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Abstract: High Mountain Asia (HMA), with its high altitude, widely distributed snow and frozen
soil, influences the climate of the northern hemisphere and even the world through thermal balance
and the water vapor cycle and is also an indicator of global climate change. The influence of HMA
snow cover on its surrounding areas has always been a research hotspot. Taking the Yangtze River
Basin (YRB) of China as an example, this paper analyzes the relationship between winter snow depth
in HMA and drought and flood in spring and summer in the YRB in the recent 40 years by using
Singular Value Decomposition (SVD). The results show that the influence of snow cover on drought
and flood in spring is inversely different between eastern and western parts of HMA, while the effect
in summer is consistent. When the snow depth is larger (smaller) in the east and smaller (larger) in
the west in winter, the YRB is drier (wetter) in spring. When the overall snow depth in HMA is larger
(smaller) in winter, the northern part of the middle and lower reaches of the YRB is drier (wetter)
in summer. The results provide support for understanding the impact of HMA snow cover on the
surrounding climate and some important indicators for drought and flood prediction in the YRB.

Keywords: high mountain Asia; Yangtze River Basin; snow; scPDSI; SVD

1. Introduction

As the third largest river basin in the world, the Yangtze River Basin (YRB) is an
important population and economic belt in China. At the same time, the climate factors in
the YRB are complex and affected by many factors, such as southwest monsoon, southeast
monsoon, Tibetan Plateau (TP) and sea surface temperature [1–3]. Meteorological disasters
occur frequently, especially drought and flood disasters, which bring huge losses to the
economy and society. Therefore, it is particularly important to study the drought and flood
disasters and their influencing factors in the YRB. High Mountain Asia is the region with
the highest altitude and the widest distribution of snow and frozen soil except for the Arctic
and Antarctic regions, and its snow and ice melt water is an important supply source for
numerous downstream rivers, affecting more than 1.4 billion people [4]. As an important
part of HMA, the area and thickness of snow changes significantly with the seasons. The
changes of the underlying surface reflectance caused by snow and the latent heat of surface
caused by snow freezing–thawing affect the climate in the Northern Hemisphere and even
on a global scale through thermal balance and water vapor circulation [5–7].

Since Blanford [8] and Wallker [9] first proposed the influence of HMA snow cover in
the Himalayan region on summer precipitation in India, people have studied the relation-
ship between snow cover in HMA and the surrounding climate using various data. Dey
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et al. [10] found that there was a negative correlation between snow cover in the Himalayan
region and Indian monsoon precipitation. Bamzai and Shukla [11] found a significant nega-
tive correlation between snow cover and Indian summer monsoon precipitation only in
western Eurasia, but not in eastern TP. Li [12] believed that there was no obvious correlation
between HMA snow and Indian monsoon but a significant negative correlation before 1972
and a significant positive correlation after 1972. These different conclusions may be due to
the data they used or the time and area of the study.

As for the relationship between HMA snow and East Asian climate, it is found that
the increase of winter and spring snow on the TP weakens the intensity of the summer
monsoon, leading to an increase of summer precipitation in the middle and lower reaches
of the YRB and a decrease of precipitation in south China and the northern part of the
YRB [13–16]. Xiao et al. [17] found that the duration of the early snow cover in the central
and eastern part of the TP was limited and had little influence on the atmospheric heat
source in summer and the East Asian summer monsoon. In contrast, the influence of winter
or spring snow cover in the western and Himalayan regions can last until summer, thus
influencing the East Asian summer monsoon. Using Singular Value Decomposition (SVD)
and simulation experiments, Wang et al. [18] found that the increase of winter and spring
snow cover in the south and the north of the TP had different impacts on precipitation
in China. Heavier snow cover in the south of TP, more rainfall in the YRB and Northeast
China, less precipitation in the south of China, and heavier snow cover in the north of TP
lead to the enhancement of precipitation in the southeast and north of China and weakened
precipitation in the YRB. Si et al. [19] found that the relationship between winter snow cover
on the TP and summer precipitation in East Asia changed in the late 1990s. As the summer
monsoon moved northward, the summer high precipitation belt in East Asia related to the
preceding winter snow over the TP shifted from the YRB and southern Japan to the Huaihe
River Basin and the Korean Peninsula.

From the above studies, it can be seen that when people study the relationship between
snow cover and the surrounding climate in HMA, they often take the TP as the main body,
so there is a lack of research on the impact of snow cover in western HMA (Tianshan Moun-
tains, Pamir Plateau, etc.). However, from a regional point of view, the Tianshan Mountains
and Pamir Plateau in the west share the same water tower unit with the TP in the east, and
they should be considered together in HMA [20]. There is a significant interaction between
vegetation and climate [21,22], but vegetation is usually influenced by a variety of factors
such as temperature, precipitation, topography, and human activities and is not sensitive to
drought and flood, especially in relatively moist, comfortable temperature regions [23,24].
Therefore, this study does not consider the influence of vegetation on the relationship
between snow cover and surrounding climate. In addition, although precipitation plays a
significant role in drought and flood, comprehensive drought indexes such as the Standard-
ized Precipitation Evapotranspiration Index (SPEI) and Palmer Drought Severity Index
(PDSI) are usually used to study drought and flood. The self–calibrating Palmer Drought
Severity Index (scPDSI), as an improved version of PDSI, not only considers the impact
degree of precipitation, evaporation, and soil water content, but also has better spatial
comparability and is more suitable for drought and flood research in China [25]. Therefore,
taking the YRB as an example, the scPDSI was used as the drought and flood evaluation
index, and we studied the relationship between HMA winter snow and drought and flood
in the YRB in the past 40 years (1980–2019) and compared the relationship between snow
and scPDSI and the relationship between snow and precipitation in an attempt to provide
some reference for drought and flood monitoring and forecasting in the YRB.

2. Study Area and Data
2.1. Study Area

The boundary of HMA in this paper (Figure 1a) is derived from the “Integration
dataset of Tibet Plateau boundary” extracted by Zhang et al. [26–28] based on altitude,
ranging from 65–105◦E longitude to 25–45◦N latitude. It starts from Pamir Plateau and
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Hindu Kush Mountain in the west, Hengduan Mountain in the east, Tianshan Mountain
and Kunlun Mountain in the north, and Himalaya Mountain in the south. HMA has an
average elevation of about 4000 m and is the source of major rivers in Asia (Syr, Amu Darya,
Indus, Brahmaputra, Yangtze, Yellow). Westerlies and the Indian monsoon are the main
water vapor sources, which have a significant influence on snowfall in the HMA region,
while the influence of the East Asian monsoon is less. The western and northern regions are
mainly affected by westerlies, and the snowfall in winter is large; the eastern and southern
regions are mainly affected by summer monsoon, and the snowfall in summer is large [29].
Due to the obstruction of mountains, water vapor finds it difficult to enter the inner area of
HMA, and so the snow depth is small (Figure 1b). Snow in HMA generally accumulates in
autumn, melts in spring, and reaches its maximum value in winter (Figure 1c). Therefore,
we define a snow year from September to August of the following year, which consists
of four seasons: autumn (September–October–November), winter (December–January–
February), spring (March–April–May), and summer (June–July–August).
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Figure 1. (a) Topography of High Mountain Asia (HMA) and the Yangtze River Basin (YRB),
(b) distribution of winter snow depth in HMA from 1980 to 2019, and (c) monthly distribution
of HMA snow depth from 1980 to 2019.

The YRB originates from the Tanggula Mountains in HMA, flows through 11 provincial
administrative regions of China from west to east, and finally empties into the Pacific Ocean
at Chongming Island, with a total length of 6397 km, making it the third longest river in the
world (Figure 1a). The YRB covers a vast area of 1.8 million square kilometers, accounting
for one-fifth of China′s land area, one-quarter of China′s arable land area, 40% of China′s
agricultural GDP, and one-third of China′s population. It is an important population
and economic belt in China. However, drought and flood disasters occur frequently in
the YRB, especially in the 1990s. Since the 21st century, the YRB has been frequently
disturbed by drought, such as the drought in Sichuan Province in 2004 and the drought in
the middle and lower reaches of the Yangtze River in 2011 and 2013, which have caused
great impacts. Therefore, it is very important to study the drought and flood in the YRB
and its influencing factors.
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2.2. Data

In this study, the precipitation and scPDSI grid dataset of YRB were obtained from the
Climate Research Unit (CRU) at the University of East Anglia [30] (http://www.cru.uea.ac.
uk/data (accessed on 15 March 2022)), with a spatial resolution of 0.5◦ × 0.5◦. The precipi-
tation data were extracted from CRU TS 4.05 data, which included cloud cover, diurnal
temperature range, frost day frequency, wet day frequency, potential evapotranspiration,
precipitation, daily mean temperature, monthly average daily maximum and minimum
temperature, and vapor pressure for the period January 1901–December 2020.

The scPDSI is calculated using time series of precipitation and temperature data from
CRU TS 4.05 data, together with fixed parameters related to the soil/surface characteristics
at each location. It was first improved by Wells et al. [31] on the PDSI proposed by
Palmer [32]. Compared with the original PDSI, scPDSI optimizes the corresponding
weight coefficient and duration factor based on the historical observation data of each
meteorological station, so it has better spatial comparability and has been widely used in
drought monitoring and assessment in China [25,33].

The snow depth data came from the “Long–term series of daily snow depth dataset in
China (1979–2020)” published by the National Tibetan Plateau Data Center (http://data.
tpdc.ac.cn (accessed on 1 April 2022)). The original data used to retrieve snow depth come
from the daily passive microwave brightness temperature (EASE–Grid) data of SMMR
(1979–1987), SSM/I (1987–2007) and SSMI/S (2008–2020) processed by the National Snow
and Ice Data Center (NSIDC). The data have a spatial resolution of 25 km and cover the
entire HMA [34–37]. Table 1 shows the details of each variable used in this study.

Table 1. Summary of the datasets used in the study.

Variables Data Source Availability Temporal Resolution Spatial Resolution

scPDSI CRU 1901–2020 Monthly 0.5◦ × 0.5◦

Precipitation CRU 1901–2020 Monthly 0.5◦ × 0.5◦

Snow Depth TPCD 1979–2020 Daily 25 km

3. Methods

In this study, we first processed the original data, including clipping, merging, repro-
jection, and missing value processing, and finally obtained the data of HMA winter snow
depth and precipitation and scPDSI of the YRB in each season from 1980 to 2019. Secondly,
the trend analysis of scPDSI in each season in the YRB was made, the slope was calculated,
and a significance test was carried out to obtain the spatial and temporal characteristics
of drought and flood in the YRB. Then, an SVD analysis of snow depth in winter and
scPDSI in spring and summer was conducted to find out the correlation between HMA
snow depth and drought and flood in the YRB. Finally, an SVD analysis of snow depth
and precipitation was made, and the difference of the relationship between snow depth
and scPDSI and the relationship between snow depth and precipitation is discussed. The
overall research process is shown in Figure 2.

3.1. Trend Analysis Method

To evaluate the monotonic trend of scPDSI in the YRB, Sen′s Slope (SS) [38] is calculated
pixel by pixel, and its significance is judged by the non–parametric Mann–Kendall (MK)
test. Compared with linear regression, this method has strong resistance to data outliers,
simple calculation, and accurate test results, and it is widely used in the trend analysis of
various elements in time series [39–41]. The SS is calculated as follows:

SS = Median
( xj − xi

j− i

)
, i < j (1)

http://www.cru.uea.ac.uk/data
http://www.cru.uea.ac.uk/data
http://data.tpdc.ac.cn
http://data.tpdc.ac.cn
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A positive (negative) value of SS indicates a positive (negative) trend. The calculation
method of the standard normal statistic Z value of MK test is as follows:

Z =


S−1√
var(S)

S > 0

0 S = 0
S+1√
var(S)

S < 0
(2)

where

S =
n−1
∑

i=1

n
∑

j=i+1
sgn
(
xj − xi

)
(3)

sgn
(
xj − xi

)
=


+1 xj − xi > 0
0 xj − xi = 0
−1 xj − xi < 0

(4)

Var(S) = 1
18 [n(n− 1)(2n + 5)] (5)

where n represents the length of the data set, and xi and xj are the sequential data values.
If |Z| ≥ 1.96 (or 2.57), this indicates a significant level of 0.05 (or 0.01).
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3.2. SVD

SVD has been used to analyze the relationship between HMA snow depth and scPDSI
and precipitation in the later period of the YRB. Since its first application in meteorological
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analysis in 1976 [42], SVD has been widely applied in research in the area of climate,
ecology, and the environment [18,43,44]. SVD is expanded based on the covariance matrix
of two element fields X and Y (Formula (6)), and a generalized diagonalization operation is
performed on them (Formula (7)) to obtain singular values and left and right fields:

C = X · YT (6)

C = U · Λ · VT (7)

where C is the covariance matrix, the vectors in U and V are the singular vectors of matrix C,
and the elements on the diagonal are the singular values. According to the singular values,
the Squared Covariance Fraction (SCF) and Cumulative Squared Covariance Fraction
(CSCF) of the spatial modes, represented by each pair of singular vectors, can be calculated.
The time coefficient of left and right field is calculated as follows:

TX = UT · X (8)

TY = VT · Y (9)

where TX and TY are the time coefficients of the left and right singular vectors, respectively.
The greater the correlation of the time coefficients, the higher the correlation of the two
fields. The correlation coefficient between the left (right) field time coefficient and the
left (right) field sequence is the homogeneous correlation coefficient, which represents the
correlation distribution between a field and its time coefficient. The correlation coefficient
between the time coefficient of the left (right) field and the sequence of right (left) field
is the heterogeneous correlation coefficient, which represents the correlation distribution
of one field and another field. In a pair of heterogeneous correlation patterns, when the
variation trend within the region is consistent (high value or low value), this indicates
that the two fields are positively correlated; otherwise, it is negatively correlated, and the
significant correlation region is the key region of interaction between the two fields. Thus,
the left and right field remote correlation type can be determined. The Student’s t test is
used for significance testing; for more calculation details about SVD, please refer to the
articles of Prohaska [42] and Jiang [44].

4. Results
4.1. Temporal and Spatial Characteristics of Drought and Flood in the YRB

The trend of scPDSI in different seasons in the YRB from 1980 to 2019 is shown
in Figure 3. It can be seen that the overall trend of scPDSI is not significant, with a
slight negative trend in autumn, winter, and spring, and a slight positive trend in summer.
Although the overall trend is not significant, there are interannual and interdecadal changes
in scPDSI. From 1983 to 1990, the YRB experienced a dramatic change of “wet-dry-wet”,
and the interannual drought and flood turned sharply. From 2003 to 2013, scPDSI was less
than 0, which made the YRB continue to be in a relative drought state for 10 years. After
2013, scPDSI was greater than 0, and the YRB returned to a relatively humid state.

Figure 4 shows the distribution of scPDSI in different seasons in the YRB from 1980
to 2019. As can be seen from the figure, the distribution of scPDSI was roughly the same
in different seasons. It is low in the TP, Hengduan Mountains, and the Hanjiang Basin in
the north, but high in the Sichuan Basin and the middle and lower reaches of the Yangtze
River. Combined with Figure 1a, it can be seen that this distribution of scPDSI is related
to altitude.

The scPDSI trend in each season was calculated, and its significance was tested
(Figure 5). It can be seen that, although the scPDSI of YRB does not have a clear trend in
Figure 3, the trend in individual regions is significant, and there is a great difference in
different regions. The increase of scPDSI in the TP region at the source of the Yangtze River
is the fastest, especially in autumn and summer, followed by the Dongting Lake Basin
in the middle and south of the YRB. The decrease of scPDSI was mainly distributed in
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Yunnan–Guizhou Plateau and Hanjiang Basin, and the latter showed the fastest decline.
The trend of scPDSI in the above areas all reached the 0.05 significance level.
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4.2. Relationship between Winter Snow Depth over the HMA and Spring scPDSI in YRB

To investigate the spatiotemporally collocational relationship between snow cover
over the HMA and spring scPDSI in YRB, we performed SVD analysis for normalized snow
depth (left field) and scPDSI (right field) data. Table 2 shows the SCF and CSCF of the first
three modes and the time series correlation coefficient (TSCC) of corresponding time series.
It can be seen that the CSCF of the first three modes is 54.48%, among which the SCF of the
first two modes is 23.85% and 17.46%, respectively, reflecting the main characteristics of the
two fields. Therefore, the related characteristics of the first two modes are mainly analyzed.

Table 2. The first three modes of SVD analysis and their SCF, CSCF, and TSCC between HMA winter
snow depth and spring scPDSI in the YRB.

Mode I II III

SCF/% 23.85 17.46 13.17
CSCF/% 23.85 41.31 54.48

TSCC 0.68 0.73 0.80

Figure 6a shows the time series corresponding to the first mode. It can be seen that
the variation trend of the two fields time coefficients is relatively consistent, and the TSCC
is 0.68, indicating that the spatial distribution pattern is closely related. The time series
from 1980 to 2019 generally showed a negative trend, with significant interannual variation.
Especially, the winter snow depth in 1985 and 1997 showed a significant positive anomaly,
and the corresponding scPDSI in spring of the YRB also showed a significant increase. As
can be seen from the heterogeneous correlation distribution in Figure 6b,c, the inland region
of HMA is mainly positive, and the high value center is located in the Kunlun Mountains,
while the Karakoram and Tianshan Mountains in the west are mainly negative, and the
high value center is located in the Tianshan Mountains. The corresponding right field
scPDSI in the YRB is negative in the Sichuan Basin and Dongting Lake Basin and positive
in other areas, but the positive value is too small and fails the 0.05 level significance test.

Figure 7a is the time series of the second mode, and the TSCC is 0.73. It can be seen
from the Figure 7a that there is an obvious interdecadal change. During 1986–2000, snow
depth and scPDSI showed a synchronous decline trend, and this trend disappeared after
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2000. As can be seen from the heterogeneous correlation distribution of the second mode in
Figure 7b,c, the value of the left field was negative in large areas in the east and positive in
the central and southern regions, which reached the significance level of 0.05. The scPDSI
of the YRB showed a significant north–south difference in the middle and lower reaches
and was dominated by positive values in the north, almost all of which passed the 0.05
level significance test, while there were some negative areas that passed the significance
test in the southern and western Hengduan Mountains.
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The first two modes, as the main modes of SVD analysis, reflect the close correlation
between the left field (snow depth) and the right field (scPDSI) and also reflect the uneven
spatial distribution of snow cover; different regions have different effects on scPDSI in the
YRB. When the winter snow depth was larger (smaller) in the TP and smaller (larger) in
Tianshan Mountains, the scPDSI in the Sichuan Basin and Dongting Lake Basin of the YRB
was lower (higher), which means that the drought degree was higher (lower) in spring.
When the snow depth in Kunlun Mountains and southeast HMA was larger (smaller), the
scPDSI in the middle and lower reaches of the YRB in spring was higher (lower), which
means that the drought degree was lower (higher).

4.3. Relationship between Winter Snow Depth over the HMA and Summer scPDSI in YRB

In the same manner as in spring, the SVD method was used for the statistical analysis
of winter snow depth in HMA and summer scPDSI of YRB from 1980 to 2019. Table 3
shows the SCF and CSCF of the first three modes and the TSCC of corresponding time
series. It can be seen from the table that the CSCF of the first three modes is 53.07%, and
the SCF of the first two modes is 24.03% and 16.34%, respectively, reflecting the main
characteristics of the two modes. Therefore, we also analyze the related characteristics of
the first two modes.

Table 3. The first three modes of SVD analysis and their SCF, CSCF, and TSCC between HMA winter
snow depth and summer scPDSI in the YRB.

Mode I II III

SCF/% 24.03 16.34 12.71
CSCF/% 24.03 40.37 53.07

TSCC 0.79 0.67 0.74

Figure 8 shows the first mode of SVD analysis between HMA winter snow depth and
summer scPDSI in the YRB. The time series of left and right fields (Figure 7a) changes in
the same phase with a TSCC of 0.79. The time series as a whole showed a negative trend
with strong interannual variation. The snow depth showed a significant positive anomaly
in 1986, and the corresponding summer scPDSI also showed a maximum value. As can
be seen from the heterogeneous correlation distribution of the first mode (Figure 8b,c), the
left field (snow depth) is mostly positive, and the places that passed the significance test of
0.05 were concentrated in central Karakoram, the southern Himalayas, and the western
Hindukush Mountains, while a few negative values appeared in the eastern region. The
distribution of the right field (scPDSI) is similar to the distribution of the second mode in
spring, with positive values mainly in the northern part of the middle and lower reaches,
while the values in the rest of the YRB are small and fail the 0.05 level significance test.

Figure 9a shows the time series of the second mode, and the TSCC is 0.67, but the
in–phase change is not as significant as that of the first mode. The time series also showed
strong interdecadal variation, with great fluctuation before 2000 and an overall negative
trend but an obvious positive trend after 2000. As can be seen from the heterogeneous
correlation distribution of the second mode (Figure 9b,c), the positive value of the left
field (snow depth) is mainly distributed in the Kunlun Mountains, Karakoram, and Qilian
Mountains, and the high value center is located in the Karakoram region, while the negative
value is mainly distributed in the hinterland of HMA and south of the Kunlun Mountains.
The right field (scPDSI) is highly negative in the Hengduan Mountains and Yunnan–
Guizhou Plateau and passes the 0.05 level significance test, while it is positive in the
northwest and middle and lower reaches of the YRB.

In conclusion, the first and second modes of SVD analysis in summer also reflect
the close relationship between winter HMA snow depth and summer scPDSI in the YRB,
and the correlation in summer is more consistent than that in spring. When the snow
depth in the Kunlun Mountains, Qilian Mountains, and Himalaya Mountains is larger
(smaller) in winter, the scPDSI is higher (lower) and drought degree is lower (higher) in the
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middle and lower reaches of the YRB in summer. However, when the snow depth in the
Kunlun Mountains in northern Asia is larger (smaller) in winter, the scPDSI in Hengduan
Mountains and Yunnan–Guizhou Plateau in the YRB is lower (higher) and the degree of
drought is higher (lower) in summer.
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4.4. Relationship between Winter Snow Depth over the HMA and Precipitation in YRB

The precipitation in the YRB is relatively abundant, and many studies have been
conducted on the relationship between snow and precipitation. Therefore, in order to
study the contribution of precipitation to drought and flood in the YRB and to compare
the difference between the relationship between snow and scPDSI and the relationship
between snow and precipitation, we conducted SVD analysis on winter snow depth in
HMA and precipitation in the later period of the YRB. Figure 10a,b shows the SVD analysis
results between winter snow depth and spring precipitation, and Figure 10c,d shows the
SVD analysis results between winter snow depth and summer precipitation, both of which
are the results of the first mode. It can be seen from the figure that the HMA winter snow
depth is mainly positively correlated with the spring precipitation in the YRB, and the
large value center is mainly located in the Karakoram region and the middle and lower
reaches of the YRB. The range of positive correlation expands in summer. Most of the
regions in HMA except the Tianshan Mountains in the west have a significant positive
correlation with the YRB, and only some areas in the southeast of the YRB have a significant
negative correlation.
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5. Discussion
5.1. Characteristics of Drought and Flood in the YRB

For drought and flood, different evaluation indexes and methods may bring different
results. The commonly used indexes to represent drought and flood are SPEI and PDSI.
SPEI, which takes into account precipitation, temperature, and evapotranspiration but
ignores soil moisture conditions, is considered more suitable for analyzing meteorological
drought. Since drought changes are closely related to soil moisture in a given region, more
comprehensive drought indexes should be considered, especially in agrometeorological
drought studies. The scPDSI adopted in this paper is based on PDSI, and the corresponding
weight coefficient and persistence factor are optimized to give it better spatial comparability.
In addition, Zhang [45] pointed out that scPDSI is more suitable for drought monitoring in
eastern humid regions such as YRB and Pearl River Basin, while SPEI is more suitable for
drought monitoring in western arid regions. Wang [46] and Shao [47] studied the drought
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trend in China in recent decades by using SPEI and scPDSI, respectively, and drew different
conclusions on the overall trend of the country, but it is certain that they reached similar
conclusions in sub–regions: the southwest and central parts of China showed a drought
trend, while the northwest and the northeastern part of the TP showed a wetting trend.

In this paper, we also cannot observe a significant trend of the whole YRB in the past
40 years, but we find that the trend is very different in different regions. In Figure 5, the
spatial distribution of the trend showing a Sichuan Basin centered “X” type distribution,
the scPDSI in southwest Yunnan–Guizhou Plateau and northeast Hanjiang Basin showed
a negative trend, and the basin of the northwest TP region and southeast of Dongting
Lake Basin showed a positive trend. The conclusion is basically the same as that of our
predecessors. In addition to the variation trend, because the YRB spans the TP climatic zone,
the tropical monsoon zone, and the subtropical monsoon zone, the climatic conditions are
complex, and so the dry and wet differences between different regions are large. Hengduan
Mountains, Yunnan–Guizhou Plateau, and Hanjiang Basin are arid areas in the YRB, while
Sichuan Basin and plain areas in the middle and lower reaches are humid. The spatial
difference of the dry–wet distribution and variation trend in the YRB is closely related to
the water vapor transport of the East Asian monsoon, and HMA influences the drought
and flood conditions of the YRB by influencing the monsoon circulation [48–50].

5.2. Possible Physical Mechanisms

HMA influences the surrounding climate both dynamically and thermally. In terms of
dynamics, the HMA influences the circulation and dry and wet conditions in the surround-
ing areas through barriers, lateral boundary dynamics, and subsidence motion [51,52].
The uplift of the Tianshan Mountains and the TP has the most significant influence on the
winter monsoon and westerlies in the middle troposphere in summer and winter [53]. In
terms of thermal effects, when there is less snow cover on the plateau in winter, the surface
sensible heat is strong, and the plateau heating to the troposphere is strong, resulting
in a higher height field in the middle and upper troposphere in the later period, which
leads to a stronger East Asian summer monsoon and northward rain belt, so there is less
precipitation and higher degree of drought in the YRB [54,55]. This explains the results
shown in Figure 8—that is, there is a positive correlation between snow depth in most parts
of HMA and scPDSI in summer in the YRB. When the snow depth is small in the previous
winter, the scPDSI in summer in the YRB is low, and drought in the YRB is more severe,
especially in the northern part of the middle and lower reaches. At the same time, we also
found that the northern region of the middle and lower reaches had a good correlation
with the preceding winter HMA snow cover in spring and summer, and the correlation
was mainly positive.

From the physical mechanism of snow depth affecting drought and flood, we can
see that, although we use a comprehensive index with strong characterization ability, the
main factor behind it is precipitation. However, the relationship between snow depth and
precipitation, as well as the relationship with scPDSI, is obviously different in different
seasons. By comparing the results of Figure 10 with those of Figures 6 and 8, when the
snow depth in the TP of HMA was relatively high in the previous winter, the scPDSI index
in the middle of the YRB was relatively low and the degree of drought was relatively high,
while the precipitation in the middle and lower reaches of the YRB was relatively high
in spring, indicating that the consistency between scPDSI and precipitation was poor in
spring. When the snow depth was relatively high in most parts of HMA in the previous
winter, scPDSI was relatively high in the northern part of the middle and lower reaches of
the YRB in summer, and the degree of drought was relatively low. At this time, summer
precipitation was also relatively high, indicating a good consistency between scPDSI and
precipitation in summer. The main reason for this difference is that the precipitation in
the YRB is mainly concentrated in summer, so precipitation dominates the drought and
flood situation in the YRB in summer, while there is less precipitation in spring, and the
contribution of precipitation to drought and flood is small.
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It can also be seen from previous studies that when considering the relationship
between snow cover in HMA and the surrounding climate, people tend to focus on the
TP, the main body of HMA, and there are few studies on the Karakoram and Tianshan
Mountains in the west. However, it is not difficult to see from Figure 1b that the snow
depth in winter in the western region is much higher than that in the eastern TP, and the
SVD analysis in spring shows that the western region is closely connected with the YRB.
In Figure 6, winter snow depth in the western Karakoram and Tianshan Mountains is
positively correlated with spring scPDSI in the central part of the YRB, while it is negatively
correlated with scPDSI in the TP. The completely different situation of east and west in
HMA may be related to the reverse phase change trend of snow cover in the east and west
of HMA discovered by Li Peiji [56]. However, the reasons behind this reverse phase change
and the physical mechanism behind the positive correlation between western China and
the YRB need to be further studied.

6. Conclusions

In this paper, by using snow depth and scPDSI, the characteristics of drought and
flood in the YRB in recent 40 years are analyzed, and the relationship between winter snow
depth in HMA and drought and flood in spring and summer in the YRB is analyzed by
using SVD. The main conclusions are as follows:

(1) The distribution of dry and wet in the YRB is basically the same in different seasons,
but the variation trend varies greatly in different regions. The northwest Plateau region
mainly presents a wetting trend, while the northern part of the middle and lower reaches
mainly presents an aridity trend. Meanwhile, the consistency between precipitation and
drought and flood is poor in spring but good in summer, leading to drought and flood
in summer.

(2) There is a good correlation between winter snow depth in HMA and drought
and flood in spring and summer in the YRB, but the correlation is different in spring and
summer. The correlation between east and west of HMA and the YRB in spring is in a
reverse phase, which is basically the same in summer.

(3) When the snow depth is larger (smaller) in the eastern TP and smaller (larger) in
the western Karakoram and Tianshan Mountains in winter, the drought degree is higher
(lower) in the Sichuan Basin and Dongting Lake Basin of the YRB in spring; when the
snow depth in the western Kunlun Mountains and southeast HMA is larger (smaller), the
drought degree in the northern part of the middle and lower reaches is lower (higher).

(4) When the snow depth is larger (smaller) in the whole HMA in winter, especially
in the Kunlun Mountains, Qilian Mountains and Himalayas, the drought degree is lower
(higher) in the northern part of the middle and lower reaches of the YRB in summer.
However, when the snow depth in northern Kunlun Mountains is larger (smaller), the
drought degree in Hengduan Mountains and Yunnan–Guizhou Plateau is higher (lower).

Finally, although there is a correlation between HMA snow cover and drought and
flood in the YRB, the climate is a very complex system in which various meteorological
factors interact and influence each other, and the HMA snow cover is not the only factor
affecting the climate in Asia. Sea surface temperatures (SST) over the equatorial Pacific
and Indian Ocean and the El Nino–southern oscillation (ENSO) also affect the climate in
Asia [57,58]. Therefore, further research is needed to clarify the role of the HMA snow
cover in the drought and flood in the YRB, especially the inverse phase of the impact of
the eastern and western snow cover on the YRB, and the physical mechanism behind the
impact of the western snow cover on the drought and flood in the YRB.
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