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Abstract: The third generation of the Beidou navigation satellite system (BDS-3) broadcasts navigation
signals of five frequencies. Focusing on the deep integration of five-frequency signals, we applied
the joint BDS-3 five-frequency undifferenced and uncombined precise point positioning (UC-PPP) to
analyze the receiver inter-frequency biases (IFB). Firstly, 12 Multi-GNSS Experiment tracking (MGEX)
stations are selected to investigate the time-varying characteristics of receiver IFB and, according to
random characteristics, three random modeling schemes are proposed. Secondly, the effects of three
stochastic modeling methods on zenith tropospheric delay, ionospheric delay, floating ambiguity,
and quality control are analyzed. Finally, the effects of three IFB stochastic modeling methods on
positioning performance are evaluated. The results showed that the amplitude in the IFB for B2b
is 5.139 m, B2a is 1.964 m, and B1C is 0.950 m by measuring one week’s observation data. The
IFB stochastic modeling method based on random walks can shorten the PPP convergence time
by 4~12%, diminish the false alarm of quality control, and improve the positioning accuracy. The
random walk model is recommended to simulate the variation of IFB, which can not only overcome
the disadvantage of the time constant model being unable to accurately describe the time-varying
characteristics of the IFB, but also avoid reducing the strength of the kinematic PPP positioning model
due to the large process noise of the white noise model.

Keywords: third generation of Beidou navigation satellite system (BDS-3); inter-frequency biases
(IFBs); stochastic modeling; undifferenced and uncombined precise point positioning (UC-PPP);
quality control

1. Introduction

In recent decades, global navigation satellite systems (GNSS) guarantee sustainable
positioning, navigation, and timing (PNT) services for global users [1,2]. Previous studies
have shown that multi-frequency positioning can eliminate errors and improve accuracy [3].
The GPS and GLONASS modernization programs’ early plan was to broadcast navigation
signals with three frequencies [4,5]. The third generation of Beidou navigation satellite
system (BDS-3) can broadcast signals with five frequencies [6–8]. Multi-frequency signals
provided by BDS-3 have improved positioning accuracy and reliability [9,10]. In order to
make full use of the frequency resources of satellite navigation systems, it is necessary to
study the inter-frequency bias (IFB) of multi-frequency signals.

Existing research shows that multi-frequency precise point positioning (PPP) technol-
ogy could enhance positioning accuracy and convergence time contraction [11–13]. At the
same time, more system redundancy contributes to better quality control and improves
positioning reliability. Multi-frequency PPP introduces frequency signals inconsistent with
the international geodesy service (IGS) standard products, which inevitably introduce IFBs
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between satellite and receiver [14,15]. Many worldwide scholars focus on the time-varying
characteristics of satellite IFBs and the correction method. Previous research has estab-
lished that the observable-specific biases (OSBs) or differential code biases (DCBs) fixed the
satellite IFBs, products provided by IGS or other organizations [16–19]. At the same time,
the receiver IFBs can be estimated [20]. The satellite IFBs are usually considered stable
because the satellite is equipped with a high-precision atomic clock with high stability and
a relatively simple operational environment. Therefore, the update rate of the satellite IFBs
products provided by various institutions to users is generally one group per day or one
group per month, which can satisfy the requirements of the high-precision positioning
for users [21]. In contrast, for the receiver IFBs, due to the heterogeneous receivers, the
technical routes and technical levels of various manufacturers are distinct. Likewise, there
are many scenarios for users to operate the receiver, so it is challenging to provide unified
external products to correct the receiver IFBs. Nowadays, the influence of the receiver IFBs
was mainly fixed by additional parameters, which are the same as the receiver position and
clock method.

Presently, the stochastic model of the IFBs receiver primarily employs the time constant
model, assuming that the IFBs are stable within one day. Still, there is no study that has
proved the rationality of this assumption. The receiver IFBs stability is associated with
the quality of the receiver clock. The receiver typically utilizes a quartz clock to supply
timing and punctuality for the equipment. At the same time, transitions in the working
environment can also alter clock performance. Therefore, it is not conceivable to assume
that the receiver IFBs is steady within one day. Thus, the rationality of modeling the IFB
using a time constant model must be further verified.

This study analyzed time-varying characteristics among B1C, B2a, and B2b frequencies.
White noise and random walk models to simulate the IFB stochastic modeling and the
influence of the stochastic modeling method on ionosphere, troposphere, and ambiguity
parameters were performed. Finally, we analyzed the effect of different IFB stochastic
models on BDS-3 five-frequency UC-PPP positioning accuracy, convergence time, and
quality-control accuracy.

2. Methods
2.1. Multi-Frequency UC-PPP Model of BDS-3

The raw observation equations for BDS-3 multi-frequency data in the unit of length
from satellite k to station r can be written as follows [22,23]: Pk

i = ρk
r + c

(
tr − tk

)
+ Tk + g2

i Ik + di − dk
i

Lk
i = ρk

r + c
(

tr − tk
)
+ Tk − g2

i Ik + λi

(
Nk

i + bi − bk
i

) (1)

where Pk
i and Lk

i denote the pseudorange and carrier phase on frequency i(i = 1, 2, . . . , n),
respectively; ρk

r is the geometry distance from the satellite to the receiver, which also
includes antenna phase center offset/variations (PCO/PCV), phase windup, and relativistic
effects; Tk is the troposphere delay; Ik

i is the first-order ionosphere delay and g2
i is the

frequency-dependent scaling coefficient; gi = f1
fi

, where fi is the frequency of carrier phase

i; c is the speed of light and λi =
c
fi

is the wavelength; tr and tk denote the physical clock

errors for receiver r and satellite k, respectively; dk
i and bk

i denote the frequency-dependent
pseudorange and carrier phase hardware biases at satellite k, respectively, while di and bi
are those for receiver r; and Nk

i represents the integer ambiguity [24].
The baseline frequencies are defined as the first two frequencies (1 and 2). The

general formula for dual, triple, and multi-frequency observations of BDS-3 is presented as
Equation (1). Without external constraints, the satellite clock offset tk is inevitably affected
by the dk

i of the baseline frequency because of the collinearity between them.
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The IGS precise clock products are estimated with the baseline frequencies of ionospheric-
free observations [25]. Therefore, the precise satellite clock correction is the sum of tk and a
specific linear function of the satellite dk

1 and dk
2 as [26]:

tk
= tk +

(
αdk

1 − βdk
2

)
c

(2)

IGS has released pseudorange hardware-bias correction products [27]. We use Dk
1, Dk

2,
and Dk

i to denote the satellite code OSB corrections for dk
1, dk

2, and dk
i , respectively. The

following relationships hold:
Dk

1 − Dk
2 = dk

1 − dk
2

Dk
1 − Dk

i = dk
1 − dk

i
Dk

1 − dk
1 = Dk

2 − dk
2 = Dk

q − dk
q = Dk

αDk
1 − βDk

2 = 0

(3)

where  α =
g2

2
g2

2−1

β = 1
g2

2−1

(4)

Following correction of the OSB in Equation (1), Equations (2) and (3) are substituted
into Equation (1), and the IGS precise satellite orbit and clock products are applied; the
observation equations are as follows:{

Pk
i = ρk

r + c(tr − tk
) + Tk + g2

i Ik + di

Lk
i = ρk

r + c(tr − tk
) + Tk − g2

i Ik + λi(Nk
i + bi − bk

i )−Dk
(5)

However, due to the collinearity among receiver clock error, hardware delay, and am-
biguity parameters, Equation (5) became undiscoverable. Hence, we reformulate Equation
(5), where the receiver clock parameter absorbs the pseudorange hardware biases, with the
linearized observation equations as:

Pk
1 = uk

r ·x + c(tr − tk
) + Md(ek)·zhd + Mw(ek)·zwd + Ik

Pk
2 = uk

r ·x + c(tr − tk
) + Md(ek)·zhd + Mw(ek)·zwd + g2

2 Ik

Pk
i = uk

r ·x + c(tr − tk
) + Md(ek)·zhd + Mw(ek)·zwd + g2

i Ik
+ hi

Lk
1 = uk

r ·x + c(tr − tk
) + Md(ek)·zhd + Mw(ek)·zwd + Ik

+ λ1Nk
1

Lk
2 = uk

r ·x + c(tr − tk
) + Md(ek)·zhd + Mw(ek)·zwd + g2

2 Ik
+ λ2Nk

2

Lk
i = uk

r ·x + c(tr − tk
) + Md(ek)·zhd + Mw(ek)·zwd + g2

i Ik
+ λi N

k
i

(6)

and 

tr = tr +
(αd1−βd2)

c

Ik
= Ik − β(d1 − d2)

hi = g2
i β(d1 − d2)− (αd1 − βd2) + di

Nk
1 = Nk

1 + b1 − bk
1 −

1
λ1

(
β(d1 − d2) + (αd1 − βd2) +Dk

)
Nk

2 = Nk
2 + b2 − bk

2 −
1

λ2

(
g2

2β(d1 − d2) + (αd1 − βd2) +Dk
)

Nk
i = Nk

i + bi − bk
i −

1
λi

(
g2

i β(d1 − d2) + (αd1 − βd2) +Dk
)

(7)

where “1” and “2” represent the baseline frequencies, and i represents other frequencies;
tr is the reparameterized receiver clock parameters, respectively; ek is the elevation angle
of the satellite k; Mk

d(e) and Mk
w(e) denote the dry and wet mapping functions (GMF),

respectively; zhd and zwd denote tropospheric zenith dry and wet delay, respectively,

with zhd generally accurately corrected by the tropospheric model; Ik
1 denotes the new
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ionosphere delay parameter contaminated by receiver hardware bias; Nk
1, Nk

2, and Nk
i are

new but non-integer ambiguity parameters; and hk
i denotes the IFBs for each pseudo-range

except Pk
1 and Pk

2 .
The parameter vector to be estimated for Equation (6) can be expressed as:

X =
[
x, ctr, zwd, Ik, hi, Nk

1, Nk
2, Nk

i

]
(8)

2.2. Stochastic Modeling for IFB Parameters

When using the reference frequency for dual-frequency PPP data processing, the
pseudorange hardware delay deviation of the receiver is absorbed by the receiver clock
error and ionospheric parameters. When the non-baseline frequency is involved in the
calculation, its hardware delay deviation cannot be absorbed by other parameters. The
receiver deviation can usually reach several 10 ns, which cannot be ignored. The existing
research assumes that the receiver IFB is stable within one day, and it is estimated as a
time constant. Studies have shown that the pseudorange hardware delay is related to the
observed ambient temperature [28]. Therefore, in PPP data processing, it is unreasonable
to estimate IFB using a time constant to process long-term observation data.

In this section, we provide three random modeling methods, including the white noise
model, random walk model, and time constant model [22].

For the white noise process, the IFB parameter can be described as:

IFB f (t) ∼ N
(

0, σ2
)

(9)

where t denotes the epoch. The IFB parameter is considered to be independent and
uncorrelated between epochs. When the IFB variation characteristics are unknown, the
white noise model can be used to model them randomly.

For the random walk model, the IFB is considered to be correlated between epochs,
variance increases linearly with time, and it can be described as:

IFB f (t) = IFB f (t− 1) + ωIFB, ωIFB ∼ N
(

0, σ2
IFB

)
(10)

It is useful when we expect small changes in time.
For the random constant model, the IFB is considered as the time constant changing

with time, which is a special form of the random walk model with process noise of 0; it can
be expressed as:

IFB f (t) = IFB f (t− 1) (11)

3. Data Description and Processing Strategy
3.1. Experimental Datasets

In this section, we mainly introduce the experimental protocol and data. To investigate
the feasibility of IFB stochastic modeling on the performance of BDS-3, observation data
sampled at 30 s on 1 January 2022 from the MGEX tracking network were selected. These
stations are distributed around the world and equipped with receivers from three manufac-
turers, all of which can track B1I, B3I, B1C, B2a, and B2b five-frequency observations of
BDS-3, as shown in Table 1. Figure 1 shows the geographical distribution of the selected
stations with Multi-GNSS tracking capability.

Table 1. The details of the GNSS receivers of the selected stations.

Manufacturer Receiver Type Tracking Station Name

TRIMBLE ALLOY KRGG, CIBG, KIR8
JAVAD TRE_3 POTS, SGOC, WARN

SEPT
POLARX5TR GAMG, NNOR, HARB

POLARX5 MAL2, PTGG, STR1
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Figure 1. Geographical distribution of the 12 global MGEX tracking stations.

3.2. Processing Strategy

The details of the data-processing strategy are given in Table 2. The precise orbit and
clock products from Wuhan University (ftp://igs.gnsswhu.cn/pub/whu/phasebias/2022
/, final products prefixed with WUM accessed on 1 January 2022). To reduce the influence
of undetected pseudorange gross error and cycle slips on PPP, the detection, identification,
and adaptation (DIA) quality-control method is applied [29,30]. When the standardized
residual of the phase observation is greater than 5, the ambiguity of this satellite exceeds
reset as a new parameter. Using DIA quality control in PPP software, we constructed
the ω-test statistic assuming independent observations, and then the ω-test values were
standardized residuals:

ωi =
ε̂i√

Qε̂i (i, i)
(12)

Table 2. The data-processing strategy of BDS-3 UC-PPP for five-frequency observations.

Item Strategy

Observation B1I, B3I, B1C, B2a, B2b
Models UC-PPP

Estimator Kalman filter
Cut-off angle 7◦

Stochastic model Elevation model
Satellite orbit and clock Precise ephemeris and clock products

Code OSBs OSBs file
Priori troposphere Model + GMF

PCO/PCV igs14_2188.atx
Tidal effects Solid tides, ocean tide loading and polar tides

Windup effect Corrected

Inter-frequency biases
IFB1: White noise (104 m2);

IFB2: Random walk (9 × 10−2 m2/s);
IFB3: Random constant

For the carrier phase observation value, when the test quantity exceeds the threshold
(set as 5 in this paper), we reset the ambiguity parameter. Since the BDS GEO satellite can
only observe the signals of B1I and B3I frequencies, the observation data of GEO satellite
are not used in this experiment. The pseudorange and phase standard deviation values of
the BDS IGSO/MEO satellites are set to 0.3 m and 0.003 m, respectively.

In addition, the igs14_2188.atx (https://lists.igs.org/pipermail/igsmail/, accessed
on 1 March 2022) file is used to correct the satellite and station antenna PCO/PCVs for
BDS-3. When the PCO/PCV products of BDS-3 are used to eliminate the corresponding
errors, it is recommended to use the method consistent with the IGS orbit determination.
The position coordinates and clock are modeled as white noise in kinematic PPP modes.

ftp://igs.gnsswhu.cn/pub/whu/phasebias/2022/
ftp://igs.gnsswhu.cn/pub/whu/phasebias/2022/
https://lists.igs.org/pipermail/igsmail/
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The IGS weekly solution is used as the true value of the station coordinates, with the
positioning error the difference between the true value and the estimated coordinates. The
zwd and slant ionosphere delays are estimated as random walk noises with power density
of 5× 10−8 m2/s and 9× 10−4 m2/s, respectively. The estimate of the float ambiguity is
arc-constant until cycle slips.

The three schemes mentioned above are marked as IFB1 (white noise process), IFB2
(random walk process), and IFB3 (random constant process), respectively. The spectral
density of IFB2 is calculated by the square of the inter-epoch variation divided by the
sampling interval. The white noise model is used to estimate the inter-epoch variation of
the receiver IFB time series in the 12 observed stations, with the station coordinates fixed to
known accurate values.

4. Results and Discussion

Through the previous analysis, we conclude that the IFB is composed of pseudorange
hardware delays for the baseline frequencies and non-baseline frequency. The comparison
of IFB estimated by the three dynamic models is first presented. Subsequently, we analyze
the different IFB modeling methods for these parameters in terms of observation residuals,
zenith wet delay, ionosphere delay, and floating ambiguity. Finally, the observation data
of globally distributed tracking stations are used to verify the impact of IFB stochastic
modeling on the positioning performance of multi-frequency UC-PPP.

4.1. The Characteristics of Time Series for IFB

Before analyzing the influence of stochastic modeling for IFB on PPP, we first investi-
gated the time-varying characteristics of IFB. Three methods of estimating IFB are white
noise process, random walk process, and random constant. The one-week time series of
the IFB station with different frequencies are shown in Figure 2. Figure 2a–c represents the
IFB time series of the three frequency points B1C, B2a, and B2b, respectively. In general,
the method of modeling with white noise can better estimate the inter-epoch variation
of parameters. Therefore, we use the estimated IFB by the white noise model to analyze
its temporal characteristics. To accurately estimate the IFB time series, the coordinates
of the tracking station are fixed to known precise values with an accuracy of millimeters.
Therefore, the actual estimated unknown parameters include receiver clock errors, zenith
tropospheric wet delay parameters, and oblique paths. For the ionospheric delay parame-
ters and ambiguity parameters, bidirectional filtering is used to eliminate the influence of
the parameter convergence stage.

As shown in Figure 2, the IFBs of the three frequency points are not stable within one
week. The receiver IFB of frequency observations B1C, B2a, and B2b has periodic changes
in one week, and one period is a day. The variation range of IFB time series at different
frequencies is dissimilar. The maximum frequency is B2b with a standard deviation of
5.139 m; the minimum is B1C with a standard deviation of 0.950 m; and the standard
deviation of B2a is 1.964 m. Therefore, the method of estimating IFB as a time constant
within one day cannot accurately eliminate the effect of IFB. The change in each frequency
point in one week has obvious periodicity, but the inducement of this periodic change
is still unclear and needs further study. The change period of the IFB at each frequency
point is highly consistent, but the change amplitude is slightly different. The B1C and B2b
frequency points have similar and larger change ranges, while the B2a frequency points
have a smaller change range. The IFB time series estimated by the random walk model
and the white noise model is relatively close, with the changes more severe at the peaks
and troughs of the IFB series; for example, around 6 h, 12 h, 18 h, and 24 h, the difference
between these two series is larger than other periods.

After analysis, we know that the IFB is unstable within one day and the variation
range is several decimeters. There are significant differences between the IFB time series es-
timated by different stochastic modeling methods. In theory, these differences will affect the
accuracy of other parameters of the filter, such as the user’s position, ionosphere, and tropo-
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sphere. Therefore, we will analyze the influence of different stochastic modeling methods
of IFB on the multi-frequency undifferenced and uncombined precise point positioning.
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4.2. The Influence of IFB Stochastic Models on Observation Residuals

In this section, we mainly analyze the impact of three IFB stochastic modeling methods
on the observation residuals. The distribution of the observation residuals can reflect the
accuracy of functional models and stochastic models, and residuals also play an important
role in the quality-control process. We first use the static solution mode to preprocess the
observation data, eliminating those values containing pseudorange gross errors. Secondly,
to ensure that the “clean” observation data participates in the processing, the residuals
distribution of observations corresponding to three stochastic models is analyzed. Finally,
the influence of three IFB stochastic modeling methods on gross error detection is analyzed
to provide a reference point for quality control.

The distribution of the residuals approximating a zero-mean normal distribution
indicates the superiority of the model in error correction accuracy. Taking the KRGG
stations as an example, Figures 3 and 4 show the pseudorange and phase residuals of
the five-frequency UC-PPP kinematic model on DOY 001, 2022, where the left and right
figures represent the observation residuals and the probability distribution of residuals,
respectively. In the left figure, different satellites are represented by different colors. In the
right figure, the red line represents the zero-mean probability distribution, indicating the
completeness of the PPP model.

Figure 3 and Table 3 show that for the baseline frequency, the mean and RMS differ-
ences on the pseudorange residuals of three IFB stochastic modeling methods are small,
measuring only millimeters. For other frequencies, three IFB stochastic modeling methods
can result in centimeter-level differences on pseudorange residuals. The mean and RMS
of the pseudorange residuals are the same for the white noise and random walk models.
The distributions of the pseudorange residuals between the white noise and random walk
models and the time constant model are significantly different, with the mean differences
being in centimeters, while the RMS differences are small. The mean value of the first two
stochastic modeling methods is closer to 0 and the performance is better.
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walk model is the closest to 0, with the RMS smaller than other models. The IFB stochastic 
model has little influence on the distribution of the carrier phase residual, which is less 
than the millimeter level. In terms of the residuals distribution, the random walk model 
has better performance. 

Figure 3. The pseudorange residuals for BDS-3 UC-PPP of IFBs for stochastic modeling of random
constant for station KRGG on DOY 001, 2022. The residuals of each satellite are represented with
different colors. The right part of each subfigure shows the histogram of the residuals and the fitted
normal density function (red line).
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Table 3. The means and RMS of the pseudorange residuals among different IFCB handling schemes.

Observation
Mean (m) RMS (m)

IFB1 IFB2 IFB3 IFB1 IFB2 IFB3

B1I 0.040 0.040 0.037 0.314 0.314 0.316
B3I 0.006 0.006 0.006 0.215 0.214 0.214
B1C 0.016 0.016 0.033 0.215 0.218 0.223
B2a −0.017 −0.017 −0.027 0.173 0.175 0.177
B2b −0.025 −0.025 −0.026 0.223 0.224 0.228

As shown in Figure 4 and Table 4, the carrier phase residuals of three IFB stochastic
modeling methods have small differences, with the mean difference less than 1 mm, while
the RMS difference is the largest at 1.38 mm. The RMS of the carrier phase residual in
the random walk model is the smallest, followed by the white noise model, with the time
constant model the largest.

Table 4. The means and RMS of the phase residuals among different IFCB handling schemes.

Observation
Mean (mm) RMS (mm)

IFB1 IFB2 IFB3 IFB1 IFB2 IFB3

B1I −1.07 −1.11 −1.10 8.70 7.04 8.16
B3I −0.97 −1.01 −1.00 8.77 7.45 8.20
B1C −0.93 −0.97 −0.97 8.73 7.43 8.20
B2a −1.03 −1.07 −1.06 8.66 7.35 8.13
B2b −0.88 −0.92 −0.91 8.38 7.01 7.81
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It can be seen that the IFB stochastic model can lead to large changes in the pseudor-
ange residuals distribution of non-baseline frequencies, with a mean difference of several
centimeters. The mean value of the pseudorange residual corresponding to the random
walk model is the closest to 0, with the RMS smaller than other models. The IFB stochastic
model has little influence on the distribution of the carrier phase residual, which is less
than the millimeter level. In terms of the residuals distribution, the random walk model
has better performance.

The residuals distribution of observations evaluates the accuracy of the model for
statistical significance. The residuals are approximately closer to the normal distribution
the more accurate the model is. Observation residuals also affect quality control. It can be
seen from the previous analysis in this section that the IFB stochastic model mainly affects
the pseudorange residual and has little effect on the carrier phase residual.

Although the contribution of pseudorange is much smaller than that of the carrier
phase in the positioning process, the current quality-control methods are all based on
standardized residuals, for instance, the DIA quality-control process and the IGG (Institute
of Geodesy and Geophysics) [31,32] scheme. In these quality-control methods, the residual
of the pseudorange has the same state as the residual of the carrier phase after variance
normalization, so even a small gross error in the pseudorange may start the quality-
control process.

The overall test is typically used for the detection of gross errors in the DIA quality-
control method. The test statistic read as:

Tm−n =
ε̂TQ−1

yy ε̂

m− n
(13)

where ε̂ denotes the post-test residuals, Qyy is the variance of observations, m is the number
of observations, and n is the number of parameters to be estimated. With a critical level
α, if Tm−n < F1−α(m− n, ∞), the null hypothesis that there are no outliers is accepted;
otherwise, the hypothesis that the outlier exists in the observations is accepted. Since we
have gone through data preprocessing, gross errors are eliminated. Therefore, in theory, all
statistical values satisfy Tm−n < F1−α(m− n, ∞). We chose the 95% confidence level and
counted the false-alarm rate, with the false-alarm rates of 12 observation stations shown in
Table 5.

Table 5. False-alarm rate of overall test for three IFB stochastic modeling methods.

Station
False Alarm (%)

IFB1 IFB2 IFB3

KRGG 0.67 0.45 1.12
CIBG 0.07 0.07 0.14
KIR8 0.83 0.42 0.83
POTS 0.00 0.00 0.14
SGOC 11.43 9.87 12.01
WARN 0.00 0.00 0.14
GAMG 0.07 0.00 0.10
NNOR 0.94 0.70 0.94
HARB 0.07 0.00 0.17
MAL2 6.91 6.77 7.12
PTGG 0.17 0.14 0.17
STR1 0.07 0.07 0.14
Mean 1.77 1.54 1.92

The false-alarm rates of 12 observation stations demonstrate that the time constant
model has the highest false-alarm rate, and this phenomenon exists in most of the stations.
The false-alarm rate of some sites is comparable to the time constant model when we use
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the white noise model. The false-alarm rate of the random walk model is the lowest among
all stations. The mean false-alarm rates are shown in Table 5.

In general, the false-alarm rates corresponding to three IFB stochastic models are
quite different. The time constant model has the highest false-alarm rate, followed by the
white noise model, with the random walk model the smallest. This indicates that although
the white noise model can accurately estimate the change in IFB, the larger process noise
reduces the strength of the kinematic PPP positioning model and causes a higher false-
alarm rate. The random walk model obtains a lower false-alarm rate, with a possible
explanation for this being that the IFB value obtained based on the time-varying model
could approximate the actual value. Another possibility for the reduced false-alarm rate is
that the PPP positioning model has preserved intrinsic high strength.

4.3. The Influence of IFB Stochastic Models on ZWDs, Slant Ionospheric Delays, and Ambiguities

This section discusses the influence of the IFB stochastic model on zenith tropospheric
delay, slant ionospheric delay, and floating ambiguity. Figure 5a shows the zenith wet
delay at the KRGG station. The difference in the zenith wet delay calculated by three
IFB stochastic models is extremely small, in the order of millimeters. Figure 5b is the
ionospheric delay error of two MEO satellites, C19 and C20, and two IGSO satellites, C39
and C40. The ionospheric difference calculated by the three stochastic modeling methods is
small and is millimeter-level. The floating ambiguities of the two MEO satellites, C19 and
C20, and the two IGSO satellites, C39 and C40, are shown in Figure 5c; it demonstrates that
the impact of three IFB modeling methods on the floating ambiguity is negligible. The IFB
stochastic model has little influence on the troposphere, ionosphere, and ambiguity.

4.4. The Influence of IFB Stochastic Models on PPP Performance

The performance of kinematic PPP was evaluated by convergence time and positioning
accuracy, with 24 h observation data of each station applied. If the 3D positioning error
of the current epoch and the following 20 epochs were less than the predefined threshold,
we define this epoch as “convergence”. In this paper, we define the threshold as 1 dm.
The positioning errors of UC-PPP for station KRGG on DOY 001, 2022, are presented in
Figure 6.

It can be seen from Figure 6a that the E direction of the KRGG station takes a long time
to converge, while the other two directions converge to higher accuracy in a very short time.
Among three IFB stochastic models, the random walk model has the shortest convergence
time, followed by the white noise model and then the time constant model. The kinematic
PPP positioning accuracy of three IFB stochastic models has little difference. As shown in
Figure 6b, after the parameters converge, there are differences in the positioning accuracy
of three IFB stochastic models, but the overall difference is small. IFB mainly affects the
pseudorange and has a greater impact on the convergence time. This section has a consistent
conclusion with other scholars on the relationship between pseudorange accuracy and PPP
convergence time.

We conducted kinematic PPP positioning tests on the positioning accuracy and con-
vergence time of 12 stations. Figure 7 and Table 6 summarize the obtained positioning
accuracy, while Figure 8 and Table 7 illuminate the convergence time.

We can see that there are differences in the positioning accuracy of the PPP data-
processing schemes corresponding to three IFB stochastic models, but the overall difference
is small. Among the three schemes, the random walk model has the highest positioning
accuracy. The accuracy of the white noise model and the time constant model is basically
the same. Although the white noise model has an advantage in the estimation accuracy of
IFB, the larger process noise reduces the overall strength of the positioning model, resulting
in no substantial improvement in the positioning accuracy. The time constant cannot
accurately describe the time change of IFB, which leads to a decrease in the positioning
accuracy in some periods, especially during the convergence period and when a large
number of ambiguity parameters reconverge. The random walk model not only accurately
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describes the temporal variation of IFB, but also ensures the strength of the kinematic PPP
positioning model with low process noise, so the positioning accuracy is the highest among
the three models.
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ZWDs of for station KRGG. Subfigures (b,c) are the slant ionospheric delays and float ambiguities of
MEO satellites C19 and C20 and IGSO satellites C39 and C40, respectively.
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Figure 7. The positioning errors of UC-PPP for different schemes. Subfigure (a) is used to represent
the stations whose positioning accuracy is greater than 0.1 m, and subfigure (b) is for other stations.

Table 6. The 3D positioning accuracy of UC-PPP for different schemes.

Station
E/m N/m U/m

IFB1 IFB2 IFB3 IFB1 IFB2 IFB3 IFB1 IFB2 IFB3

KRGG 0.024 0.024 0.026 0.013 0.012 0.013 0.077 0.077 0.080
CIBG 0.050 0.050 0.050 0.026 0.025 0.025 0.077 0.078 0.080
KIR8 0.024 0.024 0.030 0.012 0.012 0.013 0.050 0.050 0.059
POTS 0.019 0.019 0.019 0.022 0.022 0.022 0.039 0.039 0.043
SGOC 0.085 0.084 0.086 0.049 0.043 0.053 0.094 0.090 0.099
WARN 0.024 0.024 0.024 0.013 0.013 0.013 0.040 0.040 0.043
GAMG 0.020 0.020 0.020 0.035 0.032 0.035 0.094 0.091 0.097
NNOR 0.028 0.021 0.027 0.023 0.023 0.023 0.085 0.084 0.088
HARB 0.036 0.036 0.037 0.025 0.025 0.025 0.093 0.090 0.093
MAL2 0.018 0.018 0.018 0.021 0.021 0.021 0.077 0.077 0.079
PTGG 0.073 0.072 0.073 0.021 0.021 0.022 0.096 0.096 0.099
STR1 0.026 0.026 0.026 0.030 0.030 0.030 0.096 0.091 0.096
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Figure 8. The convergence time of UC PPP for different schemes. Subfigure (a) is used to represent
the stations whose convergence time is greater than 20 min, and subfigure (b) is for other stations.

Table 7. The convergence time of UC PPP.

Station
Convergence Time [min]

IFB1 IFB2 IFB3

KRGG 57.5 51.0 58.0
CIBG 14.5 14.0 14.5
KIR8 10.5 10.0 11.0
POTS 22.5 21.0 23.0
SGOC 38.0 35.0 38.0
WARN 50.0 45.0 50.5
GAMG 27.5 25.0 27.5
NNOR 12.5 12.0 12.5
HARB 16.0 14.0 16.0
MAL2 17.0 17.0 17.0
PTGG 21.0 19.0 20.0
STR1 9.5 8.0 8.5

There are differences in the convergence times of the BDS-3 five-frequency uncombined
PPP obtained by the three stochastic modeling schemes, with the data-processing scheme
corresponding to the random walk model having the shortest convergence time. Compared
with the white noise model, the random walk model shortens the convergence time by
about 4~12%. The convergence times of the data-processing schemes corresponding to
the white noise model and the time constant model are basically the same. At the STR1
station, the convergence time was longer in the white noise model compared with the time
constant model. The reason for this phenomenon is that the number of available satellites
in the observation data is low. The white noise model further reduces the strength of the
kinematic PPP positioning model, resulting in a longer convergence time.

Therefore, when the solution involves enough satellites, the random walk model can
slightly improve the positioning accuracy and shorten the convergence time by about 4~12%.

5. Conclusions

This paper mainly analyzes the impact of different IFB stochastic models on undif-
ferenced and uncombined precise point positioning. We deduced that the IFB is mainly
composed of the pseudorange hardware delay of the baseline frequency and pseudorange
hardware delay of the corresponding frequency from the original observation equation,
and analyzed the time-varying characteristics of the B1C, B2a, and B2b triple-frequency
IFB by using the BDS-3 observation data. We evaluated the impact of three stochastic
modeling methods on positioning performance. Using the random walk model to simulate
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the IFB can shorten the convergence time to a certain extent, reduce the false-alarm rate
of the quality-control process, and improve the positioning accuracy. The random walk
model is recommended to simulate the variation of IFB, which can not only overcome
the disadvantage of the time constant model being unable to accurately describe the time-
varying characteristics of the IFB, but also avoid reducing the strength of the kinematic PPP
positioning model due to the large process noise of the white noise model.
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