A Sidelobe Suppression Method for Circular Ground-Based SAR 3D Imaging Based on Sparse Optimization of Radial Phase-Center Distribution
Abstract
:1. Introduction
2. Geometry and 3D Sidelobe Distribution of Circular GBSAR
3. Sidelobe Suppression Method for Circular GBSAR 3D Imaging
3.1. PSF of Multi-Phase-Center Circular GBSAR
3.2. Sparse Optimization Method of Radial Phase-Center Distribution
3.3. Generality Analysis
4. Simulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Hong, W.; Zhang, Y.; Lin, Y.; Li, Y.; Bai, Z.; Zhang, Q.; Lv, S.; Liu, H.; Song, Y. Ground-based Differential Interferometry SAR: A review. IEEE Geosci. Remote Sens. Mag. 2020, 8, 43–70. [Google Scholar] [CrossRef]
- Pieraccini, M.; Miccinesi, L. An Interferometric MIMO Radar for Bridge Monitoring. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1383–1387. [Google Scholar] [CrossRef]
- Dong, L.; Wang, C.; Tang, Y.; Tang, F.; Zhang, H.; Wang, J.; Duan, W. Time Series InSAR Three-Dimensional Displacement Inversion Model of Coal Mining Areas Based on Symmetrical Features of Mining Subsidence. Remote Sens. 2021, 13, 2143. [Google Scholar] [CrossRef]
- Luo, Y.; Song, H.; Wang, R.; Deng, Y.; Zhao, F.; Xu, Z. Arc FMCW SAR and Applications in Ground Monitoring. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5989–5998. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Wei, Y.; Zhao, L.; Bai, W. Spherical Wave Decomposition Based Polar Format Algorithm for ArcSAR Imaging. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7547–7556. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Schmitt, M.; Yuan, C. Efficient ArcSAR Focusing in the Wavenumber Domain. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–10. [Google Scholar] [CrossRef]
- Wang, S.; Feng, W.; Kikuta, K.; Sato, M. A Monostatic/Bistatic Ground-Based Synthetic Aperture Radar System for Target Imaging and 2-D Displacement Estimation. IEEE Geosci. Remote Sens. Lett. 2021, 18, 326–330. [Google Scholar] [CrossRef]
- Miccinesi, L.; Pieraccini, M. Bridge Monitoring by a Monostatic/Bistatic Interferometric Radar Able to Retrieve the Dynamic 3D Displacement Vector. IEEE Access 2020, 8, 210339–210346. [Google Scholar] [CrossRef]
- Reale, D.; Serafino, F.; Pascazio, V. An Accurate Strategy for 3-D Ground-Based SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2009, 6, 681–685. [Google Scholar] [CrossRef]
- Pieraccini, M.; Rojhani, N.; Miccinesi, L. Ground Based Synthetic Aperture Radar with 3D Imaging Capability. In Proceedings of the 2018 European Radar Conference, Madrid, Spain, 26–28 September 2018; pp. 206–209. [Google Scholar]
- Li, Y.; Huo, T.; Yang, C.; Wang, T.; Wang, J.; Li, B. An Efficient Ground Moving Target Imaging Method for Airborne Circular Stripmap SAR. Remote Sens. 2022, 14, 210. [Google Scholar] [CrossRef]
- Yitayew, T.G.; Ferro-Famil, L.; Eltoft, T.; Tebaldini, S. Tomographic Imaging of Fjord Ice Using a Very High Resolution Ground-based SAR System. IEEE Trans. Geosci. Remote Sens. 2017, 55, 698–714. [Google Scholar] [CrossRef]
- Ramachandran, N.; Saatchi, S.; Tebaldini, S.; Mariotti, M.; Dikshit, O. Evaluation of P-Band SAR Tomography for Mapping Tropical Forest Vertical Backscatter and Tree Height. Remote Sens. 2021, 13, 1485. [Google Scholar] [CrossRef]
- Tian, W.; Yang, W.; Dang, T.; Zhao, Z.; Han, X. Three-Dimensional Ground-Based SAR Imaging Algorithm Based on Keystone Formatting and Subblock. IEEE Access 2020, 8, 90118–90131. [Google Scholar] [CrossRef]
- Huang, Z.; Sun, J.; Tan, W.; Huang, P.; Qi, Y. A Fast Far-Field Pseudopolar Format Algorithm for Ground-Based Arc 3-D SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1697–1701. [Google Scholar] [CrossRef]
- Pieraccini, M.; Agostini, N.; Papi, F.; Rocchio, S. A rotating antenna ground-based SAR. In Proceedings of the 2015 European Radar Conference, Paris, France, 7–10 September 2015; pp. 493–496. [Google Scholar]
- Pieraccini, M.; Papi, F.; Rocchio, S. SAR imagery by RotoSAR. In Proceedings of the 2015 IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems, Tel Aviv, Israel, 2–4 November 2015; pp. 1–5. [Google Scholar]
- DeGraaf, S.R. Sidelobe Reduction via Adaptive FIR Filtering in SAR Imagery. IEEE Trans. Image Process. 1994, 3, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Su, Y.; Xu, H.; Zhu, Y. Sidelobe reduction based on spectrum reshaping in microwave imaging. Sci. China (Inf. Sci.) 2011, 54, 204–212. [Google Scholar] [CrossRef]
- Iglesias, R.; Mallorqui, J. Side-Lobe Cancelation in DInSAR Pixel Selection With SVA. IEEE Geosci. Remote Sens. Lett. 2013, 10, 667–671. [Google Scholar] [CrossRef]
- Ding, Z.; Zhu, K.; Wang, Y.; Li, L.; Liu, M.; Zeng, T. Spatially Variant Sidelobe Suppression for Linear Array MIMO SAR 3-D Imaging. IEEE Trans. Geosci. Remote Sens. 2022, 60, 11–15. [Google Scholar] [CrossRef]
- Li, C.; Yu, Z.; Chen, J. Overview of Techniques for Improving High-resolution Spaceborne SAR Imaging and Image Quality. J. Radars 2019, 8, 717–731. (In Chinese) [Google Scholar]
- Zhu, X.; He, F.; Ye, F.; Dong, Z.; Wu, M. Sidelobe Suppression with Resolution Maintenance for SAR Images via Sparse Representation. Sensors 2018, 18, 1589. [Google Scholar] [CrossRef] [Green Version]
- Ming, J.; Zhang, X.; Pu, L.; Shi, J. PSF Analysis and Ground Test Results of a Novel Circular Array 3-D SAR System. J. Radars 2018, 7, 770–776. (In Chinese) [Google Scholar]
- Wang, Y.; Zhang, Q.; Lin, Y.; Zhao, Z.; Li, Y. Multi-Phase-Center Sidelobe Suppression Method for Circular GBSAR Based on Sparse Spectrum. IEEE Access 2020, 8, 133802–133816. [Google Scholar] [CrossRef]
- Soumekh, M. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1999; pp. 486–552. [Google Scholar]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Center frequency (GHz) | 17.55 |
Bandwidth (MHz) | 900 |
Rotation radius (m) | 1 |
Azimuth beam width (°) | 30 |
Vertical beam width (°) | 30 |
Number of Phase Centers | Distribution (m) | PSL (dB) | ISL (dB) |
---|---|---|---|
N = 1 | {1} | −7.91 | −0.86 |
N = 2 | {0.59, 1} | −13.07 | −4.02 |
N = 3 | {0.47, 0.68, 1} | −15.30 | −6.16 |
N = 4 | {0.42, 0.63, 0.82, 1} | −15.08 | −7.71 |
N = 5 | {0.31, 0.50, 0.63, 0.78, 1} | −19.75 | −8.91 |
Parameters | Value |
---|---|
Range (m) | 400~600 |
Azimuth (m) | −60~60 |
Vertical (m) | −60~60 |
Single phase center (m) | r = 1 |
Sparse multiple phase centers in [25] (m) | r = {0.42, 0.56, 1} |
Optimal sparse multiple phase centers (m) | r = {0.47, 0.68, 1} |
Multiple phase centers with equivalent solid spectrum (m) | r = [0.37, 1], Ns = 40 |
Array Distribution | Parameters | Range | Curve1 | Curve2 |
---|---|---|---|---|
Single-phase-center distribution | IRW (m) | 0.16 | 1.53 | 1.53 |
PSLR (dB) | −13.22 | −7.91 | −7.92 | |
ISLR (dB) | −9.26 | −1.19 | −1.38 | |
Sparse multi-phase-center distribution in [25] | IRW (m) | 0.15 | 2.22 | 2.22 |
PSLR (dB) | −13.23 | −13.08 | −13.16 | |
ISLR (dB) | −9.26 | −5.59 | −6.22 | |
Optimal sparse multi-phase-center distribution | IRW (m) | 0.16 | 2.07 | 2.07 |
PSLR (dB) | −13.22 | −15.31 | −15.32 | |
ISLR (dB) | −9.26 | −6.12 | −6.42 | |
Multi-phase-center distribution with equivalent solid spectrum | IRW (m) | 0.15 | 2.17 | 2.17 |
PSLR (dB) | −13.23 | −13.43 | −13.45 | |
ISLR (dB) | −9.26 | −11.69 | −11.75 |
Array Distribution | Parameters | Range | Curve1 | Curve2 |
---|---|---|---|---|
Single-phase-center distribution | IRW (m) | 0.15 | 1.85 | 1.85 |
PSLR (dB) | −13.24 | −7.93 | −7.95 | |
ISLR (dB) | −10.49 | −1.19 | −1.38 | |
Sparse multi-phase-center distribution in [25] | IRW (m) | 0.15 | 2.68 | 2.68 |
PSLR (dB) | −13.23 | −13.08 | −13.16 | |
ISLR (dB) | −10.45 | −5.62 | −6.23 | |
Optimal sparse multi-phase-center distribution | IRW (m) | 0.15 | 2.50 | 2.50 |
PSLR (dB) | −13.24 | −15.32 | −15.35 | |
ISLR (dB) | −10.46 | −6.15 | −6.44 | |
Multi-phase-center distribution with equivalent solid spectrum | IRW (m) | 0.15 | 2.65 | 2.64 |
PSLR (dB) | −13.24 | −13.22 | −13.25 | |
ISLR (dB) | −10.46 | −11.74 | −11.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Sun, J.; Wang, Y.; Lin, Y. A Sidelobe Suppression Method for Circular Ground-Based SAR 3D Imaging Based on Sparse Optimization of Radial Phase-Center Distribution. Remote Sens. 2022, 14, 3248. https://doi.org/10.3390/rs14143248
Zhang Q, Sun J, Wang Y, Lin Y. A Sidelobe Suppression Method for Circular Ground-Based SAR 3D Imaging Based on Sparse Optimization of Radial Phase-Center Distribution. Remote Sensing. 2022; 14(14):3248. https://doi.org/10.3390/rs14143248
Chicago/Turabian StyleZhang, Qiming, Jinping Sun, Yanping Wang, and Yun Lin. 2022. "A Sidelobe Suppression Method for Circular Ground-Based SAR 3D Imaging Based on Sparse Optimization of Radial Phase-Center Distribution" Remote Sensing 14, no. 14: 3248. https://doi.org/10.3390/rs14143248
APA StyleZhang, Q., Sun, J., Wang, Y., & Lin, Y. (2022). A Sidelobe Suppression Method for Circular Ground-Based SAR 3D Imaging Based on Sparse Optimization of Radial Phase-Center Distribution. Remote Sensing, 14(14), 3248. https://doi.org/10.3390/rs14143248