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Abstract: Land surface model is a powerful tool for estimating continuous soil water content
(SWC) and surface fluxes. However, simulation error tends to accumulate in the process of model
simulation due to the inevitable uncertainties of forcing data and the intrinsic model errors. Data
assimilation techniques consider the uncertainty of the model, update model states during the
simulation period, and therefore improve the accuracy of SWC and surface fluxes estimation. In
this study, an Ensemble Kalman Filter (EnKF) technique was coupled to a Hydrologically Enhanced
Land Process (HELP) model to update model states, including SWC and surface temperature (Ts).
The remotely sensed latent heat flux (LE) estimated by Surface Energy Balance System (SEBS) was
used as the observation value in the data assimilation system to update the model states such as
SWC and Ts, etc. The model was validated by the observation data in 2006 at the Weishan flux
station, where the open-loop estimation without state updating was treated as the benchmark
run. Results showed that the root mean square error (RMSE) of SWC was reduced by 30~50%
compared to the benchmark run. Meanwhile, the surface fluxes also had significant improvement
to different extents, among which the RMSE of LE estimation from the wheat season and maize
season reduced by 33% and 44%, respectively. The application of the data assimilation technique
can substantially improve the estimation of surface fluxes and SWC states. It is suggested that the
data assimilation system has great potential to be used in the application of land surface models in
agriculture and water management.

Keywords: HELP model; EnKF; soil water content; surface flux; surface temperature; SEBS model

1. Introduction

Land surface flux is an important index for evapotranspiration (ET) calculation, which
is an important parameter of the hydrological cycle [1]. Land surface flux includes surface
temperature (Ts), latent heat flux (LE), net radiation (Rn), soil heat flux (G0), and sensible
heat flux (H). Soil water content (SWC) is a key parameter of the land surface process and
plays an important role in the exchange of matter and energy between different components
in the earth system [2,3]. At the same time, SWC has a strong effect on ET, which is an
important index to measure the degree of soil drought. Timely and accurate estimation of
surface energy and SWC is of great significance for drought monitoring, agricultural water
resources management, and crop yield prediction.

The land surface model is an effective tool for continuous simulation of SWC and
surface fluxes. However, simulation errors tend to accumulate during the operation of
the model caused by the input uncertainty as well as continuous model states estimation,
and the heterogeneity of the underlying surface also limits the application of the model
on the regional scale. With the rapid development of remote sensing technology, a large
number of remote sensing observation data have been widely used in the model research
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of various fields and disciplines such as atmosphere [4], hydrology [5], agriculture [6], and
geology [7]. Remote sensing data have the advantage of continuity in space and dynamic
change in time. On the one hand, remote sensing data can make up for the shortcomings of
few meteorological observation stations spread, large spatial interpolation error generated,
and difficulties in mountainous areas observation. On the other hand, remote sensing data
can be used to estimate vegetation, soil, and other parameter information, which can save
manpower, money and time spent in carrying out experiments. However, remote sensing
observation can only provide these elements at satellite over passing instantaneous time,
which limits its usage scenarios. The combination of model estimation and remote sensing
observation, i.e., multi-source data fusion is one of the hot issues in the research of remote
sensing technology, and the key is how to take advantages of both strategies.

The uncertainty caused by multi-source data fusion is also an important factor affecting
the application of remote sensing data in SWC simulation. Many pieces of research focused
on reducing the uncertainty of multi-source data, such as data fusion [5], data downscal-
ing [8], sensitivity analysis [9], variability analysis [10–12], and data assimilation [13]. Zhao
et al. [14] proposed the SWC downscaling method based on random forest, which is helpful
in improving the spatial resolution of passive microwave SWC products and promotes its
application at the regional scale. Bai et al. [15] used the enhanced spatial and temporal
adaptive reflectance fusion model (ESTARFM) and machine learning algorithm to generate
surface SWC at 30 m spatial resolution in Haihe Basin from 2015 to 2017, which is valuable
for agricultural water resources management at the field scale. There are many pieces of
research on surface SWC estimating using remote sensing technology [2,16–18]. However,
in addition to surface SWC, root zone and deep SWC information is also very important for
agricultural management. Numerous studies have extended the surface SWC estimated by
remote sensing to the deep SWC. It is necessary to establish some hypotheses about vertical
distribution of SWC in soil profile. Many studies have used the one-dimensional Richards
equation [19]. The prediction of root SWC is greatly affected by the covariance error in
the framework of data assimilation, so the assimilation can be successful only when the
observation error and model error are both small enough. Sabater et al. [20] compared the
ability of two different Kalman filtering methods and two different variational methods to
predict root SWC from surface SWC. Baldwin et al. [21] used the SMAR-EnKF method to
combine the dynamic process model with SMAP products to obtain SWC of the vertical
soil profile by assimilation. These studies provided a good idea for a root or deep SWC
estimation. However, due to spatial heterogeneity, it is hard to say whether the formula
is effective in the whole region from surface to deep. Thus, it is necessary to use the land
surface model to simulate the root zone and deep SWC. If the land surface model is used
only, the errors will still accumulate over time, because SWC is not only the output of the
model, but also the key state variable and one of the initial conditions affecting the next
time step. Therefore, it is necessary to use data assimilation to improve SWC, especially in
the deep and root layers.

Data assimilation gives us a tool to optimize model states and thus reduce simu-
lation errors. The essence of data assimilation is error estimation and error simulation,
that is, to correct the model simulation process by introducing observation data of time
series so as to improve model simulation accuracy and reduce model uncertainty [22].
In recent years, data assimilation technology has been developed rapidly and gradually
introduced into the research of hydrology, such as SWC assimilation [19,23] and Ts assim-
ilation [24]. These studies proved that data assimilation technology has great potential to
improve the accuracy of hydrological prediction. At the same time, due to the extensive
application of remote sensing technology, more and more surface parameters can be
obtained from remote sensing data, which provides data support for the application of
data assimilation in hydrological models. Data assimilation methods mainly include
variational method and filtering method (Table 1). The variational method is widely
used in meteorology, oceanography and other fields because it does not need preheating
and has good assimilation results in a short computing time. Filtering method can take
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into account the uncertainties of different source data and models, and the errors can
propagate over time, which widely used in the field of hydrology.

Table 1. Comparison of commonly used data assimilation methods.

Method Variational Method Filtering Method

Fundamentals Bayesian theory Best-fitting regression
Objective function The posterior probability density is the highest The error covariance matrix is minimal

Basic assumption Model errors do not propagate over time The uncertainties of the observed values
are known

Advantage No need to warm up;
accurate calculation in complex systems

The calculation result is accurate after preheating;
easy Integration

Disadvantage Heavy calculation burden It cannot be solved under ultra-high
nonlinear condition.

Kalman filter algorithm was proposed by Kalman [25] in 1960. Its basic idea is that the
model state is predicted first, then the observation data are introduced, and the model state
is re-analyzed according to the observation data at the end. Komma et al. [26] integrated
the EnKF method into a conceptual hydrological model and applied it to small watersheds.
The prediction accuracy of the hydrological model is improved by optimizing the initial
state variables of the hydrological model. Thirel et al. [27] built a data assimilation system
in France. By optimizing the state variables of the previous hydrological model, the
optimized state variables are used as the initial state variables of the forecast model. In
terms of SWC assimilation, Walker et al. [28] assimilated surface soil moisture, indicating
that data assimilation could improve the simulation accuracy of SWC when the initial
value of the model deviated greatly from the measured value. Crow et al. [29] showed
that assimilation of surface soil moisture could improve the simulation accuracy of soil
moisture and surface latent heat flux when precipitation data error is large. Chen et al. [30]
conducted a three-layer SWC assimilation in the SWAT model, and the results showed that
surface soil moisture assimilation had the best performance. In terms of ET assimilation,
Qin et al. [31] used LE simulated by the SEBS model as an observation value to assimilate
the WEP-L distributed hydrological model, however, it was difficult to be verified. In
addition to the single-objective assimilation mentioned above, there is also multi-objective
joint assimilation. Pan et al. [32] used the Constrained EnKF (CoEnKF) method to assimilate
surface and root soil moisture, latent heat, and runoff in variable infiltration capacity (VIC)
model. According to the correlation between the error level of the water balance items and
the non-closure terms, the non-closure terms are allocated. The closure of the hydrological
process is realized.

It is found that there is no unified evaluation method for model improvement in
existing studies. In the simulation of different hydrological factors, the stability of the
assimilation method is different. At the same time, it is also worth discussing whether the
model simulation for long time series is effective.

In this study, an Ensemble Kalman Filter (EnKF) technique was coupled to a Hydro-
logically Enhanced Land Process (HELP) model to update model states, including SWC
and Ts. The remotely sensed LE estimated by Surface Energy Balance System (SEBS) was
used as the observation value in the data assimilation system to update the model states
such as SWC and Ts, etc. The model was validated by the observation data in 2006 at the
Weishan flux station, where the open-loop estimation without state updating was treated
as the benchmark run.

2. Materials and Methodology
2.1. Study Site

Weishan Irrigation District (36◦8′N~37◦1′N, 115◦25′E~116◦31′E) is located in the lower
reaches of the Yellow River and in the middle of the North China Plain. It is the fifth largest
irrigation district in China, with an irrigation area of about 3600 km2. The irrigation district
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belongs to the temperate monsoon sub-humid climate area. More than 80% of the land
use in the irrigation district is farmland, followed by construction, with a small amount
of forest and water. The performance of the data assimilation system was evaluated at
Weishan flux station (36◦38′55.5′′N, 116◦3′15.3′′E) located in the irrigation district, which is
representative of this area (Figure 1).
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(DHM); Dangxiong (DX); Haibei (HB); Neimenggu (NMG); Qianyanzhou (QYZ); Xishuangbanna
(XSBN); Yucheng (YC).

The annual pan evaporation (1950 mm measured by 20 cm diameter evaporation
pan) significantly exceeds the annual precipitation (532 mm), and the annual mean air
temperature (Ta) is 13.3 ◦C. The dominant crops are winter wheat and summer maize
planted in rotation, representing the main cropping system in this region. The rainfall is
insufficient to support the winter wheat production, as about two-thirds of the annual
rainfall occurs from July to September. Thus, agricultural production of the wheat-growing
season relies primarily on surface ditch irrigation, with the irrigation water drawn mainly
from the Yellow River [33].

2.2. Data

The data used in our study include ground measurements and remote sensing data
(MODIS). Ground measurements mainly include observation data of flux station and
meteorological station, including flux, Ts, SWC, Ta, air pressure, rainfall, etc. The remote
sensing data used included MOD09GA, MOD13Q1, and MOD11A1.

2.2.1. Ground Measurements

For ground measurements, a 10 m flux tower was set, and measurement instru-
ments were equipped on and around the tower. The model input and validation data
needed in the study, including flux data, soil data, meteorological data, and vegetation
parameters, were observed. The LE and sensible heat flux (H) was measured by an eddy-
covariance system at the height of 3.7 m. Downwelling shortwave radiation (Rs_down),
downwelling longwave radiation (Rl_down), and upwelling longwave radiation (Rl_up)
were measured by a radiometer at the height of 3.5 m. Soil heat flux (G) was measured by
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two heat transducers on opposite side of the tower at a depth of 0.03 m. Soil temperature
(Tsoil) and SWC were measured at the depth of 0.05, 0.10, 0.20, 0.40, 0.80, and 1.6 m.
Meteorological data used in this study were recorded at 10 min intervals, including Ta
and relative humidity (RH), wind speed (WS), and precipitation (P). Skin temperature
was measured with an infrared thermometer. The canopy height and leaf area index
(LAI) were measured twice per month at several locations surrounding the tower by
randomly selecting samples within the cropland. Table 2 shows the observation projects
of observation station.

Table 2. Observation projects of flux station.

Observation
Parameters Instrument Height/Depth (m) Frequency of

Storage (min)

LE CSAT3, Campbell Scientific, Logan, UT, USA 3.7 30
H LI7500, LI-COR, Lincoln, NE, USA 3.7 30

Rs_down
CNR-1, Kipp & Zonen, Delft,

The Netherlands 3.5 10

Rl_down
CNR-1, Kipp & Zonen, Delft,

The Netherlands 3.5 10

Rl_up
CNR-1, Kipp & Zonen, Delft,

The Netherlands 3.5 10

G HFP01SC, Hukseflux, The Netherlands 0.03 10

Tsoil
Campbell-107, Campbell Scientific Inc.,

Logan, UT, USA −0.05, −0.1, −0.2, −0.4, −0.8, −1.6 10

SWC TRIME-EZ/IT, IMKO, Ettlingen, Germany −0.05, −0.1, −0.2, −0.4, −0.8, −1.6 10

2.2.2. Remote Sensing Data

For remote sensing data, land products of MODIS on-boarded Terra and Aqua satellite
were used in this study, and the over-passing time of each satellite is around 10:30 am and
13:30 pm. (http://reverb.echo.nasa.gov/reverb/, accessed on 10 May 2022). Collection
5 data onboard the Terra satellite and corresponding products onboard the Aqua satellite
was used in this study [34]; broadband surface albedo [35], Ts and emissivity, and NDVI [36]
were thus derived. Detailed introduction of above could refer to the website (http://modis-
land.gsfc.nasa.gov/, accessed on 10 May 2022). All the data were re-projected from the
Sinusoidal (SIN) projection into the Universal Transverse Mercator (UTM) projection and
resampled to 250 m.

2.3. Methodology

The core component of land surface process data assimilation system is hydrological
model or land surface model, data assimilation algorithm, and an independent source of
observation to provide extra information. In this study, the Ensemble Kalman Filter (EnKF)
algorithm was embodied in the HELP model. The estimated LE based on remote sensing
using Surface Energy Balance System (SEBS) was used as an independent observation
source. The framework of the scheme is shown in Figure 2.

http://reverb.echo.nasa.gov/reverb/
http://modis-land.gsfc.nasa.gov/
http://modis-land.gsfc.nasa.gov/
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2.3.1. Hydrologically Enhanced Land Process (HELP) Model

HELP model is based on Simple Biosphere Model 2 (SiB2), which enhances runoff
process and other hydrological processes modeling. SiB2 model was introduced by Sellers
et al. [37], based on the Simple Biosphere Model (SiB), into the photosynthesis-stomatal
conductance sub-module. Thus, the surface energy and water balance can be better simu-
lated. SiB2 consists of one vegetation layer and three soil layers, mainly predicting three
layers of SWC and temperature, sensible and latent heat fluxes.

In HELP model, radiation transfer, energy, and carbon exchange between land surface
and atmosphere is the same as SiB2, while below is the improvement in HELP model:
(1) soil in unsaturated zone was divided into 0.1 m layer, and SWC exchange in each layer
was described by one-dimensional Richards equation; (2) relationship between unsaturated
and saturated hydraulic conductivity was described using van Genuchten equation instead
of Cambell/Clapp-Hornberger equation; (3) interflow and groundwater discharge and
water exchange between SWC and river way were added to the surface runoff model,
described by mass conservation equation and Darcy’s law.

In order to enhance the simulation of SWC, unsaturated soil layer was further refined
to 10 layers. Thus, the model has 17 state variables in total as: 0~10 cm layer SWC, canopy
interception, land surface precipitation storage, temperature at canopy, land surface and
deep soil layer, groundwater table, and river water level.

Except for meteorological input data derived from site measurement, HELP model had
a set of parameters to describe the physical characteristics of soil and physiological property.
Vegetation parameters included vegetation form, optical parameters, and physiological
parameters, which were determined by crop time and invariant with time. The vegetation
parameters were derived by field experiment at Weishan flux station. The soil parameters
are listed in Table 3.
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Table 3. The characteristic parameters of different soil layers at Weishan flux station.

Soil Layer
(cm)

Saturation
Capacity
(m3·m−3)

Residual
Humidity
(m3·m−3)

Saturation Hydraulic
Conductivity

(mm·h−1)

Van Genuchten
Parameter, α

(cm−1)

Van Genuchten
Parameter, n

0–10 0.424 0.033 55.0 1.74 × 10−2 1.409
20–30 0.393 0.080 - 6.7 × 10−3 1.769

100–110 0.435 0.148 3.2 5.3 × 10−3 2.539

2.3.2. Ensemble Kalman Filter (EnKF)

The data assimilation approach used in this study was EnKF, proposed by Evensen [38].
The basic idea of EnKF incorporates an ensemble of forecasts to estimate background
error covariance, which is a Monte Carlo approximation to the traditional Kalman fil-
ter [39]. Data assimilation using EnKF method consists of two steps: (1) ensemble forecast;
(2) model states update. At each time step t, a set of ensemble samples of model state
variables is generated using Monte Carlo approach, noted as xi,t

b, where subscript i indi-
cates the ith sample, superscript b indicates states before update. The dimension of vector
x is m, indicated the number of model states is m. Model forecast at initial time can be
expressed as:

xb
i,t=1 = M(xi,0), i = 1, . . . , n (1)

where xi,0 is the initial states of the model; M indicates the modeling operator; n is the
ensemble size. The update equation for each ensemble member of EnKF is:

xa
i = xb

i + K
(

yi −Hxb
i

)
, i = 1, . . . , n (2)

K = PbHT
(

HPbHT + R
)−1

(3)

Pb =
1

n− 1
x′b
(

x′b
)T

(4)

x′b =
(

x′b1, . . . , x′bn
)

(5)

where K is the Kalman gain; Xa is the analysis after the update; yi is the vector of the
observations with the dimension of p; Pb is the background error covariance matrix; H is
the operator that converts the model states to the observation space with the dimension
of p*n; R is the observation error covariance matrix with the dimension of p*p; x′bi is the
ensemble anomaly for the ith ensemble member.

At model state update stage, each i of the m ensemble members is updated by
Equation (2). For each ensemble member, the p dimensional observation yi is sampled
from a distribution with the mean equal to the observation and variance of R.

2.3.3. Surface Energy Balance System (SEBS) Model

Instantaneous LE at satellite over-passing time estimated by Surface Energy Balance
System (SEBS) was treated as the observation of the data assimilation system, i.e., the
vector y in Equation (2). SEBS is a single layer model based on energy balance theory
that uses an excess resistance term which accounts for the difference of the roughness
lengths for momentum and heat between vegetation and surface [40], which consists
of four components: (1) land surface physical parameters from spectral reflectance and
radiance; (2) roughness length for heat transfer by extended model; (3) H iterated from
Monin-Obukhov similarity theory; (4) LE determined by evaporative fraction based on
energy balance equation at limiting cases [41]. Compared with other single layer models
based on energy balance theory, SEBS has an advantage in the independent calculation of
each pixel, i.e., even if partial pixels are contaminated because of cloud or rainfall on one
day, other pixels exposed under clear day still can be used to calculate energy fluxes. The
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merit of SEBS can maximize the usage of remote sensing data and will provide observation
data to data assimilation system to the greatest extent.

The surface energy balance equation [42] can be written as:

Rn= G0+H + LE (6)

where Rn is the net radiation, W·m−2; G0 is the soil heat flux, W·m−2; H is the sensible heat
flux, W·m−2; LE is the latent heat flux, W·m−2. The parameterization scheme of roughness
length of momentum transfer (z0m) and zero displacement height (d) were derived from
empirical relationship given by Shaw et al. [43] from the second-order closure theory [44]
to suit the situation in China.

z0m =

{
z0s + 0.3hZ1/2, 0 ≤ Z ≤ 0.2
0.3h(1− d/h), 0.2 ≤ Z < 1.5

Z = CdLAI (7)

d = 1.1h ln
(

1 + Z1/4
)

(8)

where h is the canopy height; LAI is the leaf area index; Cd is the drag coefficient of the
foliage elements (set to 0.2); z0s is the substrate roughness height (set to 0.01 m for bare
soil) [45].

The model was already estimated using MODIS data at the study site and validated by
in situ measurement of eddy covariance system. The results showed that relative error and
root mean square error of LE in both wheat and maize season was within 20%, indicating
SEBS model using remote sensing data had good accuracy in estimating LE. Detailed results
of validation and discussion could refer to Yang et al. [46].

2.3.4. Implementation of Data Assimilation

A key issue in implementing data assimilation method is quantifying the covariance
error matrices. For EnKF, variance between multiple ensemble members is the way to quan-
tify the model error. In this study, Monte Carlo sampling through assigned random noise
in the forcing data and observation were derived from emulating the model error, which is
proved to be an easy and robust way; moreover, the physical basis and interpretation of
individual error sources remain clear [26].

The forcing data of HELP model include P, WS, RH, Ta, and Rs_down. The ensembles
of forcing data were emulated by perturbing each forcing data at each time step, which
were generated as Clark et al. [47]:

f ′ = f
(

1 + γ f

)
, γ f ∼ N

(
0, ω f

)
(9)

where γf is the random noise with a covariance of ωf, i.e., γf is a realization from a normal
distribution ranging from −ωf to ωf, in which the subscript of f indicates different sources
of forcing data.

Similarly, the data assimilation approach implicates an assumption of knowing or
at least accurately estimating observation error. The ensembles of observation were also
generated as follows:

y′ = y
(
1 + γy

)
, γy ∼ N

(
0, ωy

)
(10)

where the symbols have the same meaning as in Equation (8), in which the subscript of y
indicated observation in the data assimilation system, i.e., the LE estimated by SEBS. By
generating each ensemble of forcing data and observation, a set of ensemble model states
were calculated by HELP model, and the model error covariance and observation error
covariance (Pb and R in Equation (3)) were thus quantified. Considering the actual error
of in situ measurements and SEBS simulation, random distribution of forcing data and
observation data in HELP model is listed in Table 4.
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Table 4. Random distribution of forcing and observation data of data assimilation system.

Input
Forcing Data

Observation
P (mm) WS (m/s) RH Ta (◦C) Rs_down

ω 0.2 0.3 0.1 0.15 0.1 0.2

The HELP model has 17 model states, in which the canopy interception and surface
interception are the states only relative to rainfall, which means the simulation error of these
two states does not accumulate with time. Moreover, groundwater level and river water
level are also influenced by neighboring pixels, which can hardly be accurately simulated by
one-dimensional vertical model. Therefore, in the data assimilation system, only 10 layers of
SWC and three layers of temperature were updated. According to previous studies, compre-
hensively considering the computational requirements and data assimilation performance,
the recommended ensemble size is 10 times of model states [32,48], i.e., 130 in this study. The
soil depth of surface, root, and deep layer was 0–10, 20–30, and 100–110 cm, respectively.
For the convenience of description, SWC corresponding to surface, root, and deep layer are
represented by SWCs, SWCr, and SWCd, respectively.

The time step of HELP model is 30 min, and the time step of SEBS is two times per
day at 10:30 and 13:30 under clear day, which means the observation is not available at
each time step of HELP model. In this study, the model states were updated by EnKF when
LE estimation was available; otherwise, the model was free running. The HELP model
ran from 1 October 2005 to 31 December 2005 freely with initial SWC, and temperature
values originated from ground measurements to warm up the model, then the model
assembled data assimilation system ran from 1 January 2006 to 31 December 2006, while
the performance of data assimilation was tested in wheat growing season (from 1 March to
31 May) and maize growing season (from 1 July to 30 September).

2.3.5. Statistical Metrics

Model assessment consisted of the standard statistical evaluations, including bias,
mean absolute error (MAE), root mean square error (RMSE), determination coefficient (R2),
and effectiveness criterion (Eff ). The statistical metrics are calculated as follows:

bias =
1
n

n

∑
i=1

(Si −Oi) (11)

MAE =
1
n

n

∑
i=1
|Si −Oi| (12)

RMSE =

√
1
n

n

∑
i=1

(Si −Oi)
2 (13)

R2 =

n
∑

i=1

(
Si − S

)2

n
∑

i=1

(
Oi − S

)2
(14)

E f f (%) = 100 ·
(

1− ∑n
i=1
(
Su

i −Oi
)2

∑n
i=1
(
Sb

i −Oi
)2

)
(15)

where superscript u and b represent the update after data assimilation and benchmark
run, respectively; O and S represent the observation and simulation, respectively; S is
the average of simulated values. The Eff ranges between negative infinity and 100%, and
a value larger than 0 corresponds to a positive impact in skill resulting from the data
assimilation. Conversely, a value below 0 corresponds to a negative impact. The greater
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value of Eff indicates better performance following data assimilation compared to the
benchmark run.

3. Results

The data assimilation approach used in this study was EnKF. It was used to reduce
the simulation error of SWC and surface flux. The data assimilation results were compared
with the results of the benchmark run, and the observation data of the Weishan flux station
were used for verification. In terms of SWC assimilation, we also evaluated the effect of
root and deep SWC assimilation. The results showed that the model could simulate SWC
effectively, and the data assimilation technology can effectively reduce the error of SWC
simulation. At the same time, surface flux assimilation also achieved encouraging results.

3.1. Benchmark Run

In order to evaluate the performance of the data assimilation approach, the results
from the benchmark run are needed, i.e., the open-loop simulation with the same set of
forcing data, parameters, and initial states yet without updating model states. Figure 3
shows the simulation results of SWC in three layers by benchmark run. The bias of SWCs,
SWCr, and SWCd is 0.033, 0.047, and −0.009 m3·m−3, respectively. Although the entire
error is relatively small, the simulation does not fit well with the observation value, the
MAE of the three layers from top to bottom is 0.171, 0.163, and 0.147 m3·m−3, respectively,
and the RMSE is 0.055, 0.053 and 0.053 m3·m−3. Figure 2 showed the simulation fluctuated
violently a few days before and after the rainfall or irrigation, which indicated that SWC
is a very sensitive state to the rainfall and irrigation in the HELP model. The SWCs had a
severe fluctuation; moreover, SWCr and SWCd also had an obvious increase after rainfall
or irrigation.
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Figure 4 shows the simulation and observation of the Ts and LE. The simulation of
Ts had a systematic error with a bias of 4.98 ◦C, the MAE was 6.31 ◦C, and the RMSE
was 7.78 ◦C, but the simulation fitted well with the observation with the R2 of 0.75. The
simulation of heat fluxes was validated using the observation from the eddy covariance
system. The H and LE observed by the eddy covariance system were corrected by the
energy balance closure scheme [49]. The relative errors of Rn, G, H, and LE are −17.8%,
103.9%, −0.5%, and 9.0%, respectively. There was a large error in the simulation of G,
but the absolute value of G is small relatively and the ratio of G and Rn is small, thus the
simulation of LE does not have an obvious systematic error, but the random error is large,
the RMSE is 58.26 W·m−2 with an R2 of 0.68.
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The simulation error of the HELP model is the combination of error in input data,
error in calibrated parameters, and error from the model structure. The input error is
the reflectance of instrument measurement uncertainty and/or tempo-spatial heteroge-
neous land water cycle; the calibrated parameters error is the compromise of empirical
relationship and the complex and inenarrable physical mechanism; model structure error
is the simplification of equations describing the hydrological processes. These errors are
inevitable and can hardly be divided into different sources, which have different influences
on the simulation results [50]. The SWC is sensitive to rainfall and irrigation; thus, the inter-
polation error of rainfall or non-uniform irrigation may cause large errors in the simulation
of SWC. The systematic error of Ts may be caused by over-calibrated to the insensitive
parameter, or model structure error, while the random error in the simulation of LE may be
due to the difficulty in generalizing the evaporation process.

3.2. Data Assimilation in SWC Estimation

Figures 5 and 6 are the comparison of SWC under data assimilation run, benchmark
run, and observation from the wheat season (1 March to 31 May) and maize season (1 July
to 30 September), respectively. Table 3 shows the error statistics of the data assimilation
run and benchmark run. The results show that compared with the benchmark run, the
updated SWC simulation in both wheat season and maize season have different degrees of
improvement; the Eff ranges from 9.31% to 74.17%.

From the statistical results, we can see that in the wheat growing season, the bias
and MAE of updated SWCs are slightly larger than the benchmark run. The reason
is the simulation of SWCs from benchmark run changes severely before, and after the
precipitation/irrigation, i.e., the SWCs rise sharply after the precipitation/irrigation while
reducing significantly in a short period of time. Therefore, from the perspective of error
statistics, during the whole growing season, the error is averaged out, and the bias and
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MAE remain at a lower level. However, considering the simulation process during the
growing season, the time series of updated results from data assimilation fits well with
the observation curve, with a slightly systematic underestimation. Compared with the
benchmark run, the RMSE from the data assimilation run reduces from 0.04 to 0.03 m3·m−3.
The Eff of SWCs is 9.31%, which means after the data assimilation, the simulation results of
SWCs have improved to some extent.

The SWCr and SWCd of the wheat growing season have great improvement after
data assimilation compared with the benchmark run, with an Eff of 43.68% and 66.67%,
respectively. From the perspective of error statistics from the whole growing season, the
bias of SWCr and SWCd reduced by 0.0032 and 0.0782 m3·m−3, respectively, and the
MAE reduced by 0.0103 and 0.0754 m3·m−3, respectively. The SWCr was also influenced
by precipitation/irrigation. The time series after data assimilation has a similar pattern
as the surface layer; the simulation from the benchmark run shows a severe changing
pattern, which might attribute to the recession process of the HELP model. After the
data assimilation, the time series of SWC fits much better with the observation, with an
RMSE reduced from 0.03 to 0.02 m3·m−3. The SWCd did not receive much influence by
precipitation/irrigation compared with surface and root layers, but the simulation from
the benchmark run shows an obvious underestimation compared with the observation.
The data assimilation reduces the systematic error, with an RMSE reduced from 0.07 to
0.04 m3·m−3, which shows a large improvement compared with the benchmark run.
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Compared with the wheat growing season, the data assimilation results in the maize
growing season performed better. The MAE of SWCs, SWCr, and SWCd are reduced by
0.082, 0.1082, and 0.0744 m3·m−3 compared with the benchmark run, respectively (Table 5).
According to the simulation process, the time series simulation of SWC in three layers
from the benchmark run show an overestimation, especially for SWCs and SWCr, with
a bias of 0.1873 and 0.1997 m3·m−3, respectively. After data assimilation, the systematic
error reduces to a large extent, and the bias of the top two layers of SWC reduced to
0.037 and 0.0362 m3·m−3, respectively. However, after data assimilation, the time series of
simulated SWCd showed an underestimation compared with the benchmark run; the bias
changed from 0.0927 to −0.0545 m3·m−3. The reason is according to the HELP model, the
SWCd tended to have a similar pattern with the surface and root layer since the infiltration
rate in the Richards equation is constant, and this led to the results that the simulated
SWCd is influenced by precipitation and/or irrigation to a large extent. Compared with
the wheat growing season, the observed SWCd in the maize season roughly remained
constant regardless of precipitation or irrigation because it has a longer infiltration time in
a wheat-maize rotation system [51]. The RMSEs of the three layers were also reduced by
0.03 m3·m−3, 0.03 m3·m−3, and 0.02 m3·m−3, respectively. Overall, the data assimilation
Eff of the three layers is above 60%, which means the simulation results from the data
assimilation run fit better with the observation.
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Table 5. The characteristic parameters of SWC at Weishan flux station.

Evaluation Criteria
Wheat Season Maize Season

SWCs SWCr SWCd SWCs SWCr SWCd

bias
(m3·m−3)

benchmark −0.0757 −0.0664 −0.1647 0.1873 0.1997 0.0927
assimilation −0.1045 −0.0632 −0.0865 0.037 0.0362 −0.0545

MAE
(m3·m−3)

benchmark 0.0958 0.0842 0.1647 0.19 0.1998 0.1486
assimilation 0.1057 0.0639 0.0883 0.108 0.0916 0.0742

RMSE
(m3·m−3)

benchmark 0.04 0.03 0.07 0.06 0.06 0.05
assimilation 0.03 0.02 0.04 0.03 0.03 0.03

Eff (%) 9.31 43.68 66.67 63.17 74.17 72.34

Results showed that, in the wheat growing season, the improvement of data assimi-
lation was mainly demonstrated in the random error, while in the maize growing season,
the improvement was mainly demonstrated in the systematic error. Overall, the degree of
improvement increased from the top layer to the bottom layer.

3.3. Data Assimilation in Surface Flux Estimation

In this study, the estimated LE based on remote sensing using the SEBS model was used
as the observation operator in the data assimilation system. However, further verification
of data assimilation performance in the surface flux simulation is also needed. Since the
background error covariance estimation of the assimilation system is calculated by the
sampling error matrix consisting of model states. Therefore, using LE as an observation
operator in the assimilation system can only update the model states at observation time,
and the surface flux as the model output will be simulated at the next time step using
updated model states as the initial condition. Moreover, the assimilation procedure only
happens at remote sensing LE estimation is available, i.e., satellite over passing time on
clear days. In other words, using LE as an observation operator does not guarantee the
improvement of LE simulation results.

Figures 7 and 8 are the scatter plots of surface flux simulation compared with an
observation by benchmark run and data assimilation run during wheat and maize growing
season, respectively (error statistics see Table 6). In general, compared with the benchmark
run, four components of surface heat flux simulation in both wheat and maize season
performed better in various degrees. For the wheat growing season, after data assimilation,
the relative error of Rn, G, H, and LE simulation was substantially reduced to under
10 W·m−2, indicating the reduction of systematic error. Moreover, the discrete random
error was also reduced to a certain extent according to the RMSE and R2 statistics; the RMSE
of LE reduced from 54.03 to 32.80 W·m−2 after data assimilation. The simulated results
of surface heat flux in maize season over benchmark run were not as good as in wheat
season due to the higher canopy height [46], but after the data assimilation procedure, the
simulation results improved except for G, for which the Eff showed a negative value. The
RMSE of LE reduced from 119.78 to 67.44 W·m−2, and the R2 increased from 0.56 to 0.72.

Table 6. Error statistics of surface flux simulation.

Evaluation Criteria
Wheat Season Maize Season

Rn G H LE Rn G H LE

bias
(W·m−2)

benchmark −19.40 −5.46 −29.73 19.99 17.72 −5.44 −6.79 80.96
assimilation −3.81 −4.96 6.63 −2.04 −0.21 26.46 −28.43 33.86

RMSE
(W·m−2)

benchmark 30.05 57.81 71.07 54.03 26.03 40.53 51.62 119.78
assimilation 17.76 51.63 47.72 32.80 9.81 48.44 45.50 67.44

R2 benchmark 0.99 0.03 0.37 0.85 0.99 0.01 0.50 0.56
assimilation 1.00 0.20 0.53 0.94 1.00 0.27 0.59 0.72

Eff (%) 65.08 20.21 54.91 63.15 85.80 −42.79 22.32 68.30
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To further explore the performance of data assimilation results of surface heat flux,
Figures 9 and 10 showed the two-week continuous simulation results for Rn, G, H, and
LE from 1 March to 14 March in wheat season and 7 September to 20 September in maize
season, respectively. The assimilation curves of the four variables had different correction
effects compared with the benchmark run. For Rn, H, and LE simulation, the assimilation
curves were closer to the observed values than the simulation results, especially for the
peaks of the curve, because in the HELP model, the error accumulation of these three
variables is time-related, for example, the Rn at time step t is forced by state variables (Ta,
Ts, etc.) calculated at time t − 1, when the data assimilation occurred at t − 1, variables Ta
and Ts was updated by introducing the new observation which may lead to improvement or
deterioration of the results. On the contrary, the calculation of G is derived by an empirical
equation related only to Rn, which means it has weaker relations with the 13 updated state
variables. This may explain the bad performance of data assimilation of G.
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Overall, the verification results of data assimilation compared with observation val-
ues showed that updating the state variables of the HELP model could improve model
output during the next time steps by making a prediction using the updated states. Noted
that in our research, the update of state variables only happened when remote sensing
data are available to provide observation value at certain times during clear days, which
means by the time the model ran into the data assimilation procedure, the updated state
variables were treated as the initial states of the model to support the model running in
the following time steps until next available observation value. The results showed that
after updating, the improvement of model simulation would last for a certain time, which
proves the feasibility of this data assimilation scheme in improving the model performance
in practical application.

4. Discussion
4.1. Analysis of Ensemble Generation

The generation of the ensembles in the data assimilation scheme is a critical issue
in ensuring the effective update of state variables. In this study, instead of setting the
background covariance error matrix, we generated ensembles by adding random perturba-
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tions to the forcing data as described in Section 2.3.4. We assumed that model simulation
uncertainties will be embodied in the ensembles and will be correctly reflected in the
prediction of state variables and outputs. In this case, numerical modeling was tested to
make sure the random error setting to the forcing data was transmitted to the key variables
by model simulation.

Figure 11 shows the ensemble perturbation and its standard deviation (std) of SWCs
and LE from 100 ensembles (the time step set to 500). For each ensemble, the initial state
variables originated from the ground measurements. The std of SWC showed a wide variety,
ranging from 0.0053 to 0.0216 m3·m−3. The ensemble members were perturbed severely
when the precipitation event happened because extra random error from perturbation
of precipitation was introduced to the model. After precipitation, the ensembles of SWC
quickly converged to the previous level before precipitation. The ensemble of LE showed
a similar pattern as SWC, and the std ranged from 1.07 to 54.09 W·m−2. Different from
the SWC ensemble, the influence of precipitation on the LE ensemble lasted a longer time,
which reflected that SWC and LE had different response speeds to precipitation. Results
showed random noise added to the forcing data could be corrected and conducted to the
state variable and thus output value. The dispersion of the ensemble also showed different
sensitivity degrees to forcing data.

Remote Sens. 2022, 14, 3183 18 of 25 
 

 

uncertainties will be embodied in the ensembles and will be correctly reflected in the pre-
diction of state variables and outputs. In this case, numerical modeling was tested to make 
sure the random error setting to the forcing data was transmitted to the key variables by 
model simulation. 

Figure 11 shows the ensemble perturbation and its standard deviation (std) of SWCs 
and LE from 100 ensembles (the time step set to 500). For each ensemble, the initial state 
variables originated from the ground measurements. The std of SWC showed a wide va-
riety, ranging from 0.0053 to 0.0216 m3·m−3. The ensemble members were perturbed se-
verely when the precipitation event happened because extra random error from pertur-
bation of precipitation was introduced to the model. After precipitation, the ensembles of 
SWC quickly converged to the previous level before precipitation. The ensemble of LE 
showed a similar pattern as SWC, and the std ranged from 1.07 to 54.09 W·m−2. Different 
from the SWC ensemble, the influence of precipitation on the LE ensemble lasted a longer 
time, which reflected that SWC and LE had different response speeds to precipitation. 
Results showed random noise added to the forcing data could be corrected and conducted 
to the state variable and thus output value. The dispersion of the ensemble also showed 
different sensitivity degrees to forcing data. 

 
Figure 11. Ensemble perturbation and its std. 

Figure 12a,b are the scatter plots of benchmark run and ensemble mean for SWCs 
and LE, respectively. By the benchmark run, the HELP model ran freely without putting 
perturbation to the forcing data. In this case, the ensemble mean values of SWC and LE 
are supposed to approach the benchmark run, indicating the ensemble generation does 
not bring systematic error to the model simulation. The bias of SWCs of the ensemble mean 
compared with the benchmark run is 0.0019 m3·m−3, which can be treated as unbiased as 
a whole, but the time process curve (Figure 12c) showed that the ensemble mean value 
changed more intense than the benchmark run, especially when precipitation occurred 
(highlighted with a red square). This indicated that the model error of SWC might be 
magnified by adding random noise to the forcing data. However, for the LE variable, the 
ensemble mean value was well fitted with the benchmark run with an R2 of 0.999. How-
ever, a slight systematic error is reflected in the LE ensemble, with a bias of −0.0178 W·m−2, 
which is acceptable, though. Basically, the ensemble generation in this study is reasonable 
and correctly reflects the model error into the state variables and output. 

Figure 11. Ensemble perturbation and its std.

Figure 12a,b are the scatter plots of benchmark run and ensemble mean for SWCs
and LE, respectively. By the benchmark run, the HELP model ran freely without putting
perturbation to the forcing data. In this case, the ensemble mean values of SWC and LE are
supposed to approach the benchmark run, indicating the ensemble generation does not
bring systematic error to the model simulation. The bias of SWCs of the ensemble mean
compared with the benchmark run is 0.0019 m3·m−3, which can be treated as unbiased as
a whole, but the time process curve (Figure 12c) showed that the ensemble mean value
changed more intense than the benchmark run, especially when precipitation occurred
(highlighted with a red square). This indicated that the model error of SWC might be
magnified by adding random noise to the forcing data. However, for the LE variable, the
ensemble mean value was well fitted with the benchmark run with an R2 of 0.999. However,
a slight systematic error is reflected in the LE ensemble, with a bias of −0.0178 W·m−2,
which is acceptable, though. Basically, the ensemble generation in this study is reasonable
and correctly reflects the model error into the state variables and output.
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4.2. Dependency Analysis of State Variables

In the EnKF data assimilation scheme, forcing data, state variables, and output are
related by the Kalman gain matrix and observation operator. Theoretically, if the three
components have a relatively low correlation, the effect of data assimilation may not be
significant. Tables 7 and 8 showed the correlation coefficient of HELP model state variables
and surface flux in wheat and maize season, respectively. Benchmark run results were
used in this analysis to make sure the correlation of state variables was correctly reflected
through the model. The SWC of three layers had a high correlation coefficient, and LE had
a relatively high correlation coefficient with SWC, which approved the positive effect of
data assimilation of SWC using LE as an observation operator. Compared with the wheat
season, the correlation coefficient of LE and SWC in the maize season was higher, which
indicated the results in Section 3.2 that for SWC estimation, the maize season had better
performance than the wheat season.

For both wheat season and maize season, LE had the highest correlation with all the
state variables and surface flux, which proved that using remote sensing LE estimation as an
observation operator was reasonable and feasible. The results also showed that other than
LE, Ts also had a relatively higher correlation coefficient with surface flux. The correlation
coefficient of Ts and LE in wheat and maize season are 0.63 and 0.66, respectively. Figure 13
is the scatter plot of Ts simulation compared with an observation by benchmark run, and
data assimilation ran during wheat and maize season, respectively. Results showed data
assimilation procedure had a larger effect on Ts simulation compared with SWC. In the
wheat season, the benchmark run had obvious systematic error compared with observation;
after data assimilation, the bias reduced to −1.074 ◦C, RMSE reduced to 1.786 ◦C, and the
Eff of data assimilation was 94.8%, and R2 increased from 0.661 to 0.955. In maize season,
the benchmark run had better results, but after data assimilation, the random error also
reduced to a large extent, with an Eff of 73.0%, R2 increased from 0.943 to 0.968, and RMSE
reduced from 2.473 to 1.286 ◦C. Results showed the assimilation using LE as an observation
operator had an obvious effect in improving the simulation Ts as expected.
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Table 7. Correlation coefficient of HELP model state variables and surface flux in wheat season.

SWCs SWCr SWCd Ts Rn G H LE

SWCs 1 0.94 0.81 0.03 −0.10 −0.05 0.16 0.23
SWCr 0.94 1 0.95 0.08 −0.08 −0.03 0.14 0.19
SWCd 0.81 0.95 1 0.10 −0.09 −0.02 0.12 0.19

Ts 0.03 0.08 0.10 1 0.66 0.88 0.69 0.63
Rn −0.10 −0.08 −0.09 0.66 1 0.71 0.73 0.89
G −0.05 −0.03 −0.02 0.88 0.71 1 0.59 0.64
H 0.16 0.14 0.12 0.69 0.73 0.59 1 0.41
LE 0.23 0.19 0.19 0.63 0.89 0.64 0.41 1

Table 8. Correlation coefficient of HELP model state variables and surface flux in maize season.

SWCs SWCr SWCd Ts Rn G H LE

SWCs 1 0.99 0.83 0.19 0.02 −0.14 0.02 0.41
SWCr 0.99 1 0.86 0.21 0.02 −0.14 0.01 0.41
SWCd 0.83 0.86 1 0.37 0.03 −0.09 −0.07 0.37

Ts 0.19 0.21 0.37 1 0.66 0.85 0.39 0.66
Rn 0.02 0.02 0.03 0.66 1 0.77 0.87 0.84
G −0.14 −0.14 −0.09 0.85 0.77 1 0.81 0.60
H 0.02 0.01 −0.07 0.39 0.87 0.81 1 0.54
LE 0.41 0.41 0.37 0.66 0.84 0.60 0.54 1
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Figure 14a,b showed the two-week continuous simulation results for Ts from 1 March
to 14 March in wheat season and 7 September to 20 September in maize season, respectively.
Results showed the data assimilation improved the Ts simulation, especially for errors in
the peaks of the curve. However, despite the data assimilation having overall great perfor-
mance, it did not improve the simulation for every single day. For example, on 4 March
and 10 September, after data assimilation, the error of simulation increased compared with
the benchmark run, which is due to the complexity of the mechanism in the energy transfer
process and simplification in the model structure.
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4.3. Limitations and Future Works

In this study, the data assimilation method was used to simulate SWC and surface
fluxes continuously, which was verified in the Weishan Irrigation District. However, there
is some experience in this method, such as the occurrence time of the maximum Ta was
determined by the method of fitting ground observations. In addition, this method was
only validated under wheat and maize crop types in the Weishan Irrigation District. The
extension of the model also requires ground verification in different climate zones and
underlying surface types. At the same time, the applicable conditions and limitations of
the model should be analyzed, and the parameter values of the model under different
underlying surfaces should be modified and improved.

In addition, this study only conducted a simulation for one year. As the underlying
surface is relatively uniform, parameterization schemes for different underlying surfaces
are also relatively simple. In the process of SWC assimilation simulation, integration appli-
cation with existing SWC products such as SMAP, CLDAS, and SMOS was not considered.
At present, SWC fusion is a hot topic, and the existing SWC products have the advantage of
high temporal resolution. In the future, it is necessary to further refine the parameterization
scheme of the model for different underlying surface types. In order to provide a reference
for regional water resources management, a long-term series of SWC and surface fluxes
simulations was carried out by integrating existing SWC products. This study proved
that using remote sensing observations as data assimilation can effectively improve the
continuous simulation of SWC and surface flux in land surface process models. In this
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study, only one remote sensing data source was used to analyze data assimilation results.
In the following research, multi-objective data assimilation of multi-source remote sensing
data should also be considered. Remote sensing rainfall and SWC should be introduced
into the data assimilation system for multi-objective data assimilation.

5. Conclusions

Land surface flux and SWC are the important parameters of the hydrological cycle and
play an important role in the exchange of matter and energy between different components
in the earth system. At present, there are many methods or studies on theoretical calcula-
tion, remote sensing estimation, and model simulation of the above parameters, but the
observation error and model error exist inevitably, and sometimes the error is even larger.
How to reduce these errors and improve the accuracy of the model or calculation results is
the main issue to be answered in this research. It is of great significance to promote hydrol-
ogy research and development. In this study, an EnKF technique was coupled to a HELP
model to update model states, including SWC and Ts. The remotely sensed LE estimated
by SEBS was used as the observation value in the data assimilation system to update the
model states such as SWC and Ts, etc. The model was validated by the observation data in
2006 at the Weishan flux station, where the open-loop estimation without state updating
was treated as the benchmark run. The main conclusions are given as follows:

1. A land surface data assimilation system was built to the HELP model by the EnKF
technique. The remotely sensed LE estimated by the remotely sensed SEBS model
was used as the observation value in the data assimilation system.

2. The model was validated by the observation data in 2006 at the Weishan flux station,
where the open-loop estimation without state updating was treated as the benchmark run.

3. The RMSE of SWC reduced by 30~50% compared to the benchmark run, while the
surface fluxes also had significant improvement to different extents, among which the
RMSE of LE estimation from the wheat season and maize season reduced by 33% and
44%, respectively.

4. The data assimilation system has great potential to be used in land surface models in
agriculture and water management.
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