Improving Soil Water Content and Surface Flux Estimation Based on Data Assimilation Technique
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Site
2.2. Data
2.2.1. Ground Measurements
2.2.2. Remote Sensing Data
2.3. Methodology
2.3.1. Hydrologically Enhanced Land Process (HELP) Model
2.3.2. Ensemble Kalman Filter (EnKF)
2.3.3. Surface Energy Balance System (SEBS) Model
2.3.4. Implementation of Data Assimilation
2.3.5. Statistical Metrics
3. Results
3.1. Benchmark Run
3.2. Data Assimilation in SWC Estimation
3.3. Data Assimilation in Surface Flux Estimation
4. Discussion
4.1. Analysis of Ensemble Generation
4.2. Dependency Analysis of State Variables
4.3. Limitations and Future Works
5. Conclusions
- A land surface data assimilation system was built to the HELP model by the EnKF technique. The remotely sensed LE estimated by the remotely sensed SEBS model was used as the observation value in the data assimilation system.
- The model was validated by the observation data in 2006 at the Weishan flux station, where the open-loop estimation without state updating was treated as the benchmark run.
- The RMSE of SWC reduced by 30%~50% compared to the benchmark run, while the surface fluxes also had significant improvement to different extents, among which the RMSE of LE estimation from the wheat season and maize season reduced by 33% and 44%, respectively.
- The data assimilation system has great potential to be used in land surface models in agriculture and water management.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McVicar, T.R.; Roderick, M.L.; Donohue, R.J.; Li, L.T.; Van Niel, T.G.; Thomas, A.; Grieser, J.; Jhajharia, D.; Himri, Y.; Mahowald, N.M.; et al. Global review and synthesis of trends in observed terrestrial near-surface wind speeds: Implications for evaporation. J. Hydrol. 2012, 416–417, 182–205. [Google Scholar] [CrossRef]
- Bousbih, S.; Zribi, M.; El Hajj, M.; Baghdadi, N.; Lili-Chabaane, Z.; Gao, Q.; Fanise, P. Soil Moisture and Irrigation Mapping in A Semi-Arid Region, Based on the Synergetic Use of Sentinel-1 and Sentinel-2 Data. Remote Sens. 2018, 10, 1953. [Google Scholar] [CrossRef] [Green Version]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Bazzi, H. Synergic Use of Sentinel-1 and Sentinel-2 Images for Operational Soil Moisture Mapping at High Spatial Resolution over Agricultural Areas. Remote Sens. 2017, 9, 1292. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, G.; Srivastava, P.; Piles, M.; Pearson, S. Earth Observation-Based Operational Estimation of Soil Moisture and Evapotranspiration for Agricultural Crops in Support of Sustainable Water Management. Sustainability 2018, 10, 181. [Google Scholar] [CrossRef] [Green Version]
- Long, D.; Bai, L.; Yan, L.; Zhang, C.; Yang, W.; Lei, H.; Quan, J.; Meng, X.; Shi, C. Generation of spatially complete and daily continuous surface soil moisture of high spatial resolution. Remote Sens. Environ. 2019, 233, 111364. [Google Scholar] [CrossRef]
- Lin, R.; Chen, H.; Wei, Z.; Li, Y.; Zhang, B.; Sun, H.; Cheng, M. Improved Surface Soil Moisture Estimation Model in Semi-Arid Regions Using the Vegetation Red-Edge Band Sensitive to Plant Growth. Atmosphere 2022, 13, 930. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, C.; Meng, Y.; Chen, J.; Yue, A. Landslide Monitoring Using Change Detection in Multitemporal Optical Imagery. IEEE Geosci. Remote Sens. Lett. 2020, 17, 312–316. [Google Scholar] [CrossRef]
- Ranney, K.J.; Niemann, J.D.; Lehman, B.M.; Green, T.R.; Jones, A.S. A method to downscale soil moisture to fine resolutions using topographic, vegetation, and soil data. Adv. Water Resour. 2015, 76, 81–96. [Google Scholar] [CrossRef] [Green Version]
- Turk, F.; Mostovoy, G.; Anantharaj, V. Soil Moisture Sensitivity to NRL-Blend High-Resolution Precipitation Products: Analysis of Simulations with Two Land Surface Models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 32–48. [Google Scholar] [CrossRef]
- Srivastava, A.; Saco, P.M.; Rodriguez, J.F.; Kumari, N.; Chun, K.P.; Yetemen, O. The role of landscape morphology on soil moisture variability in semi-arid ecosystems. Hydrol. Process. 2020, 35, e13990. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, J.; Liu, Y.; Zhu, Y.; Fang, X.; Huang, Q.; Chen, J. Spatiotemporal Analysis of Soil Moisture Variation in the Jiangsu Water Supply Area of the South-to-North Water Diversion Using ESA CCI Data. Remote Sens. 2022, 14, 256. [Google Scholar] [CrossRef]
- Famiglietti, J.S.; Ryu, D.; Berg, A.A.; Rodell, M.; Jackson, T.J. Field observations of soil moisture variability across scales. Water Resour. Res. 2008, 44, W01423. [Google Scholar] [CrossRef] [Green Version]
- Baugh, C.; de Rosnay, P.; Lawrence, H.; Jurlina, T.; Drusch, M.; Zsoter, E.; Prudhomme, C. The Impact of SMOS Soil Moisture Data Assimilation within the Operational Global Flood Awareness System (GloFAS). Remote Sens. 2020, 12, 1490. [Google Scholar] [CrossRef]
- Zhao, W.; Sánchez, N.; Lu, H.; Li, A. A spatial downscaling approach for the SMAP passive surface soil moisture product using random forest regression. J. Hydrol. 2018, 563, 1009–1024. [Google Scholar] [CrossRef]
- Abowarda, A.S.; Bai, L.; Zhang, C.; Long, D.; Li, X.; Huang, Q.; Sun, Z. Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale. Remote Sens. Environ. 2021, 255, 112301. [Google Scholar] [CrossRef]
- Zribi, M.; Chahbi, A.; Shabou, M.; Lili-Chabaane, Z.; Duchemin, B.; Baghdadi, N.; Amri, R.; Chehbouni, A. Soil surface moisture estimation over a semi-arid region using ENVISAT ASAR radar data for soil evaporation evaluation. Hydrol. Earth Syst. Sci. 2011, 15, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.; Zribi, M.; Escorihuela, M.J.; Baghdadi, N. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at 100 m Resolution. Sensors 2017, 17, 1966. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef] [Green Version]
- Agyeman, B.T.; Bo, S.; Sahoo, S.R.; Yin, X.; Liu, J.; Shah, S.L. Soil moisture map construction by sequential data assimilation using an extended Kalman filter. J. Hydrol. 2021, 598, 126425. [Google Scholar] [CrossRef]
- Sabater, J.M.; Jarlan, L.; Calvet, J.-C.; Bouyssel, F.; Rosnay, P.D. From Near-Surface to Root-Zone Soil Moisture Using Different Assimilation Techniques. J. Hydrometeorol. 2007, 8, 194–206. [Google Scholar] [CrossRef]
- Baldwin, D.; Manfreda, S.; Keller, K.; Smithwick, E.A.H. Predicting root zone soil moisture with soil properties and satellite near-surface moisture data across the conterminous United States. J. Hydrol. 2017, 546, 393–404. [Google Scholar] [CrossRef]
- Khaki, M.; Awange, J. Altimetry-derived surface water data assimilation over the Nile Basin. Sci. Total Environ. 2020, 735, 139008. [Google Scholar] [CrossRef] [PubMed]
- Margulis, S.A.; McLaughlin, D.; Entekhabi, D.; Dunne, S. Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment. Water Resour. Res. 2002, 38, 35-1–35-18. [Google Scholar] [CrossRef]
- Bosilovich, M.G.; Radakovich, J.D.; da Silva, A.; Todling, R.; Verter, F. Skin Temperature Analysis and Bias Correction in a Coupled Land-Atmosphere Data Assimilation System. J. Meteorol. Soc. Jpn. Ser. II 2007, 85A, 205–228. [Google Scholar] [CrossRef] [Green Version]
- Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef] [Green Version]
- Komma, J.; Blöschl, G.; Reszler, C. Soil moisture updating by Ensemble Kalman Filtering in real-time flood forecasting. J. Hydrol. 2008, 357, 228–242. [Google Scholar] [CrossRef]
- Thirel, G.; Martin, E.; Mahfouf, J.F.; Massart, S.; Ricci, S.; Habets, F. A past discharges assimilation system for ensemble streamflow forecasts over France—Part 1: Description and validation of the assimilation system. Hydrol. Earth Syst. Sci. 2010, 14, 1623–1637. [Google Scholar] [CrossRef] [Green Version]
- Walker, J.P.; Houser, P.R. A methodology for initializing soil moisture in a global climate model: Assimilation of near-surface soil moisture observations. J. Geophys. Res. Atmos. 2001, 106, 11761–11774. [Google Scholar] [CrossRef] [Green Version]
- Crow, W.T.; Koster, R.D.; Reichle, R.H.; Sharif, H.O. Relevance of time-varying and time-invariant retrieval error sources on the utility of spaceborne soil moisture products. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Crow, W.T.; Starks, P.J.; Moriasi, D.N. Improving hydrologic predictions of a catchment model via assimilation of surface soil moisture. Adv. Water Resour. 2011, 34, 526–536. [Google Scholar] [CrossRef]
- Qin, C.; Jia, Y.; Su, Z.; Zhou, Z.; Qiu, Y.; Suhui, S. Integrating Remote Sensing Information into A Distributed Hydrological Model for Improving Water Budget Predictions in Large-scale Basins through Data Assimilation. Sensors 2008, 8, 4441–4465. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Wood, E.; Wojcik, R.; McCabe, M. Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation. Remote Sens. Environ. 2008, 112, 1282–1294. [Google Scholar] [CrossRef]
- Sun, H.; Wang, L.; Lin, R.; Zhang, Z.; Zhang, B. Mapping Plastic Greenhouses with Two-Temporal Sentinel-2 Images and 1D-CNN Deep Learning. Remote Sens. 2021, 13, 2820. [Google Scholar] [CrossRef]
- Yi, Y.; Yang, D.; Huang, J.; Chen, D. Evaluation of MODIS surface reflectance products for wheat leaf area index (LAI) retrieval. ISPRS J. Photogramm. Remote Sens. 2008, 63, 661–677. [Google Scholar] [CrossRef]
- Liang, S. Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Sellers, P.J.; Randall, D.A.; Collatz, G.J.; Berry, J.A.; Field, C.B.; Dazlich, D.A.; Zhang, C.; Collelo, G.D.; Bounoua, L. A Revised Land Surface Parameterization (SiB2) for Atmospheric GCMS. Part I: Model Formulation. J. Clim. 1996, 9, 676–705. [Google Scholar] [CrossRef]
- Evensen, G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res. Oceans 1994, 99, 10143–10162. [Google Scholar] [CrossRef]
- Kalman, R.E.; Bucy, R.S. New Results in Linear Filtering and Prediction Theory. J. Basic Eng. 1961, 83, 95–108. [Google Scholar] [CrossRef]
- van der Kwast, J.; Timmermans, W.; Gieske, A.; Su, Z.; Olioso, A.; Jia, L.; Elbers, J.; Karssenberg, D.; de Jong, S. Evaluation of the Surface Energy Balance System (SEBS) applied to ASTER imagery with flux-measurements at the SPARC 2004 site (Barrax, Spain). Hydrol. Earth Syst. Sci. 2009, 13, 1337–1347. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Schmugge, T.; Kustas, W.P.; Massman, W.J. An evaluation of two models for estimation of the roughness height for heat transfer between the land surface and the atmosphere. J. Appl. Meteorol. Climatol. 2001, 40, 1933–1951. [Google Scholar] [CrossRef] [Green Version]
- Su, Z. The surface energy balance system (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Shaw, R.; Pereira, A. Aerodynamic roughness of a plant canopy: A numerical experiment. Agric. Meteorol. 1982, 26, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, B.J.; Monteith, J.L. A four-layer model for the heat budget of homogeneous land surfaces. Q. J. R. Meteorol. Soc. 1988, 114, 373–398. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from sparse crops-an energy combination theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Yang, D.; Chen, H.; Lei, H. Estimation of evapotranspiration using a remote sensing model over agricultural land in the North China Plain. Int. J. Remote Sens. 2010, 31, 3783–3798. [Google Scholar] [CrossRef]
- Clark, M.P.; Rupp, D.E.; Woods, R.A.; Zheng, X.; Ibbitt, R.P.; Slater, A.G.; Schmidt, J.; Uddstrom, M.J. Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model. Adv. Water Resour. 2008, 31, 1309–1324. [Google Scholar] [CrossRef]
- Chen, H.; Yang, D.; Hong, Y.; Gourley, J.J.; Zhang, Y. Hydrological data assimilation with the Ensemble Square-Root-Filter: Use of streamflow observations to update model states for real-time flash flood forecasting. Adv. Water Resour. 2013, 59, 209–220. [Google Scholar] [CrossRef]
- Lei, H.; Yang, D. Interannual and seasonal variability in evapotranspiration and energy partitioning over an irrigated cropland in the North China Plain. Agric. For. Meteorol. 2010, 150, 581–589. [Google Scholar] [CrossRef]
- Lei, H.; Yang, D.; Shen, Y.; Liu, Y.; Zhang, Y. Simulation of evapotranspiration and carbon dioxide flux in the wheat-maize rotation croplands of the North China Plain using the Simple Biosphere Model. Hydrol. Process. 2011, 25, 3107–3120. [Google Scholar] [CrossRef]
- Govaerts, B.; Fuentes, M.; Mezzalama, M.; Nicol, J.M.; Deckers, J.; Etchevers, J.D.; Figueroa-Sandoval, B.; Sayre, K.D. Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil Tillage Res. 2007, 94, 209–219. [Google Scholar] [CrossRef]
Method | Variational Method | Filtering Method |
---|---|---|
Fundamentals | Bayesian theory | Best-fitting regression |
Objective function | The posterior probability density is the highest | The error covariance matrix is minimal |
Basic assumption | Model errors do not propagate over time | The uncertainties of the observed values are known |
Advantage | No need to warm up; accurate calculation in complex systems | The calculation result is accurate after preheating; easy Integration |
Disadvantage | Heavy calculation burden | It cannot be solved under ultra-high nonlinear condition. |
Observation Parameters | Instrument | Height/Depth (m) | Frequency of Storage (min) |
---|---|---|---|
LE | CSAT3, Campbell Scientific, Logan, UT, USA | 3.7 | 30 |
H | LI7500, LI-COR, Lincoln, NE, USA | 3.7 | 30 |
Rs_down | CNR-1, Kipp & Zonen, Delft, the Netherlands | 3.5 | 10 |
Rl_down | CNR-1, Kipp & Zonen, Delft, the Netherlands | 3.5 | 10 |
Rl_up | CNR-1, Kipp & Zonen, Delft, the Netherlands | 3.5 | 10 |
G | HFP01SC, Hukseflux, the Netherlands | 0.03 | 10 |
Tsoil | Campbell-107, Campbell Scientific Inc., Logan, UT, USA | −0.05, −0.1, −0.2, −0.4, −0.8, −1.6 | 10 |
SWC | TRIME-EZ/IT, IMKO, Ettlingen, Germany | −0.05, −0.1, −0.2, −0.4, −0.8, −1.6 | 10 |
Soil Layer (cm) | Saturation Capacity (m3·m−3) | Residual Humidity (m3·m−3) | Saturation Hydraulic Conductivity (mm·h−1) | Van Genuchten Parameter, α (cm−1) | Van Genuchten Parameter, n |
---|---|---|---|---|---|
0–10 | 0.424 | 0.033 | 55.0 | 1.74 × 10−2 | 1.409 |
20–30 | 0.393 | 0.080 | - | 6.7 × 10−3 | 1.769 |
100–110 | 0.435 | 0.148 | 3.2 | 5.3 × 10−3 | 2.539 |
Input | Forcing Data | Observation | ||||
---|---|---|---|---|---|---|
P (mm) | WS (m/s) | RH | Ta (°C) | Rs_down | ||
ω | 0.2 | 0.3 | 0.1 | 0.15 | 0.1 | 0.2 |
Evaluation Criteria | Wheat Season | Maize Season | |||||
---|---|---|---|---|---|---|---|
SWCs | SWCr | SWCd | SWCs | SWCr | SWCd | ||
bias (m3·m−3) | benchmark | −0.0757 | −0.0664 | −0.1647 | 0.1873 | 0.1997 | 0.0927 |
assimilation | −0.1045 | −0.0632 | −0.0865 | 0.037 | 0.0362 | −0.0545 | |
MAE (m3·m−3) | benchmark | 0.0958 | 0.0842 | 0.1647 | 0.19 | 0.1998 | 0.1486 |
assimilation | 0.1057 | 0.0639 | 0.0883 | 0.108 | 0.0916 | 0.0742 | |
RMSE (m3·m−3) | benchmark | 0.04 | 0.03 | 0.07 | 0.06 | 0.06 | 0.05 |
assimilation | 0.03 | 0.02 | 0.04 | 0.03 | 0.03 | 0.03 | |
Eff (%) | 9.31 | 43.68 | 66.67 | 63.17 | 74.17 | 72.34 |
Evaluation Criteria | Wheat Season | Maize Season | |||||||
---|---|---|---|---|---|---|---|---|---|
Rn | G | H | LE | Rn | G | H | LE | ||
bias (W·m−2) | benchmark | −19.40 | −5.46 | −29.73 | 19.99 | 17.72 | −5.44 | −6.79 | 80.96 |
assimilation | −3.81 | −4.96 | 6.63 | −2.04 | −0.21 | 26.46 | −28.43 | 33.86 | |
RMSE (W·m−2) | benchmark | 30.05 | 57.81 | 71.07 | 54.03 | 26.03 | 40.53 | 51.62 | 119.78 |
assimilation | 17.76 | 51.63 | 47.72 | 32.80 | 9.81 | 48.44 | 45.50 | 67.44 | |
R2 | benchmark | 0.99 | 0.03 | 0.37 | 0.85 | 0.99 | 0.01 | 0.50 | 0.56 |
assimilation | 1.00 | 0.20 | 0.53 | 0.94 | 1.00 | 0.27 | 0.59 | 0.72 | |
Eff (%) | 65.08 | 20.21 | 54.91 | 63.15 | 85.80 | −42.79 | 22.32 | 68.30 |
SWCs | SWCr | SWCd | Ts | Rn | G | H | LE | |
---|---|---|---|---|---|---|---|---|
SWCs | 1 | 0.94 | 0.81 | 0.03 | −0.10 | −0.05 | 0.16 | 0.23 |
SWCr | 0.94 | 1 | 0.95 | 0.08 | −0.08 | −0.03 | 0.14 | 0.19 |
SWCd | 0.81 | 0.95 | 1 | 0.10 | −0.09 | −0.02 | 0.12 | 0.19 |
Ts | 0.03 | 0.08 | 0.10 | 1 | 0.66 | 0.88 | 0.69 | 0.63 |
Rn | −0.10 | −0.08 | −0.09 | 0.66 | 1 | 0.71 | 0.73 | 0.89 |
G | −0.05 | −0.03 | −0.02 | 0.88 | 0.71 | 1 | 0.59 | 0.64 |
H | 0.16 | 0.14 | 0.12 | 0.69 | 0.73 | 0.59 | 1 | 0.41 |
LE | 0.23 | 0.19 | 0.19 | 0.63 | 0.89 | 0.64 | 0.41 | 1 |
SWCs | SWCr | SWCd | Ts | Rn | G | H | LE | |
---|---|---|---|---|---|---|---|---|
SWCs | 1 | 0.99 | 0.83 | 0.19 | 0.02 | −0.14 | 0.02 | 0.41 |
SWCr | 0.99 | 1 | 0.86 | 0.21 | 0.02 | −0.14 | 0.01 | 0.41 |
SWCd | 0.83 | 0.86 | 1 | 0.37 | 0.03 | −0.09 | −0.07 | 0.37 |
Ts | 0.19 | 0.21 | 0.37 | 1 | 0.66 | 0.85 | 0.39 | 0.66 |
Rn | 0.02 | 0.02 | 0.03 | 0.66 | 1 | 0.77 | 0.87 | 0.84 |
G | −0.14 | −0.14 | −0.09 | 0.85 | 0.77 | 1 | 0.81 | 0.60 |
H | 0.02 | 0.01 | −0.07 | 0.39 | 0.87 | 0.81 | 1 | 0.54 |
LE | 0.41 | 0.41 | 0.37 | 0.66 | 0.84 | 0.60 | 0.54 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Lin, R.; Zhang, B.; Wei, Z. Improving Soil Water Content and Surface Flux Estimation Based on Data Assimilation Technique. Remote Sens. 2022, 14, 3183. https://doi.org/10.3390/rs14133183
Chen H, Lin R, Zhang B, Wei Z. Improving Soil Water Content and Surface Flux Estimation Based on Data Assimilation Technique. Remote Sensing. 2022; 14(13):3183. https://doi.org/10.3390/rs14133183
Chicago/Turabian StyleChen, He, Rencai Lin, Baozhong Zhang, and Zheng Wei. 2022. "Improving Soil Water Content and Surface Flux Estimation Based on Data Assimilation Technique" Remote Sensing 14, no. 13: 3183. https://doi.org/10.3390/rs14133183
APA StyleChen, H., Lin, R., Zhang, B., & Wei, Z. (2022). Improving Soil Water Content and Surface Flux Estimation Based on Data Assimilation Technique. Remote Sensing, 14(13), 3183. https://doi.org/10.3390/rs14133183