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Abstract: As the influence of extreme climate and human engineering activities intensifies, land
subsidence frequently occurs in the Salt Lake area of Qinghai Province, China, which seriously threat-
ens the stability of the UHV transmission line crossing the area. Current susceptibility analyses of
land subsidence disasters have mostly focused on the classification of land subsidence susceptibility
and have ignored the differentiation of susceptibility among different land subsidence intensities.
Therefore, the land subsidence susceptibility map does not meet the operation and maintenance
management needs of the UHV transmission line, let alone planning and designing of new lines
in the Salt Lake area. Therefore, in this study, we proposed a susceptibility analysis of different
land subsidence intensities along the transmission line in the Salt Lake area. The small baseline
integrated aperture radar interferometry (SBAS-InSAR) method was used to obtain the land subsi-
dence along the transmission line based on 67 Sentinel-1 remote sensing interpretation datasets from
2017 to 2021. Based on a combination of K-means clustering and the transmission line specifications,
four annual land subsidence intensity grades were identified as 0~−2 mm/year, −2~−10 mm/year,
−10~−20 mm/year, and <−20 mm/year. In addition, eight geological environmental factors were
analyzed, and a multi-layer perceptron neural network (MLPNN) model was used to calculate the sus-
ceptibility of the different land subsidence intensities. The area under the curve (AUC) and practical
examples were used to verify the reliability of the different land subsidence intensities susceptibility
mapping. The AUC values of the four subsidence intensity grades showed that the results were
accurate: the <−20 mm/year grade produced the largest AUC (0.951), with the −10~−20 mm/year,
−2~−10 mm/year and 0~−2 mm/year grades producing AUCs of 0.926, 0.812, 0.879, respectively.
At the same time, the susceptibility classification results of different land subsidence intensities were
consistent with the interpretation and site tower deformation. The results of this study provided the
distribution of land subsidence susceptibility along the transmission line, distinguished the suscepti-
bility of different land subsidence intensities, and provided more detailed subsidence information
for each transmission tower. The results provide important information for transmission line tower
planning, design, protection, and operation management.

Keywords: Salt Lake area; transmission line; remote sensing interpretation; multilayer perceptron
neural network; the susceptibility of different land subsidence intensities

1. Introduction

With the rapid development of the western part of China and the “One Belt One
Road” strategy, a 750 kV transmission line in the Qaidam Basin of Qinghai Province shoul-
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ders the responsibility for western energy transportation. When transmission lines pass
through a complex geological environment, the relationship between tower deformation
and surrounding environmental factors must be considered, including the unique geolog-
ical conditions in the Salt Lake area [1,2]. However, due to climate change and human
engineering activities, saline soil is prone to collapse as a bearing layer [3]. Thus, some
transmission towers constructed in the Salt Lake area are threatened by different grades
of land subsidence intensities, and some have already failed [2,4]. Land subsidence is a
gradual deformation or sudden collapse of the Earth’s surface caused by numerous natural
and human-induced factors [5–7], which seriously threaten the stability of infrastructure,
power lines, and buildings [8–11]. Due to the wide distribution of saline soil along the
UHV transmission line in the Salt Lake area, the soil is prone to uplifting and collapsing
deformation under the action of external factors [12], and the resulting land subsidence
seriously threatens the safety and stability of the transmission line towers. The operation
of these transmission towers faces significant challenges [2,13]. Therefore, to monitor
and avoid failure of the UHV transmission towers in this specific area and to guide the
planning, design, protection, and operations management of new transmission towers, it is
important to determine the land subsidence distribution and intensities along the UHV
transmission line.

UHV transmission lines usually traverse long distances. As compared with the tra-
ditional geodetic and GPS measurement methods [14,15], the satellite-based synthetic
aperture radar (SAR) monitoring method can meet the accuracy of the surface deformation
monitoring demand along the lines and also has a broader coverage area and higher cost
benefits [16–18]. A long-term InSAR method is usually used to obtain the time-series analy-
sis results by interpreting the permanent scatterers in the InSAR datasets [19]. The long-term
InSAR time-series method has been widely used to analyze the deformation and displace-
ment of geological calamities, such as landslides [20–22] and land subsidence [23–27].
Because saline soil is widely distributed in the study area, the deformation of saline soil,
such as salt swelling and collapsibility, may lead to the destruction of soil structure [28,29].
Therefore, monitoring the deformation and failure of transmission towers caused by the
saline soil is necessary [2]. Land subsidence along UHV transmission lines can be quickly
and effectively obtained by using the more accurate SBAS-InSAR method and Sentinel-1
datasets from ESA [30–32]. Due to the different geological environments of UHV transmis-
sion lines, the intensities of the land subsidence are different along the lines [33]. Different
intensities of land subsidence have required different disaster prevention plans [34,35].
To date, some studies have been carried out to obtain land subsidence intensities and
subsidence intensity classification based on some specific research areas [34,36], and some
Chinese specifications [37–39] have also suggested the threshold of land subsidence in
the power sector, however, these specifications do not apply to the classification of land
subsidence intensities of transmission line towers in the Salt Lake area. In addition, the
intensity classification method and standards of those land subsidence intensities were
not united, and therefore, the classification results have not contributed to susceptibility
mapping. At present, there are different classification methods in the classification of land
subsidence intensity. Some are classified according to different economic distributions in
the study area, and others are classified according to the intensity and clustering of land
subsidence [34,35]. In the classification of land subsidence intensity and clustering, due
to K-means method can cluster and analyze the data, which is extensively applied in the
analysis of the land subsidence results by remote sensing interpretation [40]. In Jixi, China,
the K-means method was used to class the evaluation results of remote sensing images and
then distinguish the land subsidence intensity [41]. In Chapai Nawabgonj, Bangladesh, the
K-means method was applied to better understand the subsidence rate in the area after
using the Sentinel-1 satellite to obtain surface deformation data [42]. However, the use of
the K-means method above mostly stays in the distribution of land subsidence intensity,
and there is still a lack of further research on different land subsidence intensity grades.
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The machine learning algorithm provides a fast and accurate method for land subsi-
dence susceptibility mapping [43–46]. Artificial neural network [47], decision tree [48], ran-
dom forest [49], support vector machine [50], and other machine learning methods [51,52]
have been widely used and have achieved excellent evaluation results. MLPNN, as a
machine learning algorithm with excellent performance, is widely used in the study of
land subsidence susceptibility, such as Jakarta, Seoul, etc. [8,47,50]. At the same time, in the
Qarhan Salt Lake area of China, the results of land subsidence susceptibility were obtained
by combining the remote sensing interpretation with the machine learning algorithm and
found that the MLPNN is more suitable for the modeling of land subsidence susceptibility
in the Salt Lake area [53]. According to the above research, the susceptibility modeling of
land subsidence mainly focuses on subsidence, but the susceptibility modeling of different
land subsidence intensities has not been considered.

In this study, we used the Sentinel-1 satellite datasets and the SBAS-InSAR meth-od to
obtain the ground deformation along the UHV transmission line that crosses the Qarhan
Salt Lake area in Qinghai Province, China. The deformation time-series diagram of a
typical transmission tower was generated according to the vertical deformation. Based
on the relevant specifications of electric power and the K-means clustering method, the
land subsidence intensities along the UHV transmission line were classified. Then, the land
subsidence susceptibility map for different land subsidence intensities was generated using
the training and test datasets divided by the MLPNN. The receiver operating characteristic
(ROC) and area under the curve (AUC) were used to evaluate the performance of the
model and the reliability of the land subsidence susceptibility mapping. By using K-means
clustering to distinguish the interpretation results of different intensities and susceptibility
mapping, we proposed a new method for the study of land subsidence. At the same
time, by combining remote sensing interpretation, the K-means clustering method, and a
machine learning algorithm, in this study, we obtained the distribution of land subsidence
susceptibility along the transmission line, distinguished the susceptibility of different
land subsidence intensities, and provided more detailed subsidence information for each
transmission tower. The results enhance the understanding of varying land subsidence
intensity prone areas and provide important information for transmission line tower
planning, design, protection, and operations management.

2. Materials and Methods
2.1. Study Areas

In this study, the UHV transmission line studied traverses the Qarhan Salt Lake
area in Qinghai Province, China, from north to south. The total length of the line is
about 170 km, and nearly half of the line towers are located in the central Qarhan Salt
Lake area. The Qarhan Salt Lake is located in the center of the southern Qaidam Basin
of northwestern China. Because the lake develops at the lowest point, it gathers water
throughout the basin, leading to the deposition of thick lacustrine and fluvial sediments [54].
The Qilian Mountains are located in the northeast of Salt Lake, and the Kunlun Mountains
are located in the south. Affected by high mountain snowmelt, the seasonal rivers along
the transmission line are widely developed. The UHV transmission line is located in
the plateau desert climate, and the weather is dry and rainless all year. According to
data from the city of Golmud near the transmission line, the average precipitation is only
43 mm/year, and the potential evaporation capacity is as high as 2430 mm/year [55].
Under the effect of strong evaporation, the mineral salt crystals in the Qarhan Salt Lake
precipitate to form an arid saline mudflat [33]. To facilitate transportation, the Qinghai–
Tibet Railway and highway cross the dry salt mud beach in the middle of the Salt Lake
area. Quaternary sediments are widely distributed along the UHV transmission line. The
quaternary chemical sediments in the Salt Lake area pro-vide abundant material sources to
exploit mineral salts [56]. However, the continuous mining of mineral salt has caused the
water level of the underground aquifer to decline, resulting in changes in the stress of the
upper salt layer and causing ground deformation [33].
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According to the field survey results, most of the transmission towers across the Salt
Lake area have been deformed. The most severe deformation tower is shown in Figure 1b.

Figure 1. The geographical environment, SAR images coverage, transportation system, and de-
formed tower in the study area. (a) the study area is outlined by a grey ribbon, (b) Salt Lake range,
(c) deformed tower.

2.2. SAR Datasets

The land subsidence results along the transmission line were obtained from Sentinel-
1A SAR C-band data provided by the European Space Agency (ESA) (Supplementary
Materials: Sentinel-1 Satellite Dataset). Sentinel-1A has an acquisition cycle of 12 days.
The SAR images can be interpreted to map the surface deformation over a large area, and
the ground deformation in different periods can be obtained simultaneously. This study
collected 67 SAR scenes from April 2017 to May 2021, which are listed in Table 1. The
reference datasets with zero delta day and zero perpendicular baselines from the ascending
track, on 23 April 2018 as the reference date, are shown in bold text.

2.3. Land Subsidence Eveluation Index

According to a survey of the geological calamity along the UHV transmission line,
the main influencing factors of land subsidence in the Salt Lake area include hydrogeol-
ogy, human activities, engineering geological characteristics of saline soil, and external
environmental factors [8,33,51,52,57–61]. Eight conditioning factors were considered for
the analysis, including topography, geology, hydrology, and human engineering activities.
After obtaining various conditioning factors, they were standardized and resampled into
raster datasets with 40 m cell size. The classification scheme for each conditioning factor is
shown in Table 2.
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Table 1. The reference date shown in bold text shows the acquisition dates of data from the
Sentinel-1 satellite in descending tracks. Delta days = number of days between each acquisition
date. B⊥ = perpendicular baseline.

No.
Acquisition

Date
(yyyy/mm/dd)

Days B⊥(m) No.
Acquisition

Date
(yyyy/mm/dd)

Days B⊥(m) No.
Acquisition

Date
(yyyy/mm/dd)

Days B⊥(m)

1 2017/4/28 −360 73 24 2018/7/4 72 83 47 2019/9/21 516 −55
2 2017/5/22 −336 27 25 2018/7/16 84 32 48 2019/10/15 540 90
3 2017/6/15 −312 12 26 2018/7/28 96 75 49 2019/11/20 576 −41
4 2017/7/21 −276 63 27 2018/8/9 108 71 50 2019/12/26 612 95
5 2017/8/26 −240 12 28 2018/8/21 120 −10 51 2020/1/7 624 88
6 2017/9/19 −216 46 29 2018/9/2 132 −78 52 2020/2/12 660 23
7 2017/10/25 −180 −40 30 2018/9/14 144 14 53 2020/3/7 684 21
8 2017/11/30 −144 75 31 2018/9/26 156 59 54 2020/4/12 720 −30
9 2017/12/24 −120 81 32 2018/10/8 168 89 55 2020/5/6 744 99

10 2018/1/5 −108 78 33 2018/10/20 180 −3 56 2020/6/11 780 23
11 2018/1/17 −96 95 34 2018/11/1 192 −35 57 2020/7/5 804 123
12 2018/1/29 −84 97 35 2018/11/13 204 7 58 2020/8/10 840 −65
13 2018/2/10 −72 19 36 2018/11/25 216 96 59 2020/9/3 864 91
14 2018/2/22 −60 8 37 2018/12/7 228 61 60 2020/10/9 900 −118
15 2018/3/6 −48 19 38 2018/12/31 252 27 61 2020/11/2 924 71
16 2018/3/18 −36 69 39 2019/1/12 264 9 62 2020/12/8 960 −6
17 2018/3/30 −24 72 40 2019/2/17 300 70 63 2021/1/1 984 54
18 2018/4/23 0 0 41 2019/3/13 324 −19 64 2021/2/6 1020 39
19 2018/5/5 12 37 42 2019/4/6 348 23 65 2021/3/14 1056 55
20 2018/5/17 24 37 43 2019/5/12 384 −9 66 2021/4/7 1080 26
21 2018/5/29 36 48 44 2019/6/17 420 95 67 2021/5/1 1104 99
22 2018/6/10 48 8 45 2019/7/11 444 18
23 2018/6/22 60 7 46 2019/8/16 480 34

Table 2. Land subsidence factors and sources along transmission lines in the Salt Lake area.

Category Factor Source Data Form Data Scale

Topography
Slop DEM SRTM from the Geospatial Data Cloud platform Raster 30 m

Plan curvature DEM SRTM from the Geospatial Data Cloud platform Raster 30 m
Profile curvature DEM SRTM from the Geospatial Data Cloud platform Raster 30 m

Geology Lithology National Geological Archives of China Vector 1:50,000

Hydrology Distance to River Geospatial Data Cloud platform Vector 1:100,000
Topographic Wetness Index (TWI) DEM SRTM from the Geospatial Data Cloud platform Raster 30 m

Human engineering activity Distance to Road Geospatial Data Cloud platform Vector 1:100,000

Land use Institute of Tibetan Plateau Research, Chinese Academy
of Sciences Raster 30 m

In this study, we extracted topography datasets from the SRTM DEM from the
Geospatial Data Cloud platform, slope, plan curvature, profile curvature, and TWI by
GIS (Figure 2a–c,f). The slope affects water flow velocity; the plan curvature reflects the
directional variations along a curve [62]; the profile curvature represents the amount of
elevation variation along the flow path [63]; and the TWI defines the degree of water
deposition at a specific site [64], which all significantly influence the flow direction and
accumulation of surface water, indirectly leading to land subsidence [45,51,52,65].

Lithology provides internal development conditions for the occurrence of various
geological disasters and makes a vital contribution to the development of land subsidence.
According to the National Geological Archives of China’s 1:250,000 geological maps of
the study area, the Quaternary sediments along the UHV transmission line are widely
distributed, and the Quaternary chemical sediments are the most exposed (Figure 2d).

Surface water and groundwater in the study area mainly originate from precipitation
and snowmelt in the mountainous areas (Figure 2e) [66]. Therefore, the surface rivers and
groundwater levels show a seasonal change trend, which may affect salty soil stability and
increase the possibility of land subsidence [33].



Remote Sens. 2022, 14, 3229 6 of 21

Figure 2. Land subsidence conditioning factors: (a) slope; (b) plane curvature; (c) profile curvature;
(d) lithology (I Aeolian deposits, II Hard rock, III Chemical deposits, IV Lake sediment, V Flood
deposits, VI Marsh sediment, VII Extremely hard rock, VIII Alluvial deposits); (e) distance to rivers;
(f) topographic wetness index (TWI); (g) distance to roads; (h) land use.

The Qinghai–Tibet Railway and highway cross the Salt Lake area, coupled with dense
transport corridors near the saltern area (Figure 2g). Therefore, vehicle loads frequently
change soil structure stability and cause foundation instability [12]. The land-use map
(Figure 2h) was obtained from the Institute of Tibetan Plateau Research at the Chinese
Academy of Sciences. From the map, we can see that most land use is bare, and the saltern
area is located in the center of the UHV transmission line.

2.4. Methodology

The workflow of the MLPNN to generate the susceptibility map of different land
subsidence intensities along the UHV transmission line is shown in Figure 3. The methods
are summarized as follows:
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Figure 3. The study workflow.

1. Land subsidence database.

Land subsidence occurrences were identified by exploiting Sentinel-1 SAR datasets
from 2017 to 2021 using time-series InSAR based on the SBAS-InSAR method. The persistent
scatterer points showing a deformation value were used as the land subsidence inventory
map. After obtaining the land subsidence inventory map, the K-means clustering method
was used to divide the land subsidence inventory map into different land subsidence
intensities. Then, the land subsidence susceptibility model randomly divided the vertical
deformation subsidence points with different land subsidence intensities into 70% training
data. The land subsidence susceptibility map was verified by using 30% of the test data.

2. Geographic information system.

Aimed at the characteristics of the study area and selected the influencing factors
of land subsidence. Then, the frequency ratio method was used to analyze the condi-
tioning factors and identify the correlations among various factors and different land
subsidence intensities.

3. Land subsidence intensity susceptibility map and validation.

MLPNN was used to generate the land subsidence susceptibility map with different
land subsidence intensities, and the ROC curves were used for validation after generating
the land subsidence susceptibility map under different land subsidence intensities.

2.5. Time-Series InSAR Process

The UHV transmission line is located in the arid and saline desert area of the Qarhan
Basin, China. Vegetation cover along the lines is sparse, primarily bare sandy or saline
soil, and therefore, as compared with most areas in China, the interference coherence is
relatively high in a short time. Under a limited time-series baseline condition, high-quality
interference pairs can be obtained, and then a tiny baseline grid with high interference
coherence can be formed [33]. To obtain more accurate land subsidence intensities along
the transmission line, in this study, we adopted the SBAS-InSAR method to make use
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of coherent targets (CTs) with high coherence. We used weighted least squares (WLS)
estimation to obtain the high precision time-series deformation results of the CTs [54,55].
In the process of SBAS-InSAR, one of the N+1 SAR images was selected as the primary
image of registration at first, and M interferograms that meet the spatiotemporal baseline
threshold were selected. The interference phase of each interferogram is composed of
multiple phase components, as follows:

δϕx,α = ϕx,α(tB)− ϕx,α(tA) ≈ δϕx,α
de f + δϕx,α

topo + δϕx,α
atm + δϕx,α

noise (1)

where ϕx,α(tB) and ϕx,α(tA) represent phase values of SAR images at tA and tB, respectively;
δϕx,α

de f refers to the deformation phase between times tA and tB; δϕx,α
topo corresponds to

the residual phase due to inaccuracies in reference DEM. δϕx,α
atm depicts the atmospheric

phase error; δϕx,α
noise denotes the random noise phases.

The deformation velocity (dLOS) of different SAR acquisition times can be obtained
by 3D Spatiotemporal phase unwrapping of M interferograms. In this study, we mainly
considered the deformation of transmission towers caused by the vertical deformation
of the ground. Assuming that the horizontal deformation is small relative to the vertical
deformation caused by land subsidence, the deformation map obtained from the line of
sight (LOS) displacement can be converted into the vertical deformation data [56–59].

dV =
dLOS
cos θ

(2)

where dV represents the vertical deformation, dLOS represents the deformation from the
line of sight, and θ is the cosine of the incident angle from the radar signal.

2.6. Land Subsidence Intensity Classification Based on the K-Means Method

The K-means method divides the data into several homogeneous clusters with similar
features, initializes the center of the K-cluster by random search in each iteration, and then
measures the distance between the data point (xij) and the center (cj). By minimizing the
objective function specified by Equation (1), cluster k is assigned to the data point xij [60].

Minimize : d =
k

∑
j=1

.
k

∑
i=1

.‖xij − cj
2‖ (3)

2.7. FR Correlation Analysis

The frequency ratio (FR) method was used to analyze the spatial correlation of land sub-
sidence conditioning factors with different land subsidence intensities [52]. Combined with
the above deformation distribution of the towers, −10~−20 mm/year, −2~−10 mm/year
and <−20 mm/year were the primary analysis objectives.

FR =
Area ratio o f land subsidence velocity
area ratio o f class conditioning f actor

(4)

The FR index represents the importance of conditioning factors associated with the
occurrence of different land subsidence intensities. An FR value of >1 indicates that the
conditioning factor is conducive to the event of this intensity of land subsidence intensities.
An FR value of <1 indicates that the conditioning factor is not conducive to this intensity of
land subsidence intensities [67,68].

2.8. Multi-Layer Perceptron Neural Network

The multi-layer perceptron neural network model (MLPNN) is a forward-oriented
layered structure. It mainly comprises the input layer, the output layer, and the hidden
layer (Figure 4) [69]. It maps the input data to the output through training and learning,
thus forming the MLPNN model. Finally, the neural network establishes the most suitable
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fitting model according to the input sample data, and the parameters are set to ensure that
this model can be applied to other similar data.

Figure 4. MLPNN structure.

In this study, according to the above classification of different land subsidence in-
tensities along the UHV transmission line, when the land subsidence intensity value of a
certain grade was set to 1 for analysis, the residual intensity value was set to 0. Finally, the
whole model dataset was randomly separated into the training dataset (70%) and the test
dataset (30%). The modeling process was implemented using the SPSS Modeler software
(Machines Corporation, Armonk, NY, USA).

3. Results
3.1. Land Subsidence Map of SBAS-InSAR

According to the SBAS-InSAR method, we obtained the results of deformation velocity
in the study area, as shown in Figure 5a. The land subsidence along the UHV transmission
line mainly occurs in the central Salt Lake area. This is consistent with the actual distribution
of transmission tower deformation and failure. The remaining land subsidence areas mainly
occur near rivers and lakes, which may be related to seasonal alpine snowmelt.

Figure 5. (a) Average vertical deformation map along UHV transmission line; (b–d) zoom-
in of vertical deformation map of typical transmission towers; (e–g) field deformation of the
transmission tower.
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To analyze the time-series deformation of the UHV transmission line towers, the
average vertical deformation maps of damaged transmission line towers, including No.
98, No. 99, No. 107, No. 108, No. 109, No. 110, No. 111, and No. 121, are overlaid,
as shown in Figure 5b–d. From Figure 5b–d, it can be seen that the towers that have
undergone deformation and failure are located in the serious deformation areas along the
whole transmission line. According to the field survey in Figure 5e–g, it can be seen that
the towers’ structures and foundations are deformed to varying grades, which indicates
that our interpretation results are effective.

3.2. Deformation of Transmission Lines and Typical Towers

The foundation size of the transmission tower in the study area is about 15 × 15 m.
During the data processing, the raster cell was converted to 40 × 40 m. To reduce the
transmission tower displacement error caused by a single raster cell, we buffered the tower
center by 30 m, as shown in Figure 6a. Then, we averaged the values within the range
to obtain the transmission tower vertical deformation velocity and the line deformation,
as shown in Figure 6b. According to the land subsidence along the line, the transmission
towers’ most serious land subsidence area is mainly in the central Salt Lake area, which is
consistent with the field deformation.

Figure 6. (a) Tower buffer 30 m. (b) Vertical deformation velocity (mm/year) along transmission lines.

In order to further analyze the time-series deformation of the tower, No. 98, 99, 107,
108, 109, 110, 111, 121 was selected. The deformation results were described in Table 3.

Table 3. Typical tower vertical deformation results.

Tower Number Cumulative Vertical
Deformation (mm)

Average Vertical Deformation
Velocity (mm/Year) Location

98 −29 −7 Figure 7a

99 −34 −8 Figure 7a

107 −41 −10 Figure 7b

108 −37 −10 Figure 7b

109 −44 −11 Figure 7c

110 −60 −15 Figure 7c

111 −50 −13 Figure 7d

121 −55 −13 Figure 7d
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Figure 7. (a) Vertical deformation time-series at No. 98–99, (b) No. 107–108, (c) No. 109–110, and
(d) No. 111–121.

From Figure 7a–d, it can be seen that most of the ground vertical deformation maps
of transmission towers are linear. This may be related to the continuous exploitation of
underground brine in the area. Some transmission towers show certain volatility in vertical
displacement, which may be associated with the expansion of mineral salt, precipitation,
and human disturbance.

3.3. K-Means Land Subsidence Intensity Classification

Since the UHV transmission line is distributed in the central and northern parts of the
Salt Lake area, during the local industrial production of mineral salt activities, irregular
exploitation of underground brine for drying causes significant changes in surface water.
This causes the persistent scatterer density of SAR data to be relatively low. Therefore, to
overcome this limitation and to study the land subsidence along the UHV transmission
line more comprehensively, we used the Kriging interpolation in GIS tools to construct the
persistent scatterer density point interpolation. The land subsidence information of the
whole study area is shown in Figure 8a.
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Figure 8. (a) Kriging interpolation is carried out from the vertical deformation map to obtain the
deformation map of the whole area; (b) the distribution of different land subsidence intensities.

In this study, according to the land subsidence along the transmission line and the
field investigation results, the towers with positive deformation velocity points were not
considered and removed. The remaining towers were clustered, and three clustering centers
were obtained: −1.98, −10.13, and −18.09. Combined with the relevant specifications of
electric power [37–39], the land subsidence intensities are divided into four grades, as
shown in Figure 8b.

3.4. FR

In Table 4, we mark FR values >1 in bold. At the slope grade >20◦, the maximum FR
value of −2~−10 mm/year is 2.9217. This may relate to the mountain deformation caused
by freeze–thaw erosion, rain erosion, wind erosion, etc. The FR value of three intensities is
greater than 2 in the chemical sediments category, indicating that the area is closely related
to land subsidence. In the lake sediments category, the FR value at the <−20 mm/year
grade reaches the maximum of 9.2528, indicating that the area is prone to large ground
deformation. In the class of land-use map, the FR values of land subsidence in the saltern
area are more considerable, and the maximum value at the <−20 mm/year grade is 7.6803,
indicating that mining mineral salt in this area may produce large land subsidence.

3.5. Land Subsidence Susceptibility Map

To evaluate the susceptibility of different land subsidence intensities along the UHV
transmission line, we used the different land subsidence intensities as the data source,
which were divided by the K-means method. Then, the susceptibility map of different
land subsidence intensities through the MLPNN was produced using the selected eight
land subsidence conditioning factors. The susceptibility map of different land subsidence
intensities is divided into extremely low, low, medium, high, and very high susceptibility
by using the quantile classification method [51,61].
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Table 4. Relationship between different land subsidence intensities and conditioning factors using
frequency ratio (FR) model.

Conditioning
Factor

Class/
Category

Ratio Each
Class

Grade of
−2~−10mm/Year

Ratio of
Occurrence

Grade of
−10~−20mm/Year

Ratio of
Occurrence

Grade of
<−20mm/Year

Ratio of
Occurrence

Grade
of−2~−10
mm/Year

FR

Grade
of−10~−20

mm/Year
FR

Grade
of<−20

mm/Year
FR

Slope (degree)
0~5 0.7774 0.6881 0.8438 0.8716 0.8852 1.0854 1.1212
5~20 0.1979 0.2396 0.1425 0.1133 1.2109 0.7203 0.5727
>20 0.0247 0.0722 0.0134 0.0151 2.9217 0.5543 0.6098

Profile
curvature

−0.2 0.0770 0.1050 0.0836 0.0825 1.3647 1.0871 1.0725
−0.2~0 0.5006 0.4615 0.5184 0.5325 0.9219 1.0356 1.0637
0~0.2 0.3461 0.3293 0.3282 0.3259 0.9513 0.9483 0.9414
>0.2 0.0763 0.1042 0.0697 0.0591 0.3655 0.9129 0.7746

Plan curvature

<−1 0.0694 0.0901 0.0716 0.0714 1.2992 1.0312 1.0283
−1~0.01 0.5646 0.5215 0.5960 0.6054 0.9237 1.0554 1.0722
0.01~0.02 0.2944 0.2870 0.2721 0.2653 0.9746 0.9240 0.9011

>0.02 0.0716 0.1013 0.0604 0.0580 1.4160 0.8450 0.8097

Lithology map

Chemical
deposits 0.2442 0.5428 0.6927 0.5234 2.2225 2.8363 2.1433

Marsh
sediment 0.0864 0.0191 0.0304 0.0437 0.2211 0.3521 0.5059

Lake
sediments 0.0336 0.0386 0.1600 0.3108 1.1479 4.7637 9.2528

Flood
deposits 0.2242 0.0635 0.0734 0.1108 0.2834 0.3276 0.4944

Alluvial
deposits 0.1218 0.1108 0.0386 0.0102 0.9098 0.3169 0.8369

aeolian
deposits 0.0469 0.0110 0.0048 0.0010 0.2352 0.1028 0.0214

Extremely
hard rock 0.1927 0.0783 0 0 0.4060 0 0

hard rock 0.0501 0.1359 0 0 2.7146 0 0

Distance to
river map (m)

0~300 0.0430 0.0389 0.0895 0.0841 0.9054 2.0806 1.9561
300~600 0.0407 0.0289 0.0780 0.0818 0.7009 1.9181 2.0122
600~900 0.0702 0.0424 0.1065 0.1275 0.6048 1.5170 1.8171

>900 0.8641 0.8897 0.7260 0.7065 1.0515 0.8581 0.8350

TWI

<6 0.1687 0.2157 0.0930 0.0694 1.2788 0.5507 0.4112
6~13 0.4323 0.3843 0.3974 0.4016 0.8890 0.9194 0.9290

13~25 0.1364 0.1187 0.1381 0.1454 0.8703 1.0119 1.0660
>25 0.2626 0.2813 0.3716 0.3836 1.0711 1.4151 1.4608

Distance to
road map (m)

0~400 0.1547 0.6080 0.2163 0.1606 3.9294 1.3980 1.0380
400~800 0.1295 0.1715 0.1437 0.1771 1.3240 1.1095 1.3671
800~1200 0.1157 0.1116 0.1265 0.1241 0.9646 1.0932 1.0727

>1200 0.6003 0.1090 0.5135 0.5382 0.1814 0.8554 0.8966

Land-use map

Residential 0.0288 0.0248 0.0272 0.0288 0.8602 0.9465 0.9995
Vegetation 0.1115 0.0852 0.1816 0.2465 0.7641 1.6286 2.2099

Water 0.0049 0.0084 0.0026 0 1.7254 0.5241 0
Bare 0.7760 0.7336 0.2509 0.1191 0.9455 0.3234 0.1535

Saltern 0.0789 0.1480 0.5376 0.6056 1.8765 6.8183 7.6803

On the susceptibility map, among the four grades of different land subsidence intensi-
ties, the areas of high and very high susceptibility (marked orange and red, respectively, in
Figure 9c,d) were most frequently found near the central Salt Lake area and were partially
distributed on both sides of the road (Figure 9a,b). High and very high susceptibility
(marked orange and red, respectively, in Figure 9c,d) at the −10~−20 and <−20 mm/year
grades were mainly near Salt Lakes’ rivers. This may be related to the exploitation of
mineral salts and river erosion. High and very high susceptibility (marked orange and red,
respectively, in Figure 9b) of −2~−10 mm/year mainly occurred on the central Salt Lake
highway and the lithology of extremely hard rock in the north. The high and very high
susceptibility in the central area may be related to the subsidence deformation of saline
soil caused by dynamic vehicle load. However, in northern mountainous areas, it may be
caused by freeze–thaw erosion, rain erosion, wind erosion, etc. High and very high suscep-
tibility (marked orange and red, respectively, in Figure 9a) of 0~−2 mm/year were mainly
distributed on both sides of the road. This may be related to vehicles’ dynamic loads.
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Figure 9. The land subsidence susceptibility maps at different land subsidence intensities: (a) grade
of 0~−2 mm/year; (b) grade of −2~−10 mm/year; (c) grade of −10~−20 mm/year; (d) grade of
<−20 mm/year; (e) susceptibility result of different land subsidence intensities grades.

To obtain the susceptibility distribution map of different land subsidence intensities
in the whole area, we compared the four intensities calculation results in the same raster.
The intensity of the maximum value was taken as the attribute of the raster, as shown in
Table 5. Finally, the distribution of all land subsidence intensities was obtained, as shown
in Figure 9e. It can be observed from Figure 9e that most of the towers in the Salt Lake area
are located in an area of severe land subsidence intensity. The maximum land subsidence
intensity of the deformed tower is at the <−20 mm/year grade.

Table 5. The example of susceptibility comparison of raster land subsidence grade.

Raster
FID Grade of 0~−2 mm/Year Grade of −2~−10 mm/Year Grade of

−10~−20 mm/Year Grade of <−20 mm/Year The Maxmium Susceptibility Value

1 0.998 0.137 0.282 0.514 Grade of 0~−2 mm/year
10623 0.635 0.876 0.752 0.631 Grade of −2~−10 mm/year
146269 0.463 0.568 0.625 0.534 Grade of −10~−20 mm/year
501516 0.528 0.324 0.685 1 Grade of <−20 mm/year

. . . . . . . . . . . . . . . . . .

3.6. Model Validation

The ROC curve has been used to evaluate the accuracy of the MLPNN in different
land subsidence intensities [70,71]. An ROC curve analysis is a standard method to verify
probability models used to generate land subsidence susceptibility maps according to
the area under the curve (AUC) [49,50]. Higher values of the AUC under the ROC curve
indicate more accurate and reliable models.

The susceptibility map of land subsidence intensities generated by MLPNN under
different land subsidence intensities was used for comparative analysis. The ROC curves
of four different land subsidence intensities are shown in Figure 10. The largest AUC of
0.951 was at the <−20 mm/year grade (red line in Figure 10), followed by 0.926 at the



Remote Sens. 2022, 14, 3229 15 of 21

−10~−20 mm/year grade (green line in Figure 10), 0.879 at the 0~−2 mm/year grade (blue
line in Figure 10), and 0.812 at the −2~−10 mm/year grade (yellow line in Figure 10).

Figure 10. The ROC curves for the Land subsidence susceptibility maps at different land subsidence
intensities and their AUCs.

If the AUC is lower than 0.5, the model is considered to be unacceptably inaccurate [70].
Since the AUC values of the evaluation results in this study are all greater than 0.5, the gen-
erated susceptibility map of land subsidence can be used to predict the high-susceptibility
areas of land subsidence intensity along the UHV transmission line.

4. Discussion
4.1. Land Subsidence Map of SBAS-InSAR

Based on the Sentinel-1 datasets collected from April 2017 to May 2021, the deformation
time-series map of the area was generated using the SBAS-InSAR method to analyze the
ground subsidence along the UHV transmission line. Then, the vertical deformation map
was obtained by transforming the deformation time-series maps [8,51].

The results indicate that the land subsidence located in the study area is mainly con-
centrated in the Salt Lake area in the middle of the transmission line. This is consistent with
the actual deformation of the transmission tower (Figure 5a–d) [2]. From the perspective
of the whole study area, the land subsidence in the central Salt Lake area shows a spatial
distribution trend of the central funnel. As one of the largest mineral salt production bases
in China, the large number of underground brine mines in the Salt Lake area may affect
dynamic changes in the underground aquifer system, thereby affecting the stability of the
overlying soil layer [72]. Most of the UHV transmission line runs parallel along the main
traffic lines, such as the Qinghai–Tibet Railway and highway (Figure 1). Frequently vehicle
loads may change soil structure stability and cause foundation instability [12].

By analyzing the 4-year vertical deformation time-series maps along the UHV trans-
mission line (Figure 7a–d), it can be predicted that transmission towers crossing the central
Salt Lake area still have the probability of deformation and failure in the future [33]. In-
creased salt production in this area will lead to excessive exploitation of underground
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brine and affect the speed of land subsidence [33,73]. To better study the deformation
of transmission towers in this area, it is necessary to analyze the data analysis based on
groundwater level and further solve the details between groundwater change and trans-
mission tower deformation. Therefore, in future research, airborne electromagnetic data
could be integrated with subsidence data by InSAR to effectively simulate the complex
space-time process of surface deformation [74]. At the same time, future research should
focus on intelligent picture recognition of tower deformation [75].

However, due to the long span of the UHV transmission line, only one scene of
Sentinel-1 data cannot be covered entirely. Therefore, it takes time and manpower to
interpret the land subsidence inventory maps. In this study, for comparing and analyzing
the existing processing methods, the SABAS-InSAR method was selected as a suitable
method for the study area [33,51,52]. Regarding datasets processing, a vast amount of data
still has some shortcomings in the interpretation results, and several optimization methods
have been proposed [22,76–81]. This will be an essential reference for future research on
transmission towers to improve efficiency and obtain more accurate interpretation results.

4.2. Land Subsidence Intensity Classification

Unlike previous land subsidence susceptibility evaluation studies [8,51,52], the main
focus of this study is the susceptibility evaluation of different land subsidence intensities
along a UHV transmission line. We obtained the vertical deformation map of ground subsi-
dence along the UHV transmission line by using the SBAS-InSAR method and considered
both the size of the raster and the transmission tower in the study area. The vertical defor-
mation of the raster at the coordinate point of the transmission tower is not equal to that
of the whole transmission tower [13,39]. The land subsidence value of the tower area was
obtained by buffering the transmission tower coordinate points and averaging the vertical
deformation value of the raster in the buffer area. However, to obtain the average land
subsidence velocity of the location of the transmission tower, in this study, we selected a
more appropriate raster size and without considering the towers that deformation velocity
is positive. Considering that no more suitable research methods have been found and
transmission towers lack ground GPS monitoring results, we used the above classification
as subsequent land subsidence susceptibility map sample datasets.

After receiving the vertical deformation of the entire UHV transmission line, the K-
means method was used to classify the vertical deformation velocity [60] and to obtain the
results for the four land subsidence intensity grades. Then, we deleted the points where
the towers’ vertical deformations were greater than 0 according to the vertical deformation
of the whole transmission line and classified the deformation results of the remaining
parts by the K-means method. Through the classification results, it can be found that the
deformation and damage of the investigated towers are mainly concentrated at two grades,
i.e., −10~−20 mm/year and <−20 mm/year, which has important guiding significance for
future treatment and protection of towers.

4.3. Land Subsidence Susceptibility Map

Accurate land subsidence susceptibility maps of different land subsidence intensities
are important for future planning, design, protection and operations management of
UHV transmission lines. In this study, we used the SBAS-InSAR method to obtain the
land subsidence inventory map along the UHV transmission line. Combined with the
classification of different land subsidence intensities, the MLPNN model was used to obtain
the susceptibility map of different land subsidence intensities [8,51]. Unfortunately, during
the process of collecting land subsidence susceptibility conditioning factors in the study
area, the distribution of groundwater in the study area was not collected due to limited
conditions [33,52]. However, from the spatial location of land subsidence distribution, the
saltern area located in the lowest depression of the study area is the most concentrated area
of land subsidence (Figure 5a, Figure 9b–e).
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This compensates, to some extent, for the error caused by the lack of groundwater
distribution data. Although the UHV transmission line has a long span between the north
and south, the average annual precipitation is scarce due to the dry and hot climate in the
northwest inland of China [33,82], and therefore, the influence of precipitation distribution
on the susceptibility of different land subsidence intensities was not considered in this
study [72].

The ROC curve was used to evaluate the accuracy of the susceptibility mapping of
different land subsidence intensities along the UHV transmission line (Figure 10). The AUC
value showed that the highest prediction accuracy of susceptibility classification was 0.951
at the <−20 mm/year grade, followed by 0.926 at the −10~−20 mm/year grade, 0.879 at
the 0~−2 mm/year grade, and 0.812 at the −2~−10 mm/year grade. The susceptibility
map of different land subsidence intensities shows that transmission towers are mostly
located in the high and very high susceptibility ranges at the <−20 mm/year grade and the
−10~20 mm/year grade. This result can more accurately and quickly identify the disaster
of transmission tower settlement. It can be used as the basis for preventing and controlling
the deformation and failure of transmission towers of the State Grid in the Salt Lake area
in the future. At the same time, the method adopted in this study of combining InSAR
datasets with the susceptibility of different land subsidence intensities can provide new
ideas for other areas.

5. Conclusions

In this study, we used the SBAS-InSAR method to generate the land subsidence
inventory map along a UHV transmission line. The results show that the land subsidence
is mainly concentrated in the central Salt Lake area (Figure 5), and the maximum land
subsidence velocity of the transmission tower is 15 mm/year (Figure 7). After obtaining
the deformation results of the UHV transmission line, the K-means method was used
to classify the deformation intensity. Eight potential factors related to subsidence were
analyzed to identify the conditioning factors of land subsidence, and the frequency ratio
model was used to obtain the relationships among different land subsidence intensities
and various conditioning factors. The MLPNN was used for susceptibility evaluation,
and the accuracy was tested using the ROC curve. The susceptibility map of different
land subsidence intensities shows that Salt Lake’s central part is a high and extremely
high-susceptibility area. The human activities of underground brine extraction and mineral
salt production in this area may affect the subsidence of this area. The AUC values of the
land subsidence intensity grades were calculated by the ROC analysis. The AUC value
indicated that the prediction results of each land subsidence intensity grade were excellent.
Among them, the AUC value at the <−20 mm/year grade was the highest, which was
0.951, then 0.926 at the −10~−20 mm/year grade, 0.879 at the 0~−2 mm/year grade, and
0.812 at the −2~−10 mm/year grade. This shows that the susceptibility map we generated
of different land subsidence intensities along the UHV transmission line is valuable. At the
same time, the susceptibility classification results of different land subsidence intensities
are consistent with the interpretation and site tower deformation. Although the datasets
used in this study are limited, since the AUC values of the evaluation results in this study
are all greater than 0.5, the results are accurate and reliable. The generated susceptibility
map of land subsidence intensities can be used to predict the high-susceptibility areas of
different land subsidence intensities along UHV transmission lines, which is important to
the planning, design, protection, and operations management of transmission line towers.
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