM] ∈ CN×M is the transfer matrix connecting
the infrasound station and the infrasound source. The infrasound array steering vectors am
are contained in the transfer matrix for all hypothetical arrival azimuths of infrasound as
columns. The form of am is as follows:
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am =

[
1, ej2π d

λ sin(θm), . . . , ej2π
(N−1)d

λ sin(θm)

]T
for m = 1, 2, . . . M, (6)

where d is the infrasound array aperture; λ is the infrasound wavelength; and θm is the
m-th discretized angle. The infrasound signal model is constructed under the following
assumptions: (1) the infrasound source vector xl and the additive noise nl are independent
for the l-th snapshot; and (2) the noise nl and the infrasound source vector xl are assumed to
be Gaussian, independently and identically distributed across all snapshots for l = 1, . . . , L.

Solving Equation (5) is an underdetermined problem due to the relationship between
M and N as M� N. The infrasound source vector xl is K-sparse (K denotes the number
of infrasound sources), usually K � M. The l-th activity set is defined as

Ml = {m ∈ N | xml 6= 0}. (7)

and Ml = M = {m1, . . . , mK} is assumed to be constant throughout the snapshot l.
AM ∈ CN×K is defined to contain only the K “active” columns of A, i.e., the arrival
azimuth corresponding to the index of the K non-zero values is the arrival azimuth of the
infrasound signal source.

The arrival azimuth estimation of the infrasound source X from the infrasound mea-
surement signal Y is a very challenging problem for Equation (5). The existence, uniqueness,
and stability of the solution of Equation (5) are difficult to guarantee since Equation (5)
is underdetermined. The following part of sparse Bayesian learning is introduced in
Section 2.2.2 to solve this underdetermined problem so that the arrival azimuth of the
infrasound source is obtained.

2.2.2. The SBL Algorithm for Infrasound Source Arrival Azimuth Estimation

The Bayesian formulation is used to solve linear problems (Equation (5)). The esti-
mated parameters are considered variables of some prior distribution by the SBL algorithm.
Then, this prior distribution is determined using the available knowledge. Finally, the
posterior probabilities of the unknown parameters are inferred accordingly by the Bayesian
rule.

(1) Stochastic likelihood for the SBL algorithm

The additive noise in the Equation (5) is assumed to be a complex Gaussian data
likelihood. The likelihood can then be written as

[
Y | X; σ2

]
=

exp
(
− 1

σ2 ‖Y − AX‖2
F

)
(πσ2)

NL . (8)

(2) Prior (prior distribution) on the infrasound sources

The complex infrasound source amplitude xml is assumed to be independent in all
snapshots and all discrete infrasound source arrival azimuths, and it follows a circularly
symmetric complex Gaussian with zero-mean and dependent discrete infrasound source
arrival azimuth variance γm, m = 1, . . . , M,

[xml ; γm] =

{
δ(xml), for γm = 0

1
πγm

e−|xml |2/γm , for γm > 0
, (9)

[X; γ] =
L

∏
l=1

M

∏
m=1

[xml ; γm] =
L

∏
l=1
NC(xml ; 0, Γ), (10)

where NC is the normal distribution sign, and the unknown covariance matrix Γ for the
infrasound source vector xl is assumed to be diagonal
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Γ = diag(γ), γ = [γ1, . . . , γM]. (11)

The infrasound source power is denoted as a diagonal element of Γ, i.e., the hyper-
parameter γ ≥ 0. The variance γm ≥ 0 means that the arrival azimuth of this discrete
infrasound source has an infrasound signal. When the variance γm = 0, then xml = 0 with
probability 1. Therefore, the sparsity of the model (Equation (5)) is controlled with the
hyperparameters γ, as rank(Γ) = K ≤ M and the covariance Γ is estimated finally by the
SBL algorithm.

(3) Posterior (posterior distribution) on the infrasound sources

The posterior probability density function is solved by the Bayesian formula on the
basis of the likelihood and prior

[
X | Y ; γ, σ2

]
≡
[
Y | X; σ2][X; γ]

[Y ; γ, σ2]
, (12)

where
[
Y ; γ, σ2] is the evidence term, which can be ignored because for a given γ, σ2, which

is the normalization factor . Thus, Equation (12) can be simplified to[
X | Y ; γ, σ2

]
∝
[
Y | X; σ2

]
[X; γ] (13)

∝
e− tr

(
(X−µX )HΣ−1

x (X−µX )
)

(πN det Σx)
L = NC(µX , Σx). (14)

where tr means trace of square matrix, and (·)H means Hermitian transpose of the matrix.
Their product Equation (13) is a Gaussian distribution with mean µX in Equation (15)
and covariance Σx in Equation (16) since both the likelihood Equation (8) and the prior in
Equation (10) are Gaussian distributions.

µX = E
{

X | Y ; γ, σ2
}
= ΓAHΣ−1

y Y , (15)

Σx = E
{(

xl − µxl

)(
xl − µxl

)H
| Y ; γ, σ2

}
= Γ− ΓAHΣ−1

y AΓ, (16)

where the infrasound sensor data covariance Σy

Σy = E
{

yly
H
l

}
= σ2 IN + AΓAH , (17)

Σ−1
y = σ−2 IN − σ−2 A

(
1
σ2 AH A + Γ−1

)−1
AHσ−2

= σ−2 IN − σ−2 AΣx AHσ−2
(18)

where IN is the identity matrix of order N and E means expected value. The posterior
mean X̂MAP can be obtained using the maximum a posteriori (MAP) method when γ and
σ2 are known.

X̂MAP
= ΓAHΣ−1

y Y = µX . (19)

(4) Evidence on the infrasound sources

The γ and σ2 in the Equations (16)–(19) are considered as hyperparameters. They are
estimated by maximizing the evidence. The evidence that is considered as a constant in
Equation (12) is the product of the integration of the likelihood part in the Equation (8) and
the prior part in the Equation (10) over the complex infrasound source amplitude X.

[
Y ; γ, σ2

]
=

L

∏
l=1
NC
(
yl ; 0, Σyl

)
=
∫
R2ML

[
Y | X; σ2

]
[X; γ]dX, (20)



Remote Sens. 2022, 14, 3181 8 of 25

The logarithm of the evidence is

log
[
Y ; γ, σ2

]
∝ −

L

∑
l=1

(
yH

l Σ−1
yl

yl + log det Σyl

)
, (21)

where the infrasound array data sample covariance matrix (SCM) is defined by the follow-
ing equation

Sy = YY H/L. (22)

(5) Infrasound source power estimation using the SBL algorithm

The above is the Bayesian statistical modeling phase, and the following is the solution
phase. The infrasound source power (i.e., γm) was estimated by the SBL algorithm following
the type-II maximum likelihood (maximizing the evidence) in Equation (23) [14]. The
hyperparameters γ̂ and σ̂2 can be obtained by the type-II maximum likelihood (maximizing
the evidence). That is, the following equation:[

γ̂, σ̂2
]
= arg max

γ≥0,σ2>0
log
[
Y ; γ, σ2

]
, (23)

where arg max is an abbreviation for “arguments of the maxima”. The objective func-
tion in Equation (23) is differentiated to obtain a local maximum. The following are
derivative relations:

∂Σ−1
yl

∂γm
= −Σ−1

yl

∂Σyl

∂γm
Σ−1

yl
= −Σ−1

yl
amaH

m Σ−1
yl

, (24)

∂ log det
(
Σyl

)
∂γm

= tr
[

Σ−1
yl

∂Σyl

∂γm

]
= aH

m Σ−1
yl

am, (25)

the derivative of Equation (21) is

∂ log p
(
Y; γ, σ2)

∂γm
=

L

∑
l=1

(
yH

l Σ−1
yl

amaH
m Σ−1

yl
yl − aH

m Σ−1
yl

am

)
=

L

∑
l=1

∣∣∣yH
l Σ−1

yl
am

∣∣∣2 − L

∑
l=1

aH
m Σ−1

yl
am.

(26)

For the solution to Equation (21), the necessary conditions are set, i.e.,
∂ log p(Y;γ,σ2)

∂γm
= 0.

To obtain an iterative equation in γm, the first term in the Equation (26) is multiplied by the

factor
(

γold
m

γnew
m

)
, whereby(

γold
m

γnew
m

)
L

∑
l=1

∣∣∣yH
l Σ−1

yl
am

∣∣∣2 − L

∑
l=1

aH
m Σ−1

yl
am = 0. (27)

Assuming γold
m and Σyl are known from previous iteration or initialization,the fixed

point iteration for γm is obtained by rewriting Equation (27) (with similarities to [10,11,13,21]:

γnew
m = γold

m

∑L
l=1

∣∣∣yH
l Σ−1

yl
am

∣∣∣2
∑L

l=1 aH
m Σ−1

yl
am

. (28)

Usually, the convergence of such fixed-point iterations is not guaranteed [11]. A larger
number of iterations (about 1000) is required to guarantee the convergence of the iteration
parameters. In this paper, the maximum number of iterations of the parameter γ is set
to 1000.
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(6) Infrasound source noise variance estimation (hyperparameter σ2)

The noise is also a part of the model (Equation (5)) because, in the SBL algorithm,
the sharpness of the local maxima in the γ spectrum is controlled by the noise variance,
i.e., the higher the noise level, the wider the peaks in the γ spectrum. By maximizing the
evidence-based approach, similar to the approach used to estimate the γ, one can estimate
the infasound source noise variance σ [16,22]. The sparsity of the matrix X̂MAP is controlled
by Γ. Thus, the active setM is defined as

M = {m ∈ N | γm > 0}. (29)

The infrasound sensors data covariance matrix is

Σy = Σnl + AMΓMAH
M, (30)

where Σnl = σ2IN ; AM is the active infrasound array steering vectors and it consists of
K columns of A, indexed by M; the set M denotes the position of γ non-zero entries
with cardinality K, and it is estimated by selecting the strongest K peak from γ̂new ; and
ΓM = diag

(
γnew
M

)
is the covariance matrix of the K active infrasound sources. The Jaffer’s

necessary condition at the optimal solution
(
ΓM, σ2) must be satisfied, i.e., the following

relationship is satisfied:
AH
M
(
Sy − Σy

)
AM = 0, (31)

where Sy is the infrasound array data sample covariance matrix. The necessary condition of
Jaffer is satisfied since arbitrary correlations between infrasound source signals are allowed.
Substituting Equation (30) into Equation (31) gives

AH
M
(
Sy − Σnl

)
AM = AH

MAMΓMAH
MAM, (32)

multiplying (32) from right and left with the A+
M =

(
ÃḢ
MAM

)−1
AH
M and A+H

M , respec-

tively, and subtracting Sy from both sides yields [22]. The σ2 estimate of the infrasound
source noise variance is(

σ2
)new

=
1

N − K
tr
((

IN − AMA+
M
)
Sy
)
. (33)

2.2.3. The Pseudocode for the SBL-Based Estimation Algorithm for Infrasound
Arrival Azimuth

The SBL-based infrasound source arrival azimuth estimation algorithm is summarized
in Algorithm 1. The structure diagram of the Bayesian hierarchical model is shown in
Figure 3. The µX in Equation (15) and Σy in Equation (17) are updated iteratively using
the current γ for a given observed infrasound sensors data Y . Then γm for m = 1, . . . , M is
updated via Equation (28) and then Equation (33) is uesd to estimate the noise variance
σ2. The infrasound source is assumed to be single in this paper, assuming that only one
infrasound event occurs at a given moment, i.e., K = 1, for estimating the noise variance in
the Equation (33). The algorithm performance was not found to be sensitive to the number
of infrasound sources K in the simulations. The algorithm is made more flexible by this
assumption since there is no need to know the true number of infrasound sources. The
relative improvement in the total infrasound source power is measured by the convergence
rate ε in the Equation (34), where‖ · ‖1 is the 1 norm. The algorithm stops when ε ≤ εmin.
In this paper, the εmin is set to 10−4. The jmax is the maximum number of iterations. In
this paper, the jmax is set to 1000. The output is the active set M in the Equation (29).
The estimated value of the arrival azimuth θ is the angle corresponding to the maximum
gamma value γmax.

ε =
∥∥∥γnew

m − γold
m

∥∥∥
1
/
∥∥∥γold

m

∥∥∥
1
, (34)
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Algorithm 1: The SBL-based infrasound source orientation algorithm

Input: A ∈ CN×M, Y ∈ CN×L, K = 1, σ2
0 = 0.1, γ0 = 1, εmin = 10−4, jmax = 1000;

Output: γnew ,
(
σ2)new , θ;

1: initialize: j = 0, σ2 = σ2
0 , γ = γ0;

2: while (ε > εmin) and (j < jmax);
3: Compute: Σy = σ2 IN + AΓAH

4: Compute: µm = γmaH
m Σ−1

y Y
5: γnew

m update for ∀m using Equation (28)
6:

(
σ2)new

= 1
N−K tr

((
IN − AMA+

M
)
Sy
)

7: ε =
∥∥γnew − γold

∥∥
1/
∥∥γold

∥∥
1

8: θ is the angle corresponding to γmax
9: end

Update σ using 

Equation (33)

Update γ using 

Equation (28)

Initialize estimated 

parameter

Initialize estimated 

parameter

Unknown Known

The sparsity of 

the SBL model is 

controlled by γ

N

Figure 3. The structure diagram of Bayesian hierarchical model (blue rectangules denote the known
parameters; red circles denote the unknown parameters). The initialized infrasound source power
parameters γ0 are used to update the parameters γ in the Equation (28), and the initialized infrasound
source noise variance parameters σ0 are used to update the parameters σ in the Equation (33).

2.3. Bayesian Information Fusion for Infrasound Source Localization

The arrival azimuth estimation results of individual infrasound stations can be derived
from the SBL algorithm, and the accuracy of infrasound source localization can be greatly
improved when the fusion of information from infrasound stations is considered. Multiple
information is fused by the Bayesian information fusion algorithm based on Bayesian
formulation [23,24]. In this paper, the azimuth, measurement error, and model error of the
infrasound station are combined by a Bayesian information fusion algorithm. The final
fused multi-information infrasound source localization results are obtained.
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2.3.1. Posteriori Distribution for Infrasound Source Localization

The arrival azimuths of the n infrasound stations estimated by the SBL algorithm are
expressed as θ = [θ1, · · · , θn]. The location of the i-th infrasound station can be represented
by (xi, yi), and this is the Cartesian coordinate system, which can be transformed from the
geodetic coordinate system.

The location parameter m = {x0, y0} to be estimated is the candidate infrasound
source location. The posterior probability density function of the location parameter is

[m | θ] = c[θ][m][θ | m], (35)

where [θ | m] is the likelihood function; c[θ] ensures that the likelihood function [θ | m]
integrates to unity; and [m] is the prior for the infrasound source location parameters.

2.3.2. Likelihood Function

The likelihood function can be derived from the product of the estimated components
of the arrival azimuths of all infrasound stations, under the assumption that the detections
of each station are independent of each other.

[θ | m] ≡
n

∏
i=1

Θi(θi | m). (36)

The consistency between the observed arrival azimuth, and the selected model pa-
rameters is measured by the Θi, for a given i-th infrasound station. It is assumed that the
errors between the observed arrival azimuths and the selected model parameters conform
to a Gaussian distribution. The arrival azimuth likelihood function measured for the ith
station is

Θi(θi | m) ≡ 1√
2πσ2

θ

exp

[
−1

2

(
γi
σθ

)2
]

. (37)

Let (xi, yi) represent the candidate infrasound source position to the i-th infrasound
station, then the arrival azimuth estimation residuals are

γi ≡ θi − arctan
(

yi − y0

xi − x0

)
. (38)

The total variances in the arrival azimuth estimation are denoted σ2
θ , which, accounts

for both infrasound measurement equipment σ2
θ,meas and infrasound propagation model

σ2
θ,mod error contributions

σ2
θ = σ2

θ,meas + σ2
θ,mod, (39)

where σ2
θ can be estimated using historical infrasound events. Usually, σθ = 3.5◦ is sug-

gested by an analysis of the western United States earthquakes [6]. The σθ = 3.5◦ is mainly
determined by the combination of discretization used in the slowness plane, the array
aperture, and the signal-to-noise ratio (SNR). The variance on the infrasound measurement
equipment error σ2

θ,meas is a function of the distance between the sensors of the infrasound
station, sampling frequency, and wavelength. The variance on the infrasound propa-
gation model error σ2

θ,mod is derived from the variation of wind speed, wind direction,
and temperature.
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2.3.3. The Framework for Infrasound Source Localization

An infrasound source localization algorithm for distributed stations based on the
SBL algorithm and Bayesian information fusion is proposed in the context of the large-
scale global distribution of infrasound stations. The accuracy of the infrasound source
can be improved by the proposed algorithm while incorporating the uncertainty of the
infrasound measurement equipment and the infrasound propagation uncertainty into the
infrasound source localization results. First, the infrasound signals recorded at individual
stations are processed based on the SBL algorithm to obtain the azimuth information of the
corresponding stations. Second, infrasound propagation in the atmosphere is susceptible to
wind speed, temperature, and atmospheric density, and the effect is modeled as the model
variance σθ,mod . Third, the measurement error generated during infrasound measurement
is modeled as the measurement variance σθ,meas . Finally, the Bayesian information fusion
is used to fuse the localization results, model errors, and measurement errors from multiple
stations to obtain the localization results of infrasound sources. The schematic diagram for
Bayesian information fusion algorithm is shown in Figure 4.

Station 1

SBL

Azimuth 1

-90° 90°
infrasound signal

Station 2

SBL

Azimuth 2

-90° 90°

Station N

SBL

Azimuth N

-90° 90°

…
(a)

infrasound source
Station 2

Station N

…

(b)

Station 1

Figure 4. The schematic diagram for Bayesian information fusion algorithm. (a) SBL:SBL-based
infrasound signal processing of stations to obtain the azimuth of stations (azimuth = θ1, θ2, . . . , θN);
(b) Bayesian information fusion:information fusion of station-acquired azimuths using Bayesian
information fusion to obtain localization results (red pentagrams indicate localized infrasound source
locations, yellow triangles indicate infrasound stations,and the three blue contour lines are credibility
curves with different Bayesian credibility values).

2.4. Technical Flow Chart of the Proposed Infrasound Source Localization Method

The actual measured infrasound data are first used to obtain the arrival azimuth
information of each station using a sparse Bayesian learning algorithm. Then, the arrival
azimuth information obtained from each station is imported into the Bayesian information
fusion algorithm to obtain the localization results of the infrasound source. The technical
flow chart of the infrasound source localization method proposed in this paper is shown in
Figure 5.
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Measured infrasound data

Step 2: Bayesian information fusion for infrasound source localization

Step 1: Estimating the arrival azimuth by the SBL algorithm

Update the hyperparameter  γ

2
1

new old 1

1

1

l

l

L
H

l m

l
m m L

H

m m

l

 

−

=

−

=

 
 
 =
 
 
 





y

y

y Σ a

a Σ a

1. The posterior PDF maximum point is the infrasound source location m=(x,y)

2. Obtain credibility curve

Obtain the location of the infrasound source

Constructing the posterior PDF for infrasound source localization

[ ] [ ][ ][ ]c=m θ θ m θ m∣ ∣

The arrival azimuth θ is the angular value corresponding to the 

Outputs the arrival azimuth θ

Figure 5. The technical flowchart of the infrasound source localization algorithm proposed in
this paper. The first step is to estimate the arrival azimuth by the SBL algorithm by updating the
hyperparameter gamma using Equation (28). The estimated value of the arrival azimuth is the angle
corresponding to the γmax. The second step is the Bayesian information fusion for infrasound source
localization. The posterior PDF maximum value is the infrasound source location m = (x, y).

3. Results
3.1. Experimetntal Setup

The SBL algorithm was tested by UTTR’s rocket motor explosion data (explosive
weight 39,000 lb (approximately 17,690 kg)) [25–27] to verify the feasibility of the SBL
algorithm. For the UTTR event, the real source location and the location information of the
four observatories are shown in the Table 1.
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Table 1. UTTR source location and observations (See also in Figure13).

Station Location

Source location 41.1310°N, 112.8950°W
BGU 40.9204°N, 112.0309°W
BRP 39.4727°N, 110.7409°W

HWU 41.6071°N, 111.5652°W
WMU 40.0795°N, 111.8310°W

Firstly, the range of reconstruction frequency is selected according to the spectrum of
infrasound. In this paper, the frequency range of 1–2 Hz is chosen for signal reconstruction,
and then the reconstruction signal corresponding to each reconstruction frequency is solved
at an interval of 0.1 Hz. The reconstructed signal is substituted into the SBL algorithm to
solve the gamma value γ corresponding to the reconstruction frequency. The estimated
value of the arrival azimuth θ is the angle corresponding to γmax.

The infrasound data recorded at the four stations BGU, BRP, HWU, and WMU were
used as the experimental data, which were sampled at a frequency of 100 Hz. The infra-
sound signals with a passband of 1–5 Hz were selected using a Butterworth bandpass filter.
The array structure of the four infrasound stations is shown in Figure 6.

BRP 2

BRP 4

BRP 1

BRP 3

(-0.0667,-0.4442)

(0.08822,-0.02221)

(-0.03227,0.07773)

(0.01076,-0.0111)

WMU 1

WMU 4

WMU 2

WMU 3

(0.00639,-0.00555)

(0.05759,0.06109)

(0.01493,-0.0833)

(-0.07892,0.02777)

HWU 3

HWU 2

HWU 4
HWU 1

(-0.03172,0.07222)

(0.00208,0.00555)
(0.08541,-0.00555)

(-0.05629,-0.07222)

BGU 4

BGU 2

BGU 1
BGU 3

(0.01264,0.08609)

(0.01264,0.08609)

(0.0632,-0.04721)
(-0.07162,-0.0361)

(a) (b)

(c) (d)

Figure 6. The array structures of BGU, BRP, HWU, and WMU are shown in (a–d), respectively.

The time-domain waveforms of the four stations are shown in Figure 7. The intercep-
tion of the infrasound signals recorded at each station is selected as follows for each station.
The BGU station intercepts 20 s signal as well as the sensor selections BGU1 and BGU3,
and the array aperture is 135 m; the BRP station intercepts the 30 s signal as well as the
sensor selections BRP1 and BRP3, and array aperture is 150 m; the HWU station intercepts
the 100 seconds signal as well as the sensor selections HWU1 and HWU3, and the array
aperture is 140 m; and the WMU station intercepts the 15 s signal as well as the sensor
selections WMU2 and WMU3, and array aperture is 150 m . The intercepted infrasound is
substituted into the SBL algorithm to obtain the azimuth information of the four stations.
The infrasound signal and the SBL algorithm parameter setting are shown in Table 2.
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(a) (b)

(c) (d)

Figure 7. Time domain signal after 1-5 Hz filtering for four stations: (a) the total signal duration of
the BGU station is 20 s; (b) the total signal duration of the BRP station is 30 s; (c) the total signal
duration of the HWU station is 100 s; and (d) the total signal duration of the WMU station is 15 s.

Table 2. Infrasound signal and the SBL algorithm parameter setting.

Station Number Snapshots Array Aperture Angular
Resolution Sensor

BGU 39 135 m 0.1 BGU1, BGU3
BRP 39 150 m 0.1 BRP1, BRP3

HWU 39 140 m 0.1 HWU1, HWU3
WMU 39 150 m 0.1 WMU2, WMU3

The main parameters of the sparse Bayesian learning algorithm are set as follows: the
number of snapshots is set to 39, the angular resolution ∆θ is 0.1°, the convergence error
εmin is 0.0001, the maximum number of iterations jmax is 1000, and the sampling frequency
is 100 Hz. The process of transforming the infrasound signal from the time domain to the
frequency domain is shown in the Figure 8. The infrasound frequency domain signal is
substituted into the sparse Bayesian learning algorithm for the solution, and the results are
shown in Figure 9.

…

…

FFTFFT FFT

Window Function

( , ;2)mY d t( , ;1)mY d t ( , ; )mY d t L

( , ;2)mY d f( , ;1)mY d f ( , ; )mY d f L

1Y 2Y LY…
The infrasound signal in the frequency domain 

Figure 8. The process of converting infrasound signals from the time domain to the frequency domain
using the snapshot method. The variable ~dm is the observed position of the m-th sensor, and the
variable L is the total number of snapshots.
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(c)

(b)

(d)

(a)

Δθ=0.1° Δθ=0.1°

Δθ=0.1° Δθ=0.1°

Figure 9. The results of the SBL algorithm for four infrasound stations (the angular resolution ∆θ is
0.1°): (a) the SBL algorithm arrival azimuth estimation result for the BGU station is 27.2°; (b) the SBL
algorithm arrival azimuth estimation result for the BRP station is 44.5°; (c) the SBL algorithm arrival
azimuth estimation result for the HWU station is −38.4°; and (d) the SBL algorithm arrival azimuth
estimation result for the WMU station is 27.9°.

3.2. Arrival Azimuth Estimation Results

The result of the arrival azimuth estimation of the SBL algorithm is the angle value
corresponding to the maximum gamma value γmax. The results of the SBL algorithm arrival
azimuth estimation θ for the four infrasound stations BGU, BRP, HWU, and WMU are
27.2°, 44.5°, −38.4°, and 27.9°, respectively, as shown in Figure 9. The arrival azimuth
estimations with the SBL algorithm for the four stations were converted to azimuths in
the geographic coordinate system by considering the effect of the array tilt angles of the
infrasound stations, which were 4.71°, 8.15°, −33.67°, and 73.54° for the BGU, BRP, HWU,
and WMU stations, respectively. The array tilt angle is defined as the acute angle between a
linear array of two array sensors and the latitude line in the geographic coordinate system.
The azimuths obtained by the four stations are shown in Figure 10.

It can be seen that the converted arrival azimuths of the SBL algorithm results for
the four infrasound stations BGU, BRP, HWU, and WMU are 32.91°, 307.35°, 252.07°,
and 314.35°, respectively. The actual azimuths between the infrasound source and the
infrasound stations were compared to obtain the arrival azimuth estimation errors of the
SBL algorithm, as shown in Table 3.

Table 3. Arrival azimuth estimation error of the SBL algorithm for four stations.

Station Number
Arrival Azimuth

Estimation Results
(°)

Actual Azimuths (°) Estimation Error (°)

BGU 32.91 31.99 0.92
BRP 307.35 307.51 0.16

HWU 252.07 250.54 1.53
WMU 314.35 314.66 0.31
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Azimuth :

SBL Result:

Array tilt angle

Azimuth :

Array tilt angle 

SBL Result:

SBL Result:

Azimuth :

(b)

(c)

(a)

SBL Result:

Azimuth :

Array tilt angle 

(d)

Figure 10. The azimuths obtained from the BGU station, BRP station, HWU station, and WMU station
are (a) 32.91°, (b) 307.35°, (c) 252. 07°, and (d) 314.35°, respectively (the array tilt angle is defined as
the acute angle between a linear array of two array sensors and the latitude line in the geographic
coordinate system).

3.3. Comparison of the Error of Arrival Azimuth Estimation between SBL Algorithm, FK Analysis,
and BF Algorithm

The SBL-based arrival azimuth estimation algorithm and the conventional infrasound
arrival azimuth estimation algorithm (FK analysis) are applied for comparison in terms
of the accuracy of arrival azimuth estimation. The complete slowness vector of infasound
in the plane-wave hypothesis can be measured by the FK analysis. Additionally, the
infrasound power distribution at different slownesses is calculated by FK analysis [28,29].
For the same infrasound events, the arrival azimuth estimation results of the FK analysis
are shown in Figure 11. The azimuths obtained from the FK analysis of the four stations
BGU, BRP, HWU, and WMU are 29.05°, 312.13°, 247.83°, and 323.53°, respectively.

Azimuth :

FK analysis(WMU station)

Azimuth :

Azimuth :

(a)

Azimuth :

(b)

(c) (d)

Figure 11. The azimuths from the FK analysis of the BGU, BRP, HWU, and WMU stations are
(a) 29.05°, (b) 312.13°, (c) 247.83°, and (d) 323.53°, respectively.
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The beamforming [30] algorithm is used to process the infrasound signal for the same
infrasound event. The delay-and-sum technique is utilized by the algorithm to enhance
the coherent signal and suppress the non-coherent background noise to obtain the arrival
azimuth information. The results of beamforming are shown in Figure 12. From Figure 12,
it can be seen that the results of the beamforming algorithm for the BGU, BRP, HWU,
and WMU stations are 23.8°, 14.1°, −41.3°, and 26.9°, respectively. The results of the
beamforming algorithms are converted into arrival azimuths by considering the effect of
array inclination. The estimated azimuth of arrival results for BGU, BRP, HWU, and WMU
stations are 28.51°, 310.74°, 254.97°, and 313.36°, and the orientation errors are 3.48°, 3.23°,
4.43°, and 1.30°, respectively.

(c)

(b)

(d)

(a)

Δθ=0.1° Δθ=0.1°

Δθ=0.1° Δθ=0.1°

Figure 12. The results from the beamforming of the BGU, BRP, HWU, and WMU stations are (a) 23.8°,
(b) 41.1°, (c) −41.3°, and (d) 26.9°, respectively.

The arrival azimuth estimation errors of the three arrival azimuth estimation algo-
rithms are shown in Table 4.

Table 4. Comparison of the error of arrival azimuth estimation between SBL algorithm, FK analysis,
and beamforming algorithm.

Station Number
SBL Arrival

Azimuth Estimation
Error (°)

FK Arrival Azimuth
Estimation Error (°)

Beamforming
Arrival Azimuth

Estimation Error (°)

BGU 0.92 2.94 3.48
BRP 0.16 4.78 3.23

HWU 1.53 2.71 4.43
WMU 0.31 9.18 1.30

According to Table 4, the arrival azimuth estimation errors of all four stations of the
SBL algorithm are within 2°. The error is mainly due to the influence of low-frequency
noise (such as thunderstorm noise, ground noise, and the noise of the measurement station
itself) during the long-distance propagation of infrasound. The superiority of the SBL
algorithm over the FK analysis in terms of arrival azimuth estimation accuracy is shown in
Table 4. Compared with beamforming, the estimation error of the arrival azimuth of SBL is
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smaller and the side flaps are smaller, as can be seen from Table 4 and Figure 12. Therefore,
the arrival azimuth estimation results of the SBL algorithm are used as prior knowledge for
the Bayesian information fusion algorithm to perform fusion localization in the following.

3.4. Bayesian Information Fusion to Obtain Localization Results

The arrival azimuth estimation results of the infrasound sources are affected by the
uncertainty of the infrasound propagation and the infrasound measurement equipment.
The uncertainty of the arrival azimuth estimation results is modeled by the Bayesian
information fusion algorithm as the variance in a probabilistic model. The localization
result of the infrasound source is the maximum value of the posterior probability density
function. The credibility contour curve represents the possible area of the infrasound source.
The localization results are shown in Figure 13.

HWU

WMU

BGU

BRP

Localization result

(41.13°N, 112.89°W)

The infrasound source localization

(41.10°N, 112.90°W)

Enlarged scale 1:10

Figure 13. The localization result of the infrasound source by fusing the SBL arrival azimuth estima-
tions. (The three blue contour curves are credibility contour curves with Bayesian credibility values
of 0.75, 0.90, and 0.95, respectively; the red pentagram indicates the location of the infrasound source;
the blue hexagram indicates the distributed array localization results; and the enlarged scale is 1:10).

In Figure 13, it can be seen that the infrasound source localization result and ground
truth location are (41.10◦N, 112.89◦W) and (41.13◦N, 112.89◦W), respectively. The distance
between the infrasound source and the localization result is 3.4855 km. Three of the curves
shown in Figure 13 are credibility contour curves with Bayesian credibility values of 0.75,
0.90, and 0.95, respectively, which are the possible regions of the infrasound source. From
the above localization results, it can be seen that accurate infrasound source localization
results can be obtained by the proposed infrasound source algorithm for infrasound sources
within 250 km distance from the infrasound station. The arrival azimuth estimation results
from the FK analysis are used to obtain the infrasound source localization results using the
Bayesian information fusion algorithm, which are shown in Figure 14.

Compared with Figure 13, the results of infrasound source localization are the same;
both are 41.10◦N, 112.90◦W. From Table 4, it can be seen that the estimated errors of the ar-
rival azimuths of the FK analysis are 2.02°, 4.62°, 1.18°, and 8.87° larger than those of the SBL
for the four stations BGU, BRP, HWU, and WMU, respectively. The area of the credibility
contour corresponding to the Bayesian credibility of 0.75 is 918.6532 km2 and 923.7934 km2

in Figures 13 and 14, respectively. The area of the credibility contour corresponding to the
Bayesian credibility of 0.75 obtained by the SBL is 5.1402 km2 smaller than that of the FK
analysis, which means that the corresponding mode of the posterior probability density
function is more concentrated (i.e., the posterior probability density function is visually
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sharper at the peak). The above results indicate that the proposed method is more reliable
than the combination method of FK analysis and Bayesian information fusion.

HWU

WMU

BRP

BGU

(41.10°N, 112.90°W)

(41.13°N, 112.89°W)
The infrasound source localization

Localization result

localization error=3.4855km

Arrival azimuth from FK analysis

Figure 14. The localization result of the infrasound source by fusing the FK arrival azimuth estima-
tions. (The three blue contour curves are credibility contour curves with Bayesian credibility values
of 0.75, 0.90, and 0.95, respectively; the red pentagram indicates the location of the infrasound source;
and the blue hexagram indicates the distributed array localization results).

4. Discussion

The performance of the proposed infrasound source localization algorithm is discussed
in this section. The accuracy of the infrasound source localization is related to the number of
stations involved in localization. The results of Bayesian information fusion localization for
different number of stations are shown in Figure 15. As shown in Figure 15, the localization
errors of two stations, three stations, and four stations are 78.3306 km, 13.0329 km, and
3.4855 km, respectively. It can be seen that the error of infrasound source localization
is further reduced with the increase in the number of infrasound stations. The same
conclusion can be obtained by performing Bayesian information fusion algorithm on the
results of the FK analysis and beamforming.

It can be seen from Figure 16a that the four stations NOQ, BGU, WMU, and BRP are
basically arranged in a straight line. By contrast, in Figure 16b, the azimuth of the HWU
station with respect to the infrasound source is different from the azimuths of the BGU,
WMU, and BRP stations. Therefore, the spatial distribution of the four stations with respect
to the infrasound source in Figure 16b is more dispersed compared with that in Figure 16a.
The localization error of the algorithm is also related to the arrangement of infrasound
stations. The NOQ station is added in order to discuss whether the localization error of
the proposed infrasound source localization algorithm is related to the arrangement of
infrasound stations. The position of this infrasound station is (40.6526◦N, 112.1180◦W),
and the arrival azimuths obtained by the SBL algorithm is 301.10°. When the station
arrangement is more dispersed relative to the infrasound source, as shown in Figure 16a,
the localization result is (41.10◦N, 112.90◦W). It can be seen that the arrangement of the
stations has little influence on the localization error of the infrasound source localization
algorithm proposed in this paper. The same conclusion can be obtained by performing the
Bayesian information fusion algorithm on the results of the FK analysis and beamforming.
In Figure 16, the area of the credibility contours corresponding to the Bayesian credibility
value of 0.75 is 387.6142 km2 (Figure 16a) and 993.1705 km2 (Figure 16b), respectively.
Therefore, the station arrangement has a certain influence on the credibility contour areas of
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the infrasound source localization result. The estimation error of the arrival azimuth of the
HWU station is 0.99° larger than that of the NOQ station, but the localization error is the
same for both arrangements. The impact on the final localization error can be reduced by
the Bayesian information fusion algorithm when the estimation error of the arrival azimuth
of a single station is 0.99° larger.

(b)(a)

Localization result

HWU

WMU

BGU

BRP

(41.13°N, 112.89°W)

The infrasound source Location 

(41.10°N, 112.90°W)

HWU

BGU

BRP

Localization result
(41.20°N, 112.80°W)

(41.13°N, 112.89°W)
The infrasound source Location 
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Figure 15. Localization errors for different numbers of stations (arrival azimuth estimation results
from the SBL algorithm); (a) 78.3306 km for two stations (HWU and BRP); (b) 13.0329 km for three
stations (BGU, HWU, and BRP); and (c) 3.4855 km for four stations (BGU, HWU, BRP, and WMU).
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Figure 16. The influence of the spatial distribution of infrasound stations on the localization results
(arrival azimuth estimation results from the SBL algorithm); (a) BGU, NOQ, WMU, and BRP; (b) BGU,
HWU, WMU, and BRP.

Next, we discuss the influence of the distance between the station and the infrasound
source on the error of the localization results. In Figure 17, the sum of the distances from
BGU, NOQ, and WMU stations to the infrasound source; the BRP, NOQ, and WMU stations
to the infrasound source; and the BRP, HWU, and WMU stations to the infrasound source
are 295.1944 km, 569.0806 km, and 624.5797 km, respectively. The errors of the infrasound



Remote Sens. 2022, 14, 3181 22 of 25

source localization for these three cases are 3.4855 km, 23.0137 km, and 45.6028 km, re-
spectively. As can be seen from Figure 17, the localization error of the algorithm increases
as the stations are arranged farther away relative to the infrasound source. Therefore, it
is necessary to select the stations that are arranged closer to the infrasound source for
analysis to obtain accurate infrasound source localization results. The same conclusion can
be obtained by performing the Bayesian information fusion algorithm on the results of the
FK analysis and beamforming.

localization error=

45.6028 km

HWU

WMU

BRP

The infrasound source Location 

(41.13°N, 112.89°W)

Localization result

(41.20°N, 113.30°W)

The infrasound source Location 

(41.13°N, 112.89°W)

WMU

BRP

Localization result

(41.10°N, 113.10°W)
NOQ

localization error=

23.0137 km

BGU

NOQ

WMU

The infrasound source Location 

(41.13°N, 112.89°W)

Localization result

(41.10°N, 112.90 W)

localization error=

3.4855 km

(a) (b)

(c)

Figure 17. The influence of the distance between the station and the infrasound source on the error
of localization result (arrival azimuth estimation results from the SBL algorithm); (a) the sum of the
distances from the BGU, NOQ, and WMU stations to the infrasound source is 295.1944 km; (b) the
sum of the distances from the BRP, NOQ, and WMU stations to the infrasound source is 569.0806 km;
and (c) the sum of the distances from BRP, HWU, and WMU stations to the infrasound source is
624.5797 km.

5. Conclusions

The precise localization of infrasound sources is a problem of considerable interest.
The infrasound source localization can be affected by the atmospheric environment and
infrasound measurement equipments, resulting in poor accuracy of infrasound source
localization. In this paper, the SBL algorithm is applied to infrasound source arrival
azimuth estimation for the first time. The uncertainties in the atmospheric environment
and measurement equipments can be modeled as the variance in the Bayesian information
fusion algorithm. The maximum value of posterior probability is used as the infrasound
source localization result. Infrasound source credibility contours with Bayesian credibility
values of 0.75, 0.90 and 0.95, respectively, are obtainable by the Bayesian information fusion
algorithm. Subsequently, rocket motor explosion infrasound data obtained in UTTR were
used to verify feasibility of the algorithm. The infrasound signals recorded at the four
infrasound stations are processed by the SBL algorithm and the Bayesian information fusion
algorithm. The analysis of the measured data shows that the arrival azimuth estimation
angle error of the SBL algorithm is within 2°. The arrival azimuth estimation accuracy
is significantly improved, compared with the FK analysis and beamforming. Finally, the
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Bayesian information fusion algorithm is used to fuse the information of multiple stations
to obtain the localization results of infrasound sources. The analysis of the measured data
shows that for the infrasound source within 250 km from the infrasound station, the error
of the positioned infrasound source distance is within 3.5 km.

In summary, (i) the SBL algorithm is applied to infrasound source localization in
this paper, which significantly reduces the estimation error of the arrival azimuth; (ii) the
Bayesian information fusion algorithm is used to incorporate the uncertainty brought by the
infrasound propagation environment and the measurement equipment into the infrasound
source localization, making the localization results more robust.
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Abbreviations
The following abbreviations are used in this manuscript:

p ray parameter in tau-p model
R(z, p) range along the ray direction
ψ(z, p) the ray characteristic function
Q(z, p) transverse offset
u(z) the horizontal wind speed along the propagation direction
zmax the maximum height of the infrasound trajectory
φ the launch elevation angle at the start of the infrasound trajectory
z (axis) infrasound propagation height
α angle of wave number vector with x-axis
β angle of wave number vector with z-axis
~u wave number vector
P (function) the acoustic signal when the initial time is t
r (vector) propagation position vector
t initial time
X infrasound source amplitudes
L snapshot
Y infrasound signal of L snapshots observed by N infrasound sensors
N additive noise
N the number of infrasound sensor
NC the normal distribution sign
A infrasound array steering vectors
K the number of infrasound sources

https://www.lanl.gov/org/ddste/aldcels/earth-environmental-sciences/geophysics/software/seismoacoustics/inframonitor.php
https://www.lanl.gov/org/ddste/aldcels/earth-environmental-sciences/geophysics/software/seismoacoustics/inframonitor.php
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M number of infrasound planar angle discretizations
PDF probability density function
σ2 complex Gaussian with noise variance
Γ the diagonal matrix formed by the diagonal elements γ

Y = [y1, . . . , yL] ∈ CN×L the measured infrasound signal
Σx covariance of the posterior distribution on the infrasound source
Σy the infrasound sensor data covariance
Sy the infrasound array data sample covariance matrix (SCM)
‖ · ‖F Frobenius norm
tr trace of square matrix
(·)H Hermitian transpose of the matrix
E expected value
am the infrasound array steering vector
‖ · ‖1 1 norm
[Y | X] stochastic likelihood for the SBL algorithm
[X | Y ] posterior on the infrasound sources
[X] prior on the infrasound sources
[Y ] evidence on the infrasound sources
[m | θ] posterior pdf for the Bayesian information fusion
c[θ] enables the integration of [θ | m] to be uniform
[m] the prior pdf for the Bayesian information fusion
[θ | m] the likelihood function for the Bayesian information fusion
γm the variance of azimuth on the random variable xml at the m-th

snapshot
θ = [θ1, · · · , θn] arrival azimuth estimation
m = {x0, y0} the candidate source location
σ2

θ, meas the variance of the arrival azimuth estimation from the infrasound
measurement equipment

σ2
θ, mod the variance of the arrival azimuth estimation from the infrasound

propagation model
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