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Abstract: In the present study, a daily model is proposed for estimating the near-surface NO2

concentration in China, combining for the first time the Random Forest (RF) machine learning
algorithm with the tropospheric NO2 columns from the TROPOspheric Monitoring Instrument
(TropOMI) satellite and meteorological and NO2 data of surface sites in China for the year 2019.
Furthermore, near-surface NO2 concentration data of ground sites during the COVID-19 outbreak
from 1–5 February 2020 were used to verify the developed model. The daily model was verified
by the ten-fold cross-validation method, revealing a coefficient of determination (R2) of 0.78 and
root-mean-square error (RMSE) of 7.04 µg/m3, which are reasonable and also comparable to other
published studies. In addition, our model showed that near-surface NO2 in China during the COVID-
19 pandemic was significantly reduced compared with 2019, and these predictions were in good
agreement with reference ground data. Our proposed model can also provide NO2 estimates for areas
in western China where there are few ground monitoring sites. Therefore, all in all, our study findings
suggest that the model established herein is suitable for estimating the daily NO2 concentration
near the surface in China and, as such, can be used if there is a lack of surface sites and/or missing
observations in some areas.

Keywords: Random Forest; NO2; TropOMI; near-surface pollution; remote sensing

1. Introduction

Nitrogen oxides (NOx) are an important trace gas in the atmosphere for a variety of
atmospheric pollutants, and all forms of combustion result in the release of NOx [1,2]. They
have a short life span (existing in the atmosphere for 1–12 h) [3], but they play a key role in
the process of photochemically induced ozone (O3) catalysis, which leads to summertime
smog and elevated levels of global tropospheric O3 [4,5]. The two main types of NOx are
nitric oxide (NO) and nitrogen dioxide (NO2) [6]. The large amounts of NOx emissions
in China have resulted in high concentrations and a high increase rate of tropospheric
NO2—much higher than those in other countries and regions [7]. As an air pollutant, NO2
is a brownish-red toxic and pungent gas at high temperatures and is an important indicator
of air quality at ground level [8]. At high concentrations it causes adverse effects on human
health, climate change and the ecological environment [9–11].

In recent years, due to increasingly severe environmental pollution, compared with
the tropospheric NO2 concentration monitored by satellites, the near-surface NO2 con-
centration is more closely related to human life and the ecological environment and has
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therefore been a key area of study. In this respect, due to the specific regional limitations
related to the monitoring of NO2 concentrations at ground sites, research on the spatial
distribution of near-surface NO2 concentrations has attracted more and more attention.
Exploiting tropospheric NO2 column concentration data available from satellite products, a
few research studies have confirmed that there is a certain correlation between tropospheric
NO2 column concentrations and near-ground-monitored NO2 concentrations [12–14]. On
this basis, Lamsal et al. [15] estimated the near-surface NO2 concentration in North America
using the local scale factor obtained from a global three-dimensional model (GEOS-Chem)
and the tropospheric NO2 column concentration retrieved by the Ozone Monitoring In-
strument (OMI) [16,17] on board the Aura satellite platform. The authors reported that the
difference between winter and spring was higher than that between summer and autumn,
which proved there was a seasonal difference in NO2 concentration. The authors reported
a correlation coefficient (CC) of 0.86 with even higher values in heavily polluted areas.

Considering the continuous reduction in the number of ground-based NO2 concentra-
tion monitoring sites, satellite remote sensing may become the most effective method to
monitor NO2 concentrations. It is also found that the NO2 concentration in the boundary
layer may play a major role in the tropospheric NO2 column concentration in polluted
areas [18,19]. For instance, the tropospheric NO2 column concentration retrieved by the
Global Ozone Monitoring Experiment (GOME) [20] and Scanning Imaging Absorption
Spectrometer for Atmospheric Chartography (SCIAMACHY) [21] was found to be closely
related to quantities of NOx emissions at the land surface [22,23]. Some researchers have
also reported an important relationship between the near-ground monitoring of NO2 con-
centrations and GOME’s tropospheric NO2 column concentration [24,25]. Qin et al. [26]
evaluated the ability of four methods to estimate the near-surface NO2 concentration in
eastern China through OMI’s tropospheric NO2 column concentration data—namely, the
least-squares method, geographically weighted regression, time-weighted regression, and
geographic time-weighted regression. The authors reported the geographic time-weighted
regression method as the most promising one. Some researchers have also worked on the as-
sumption that there is a close relationship between near-surface NO2 concentrations and the
tropospheric NO2 column monitored by satellites, which may be due to two reasons. One
is that human activities are mainly concentrated near the surface, so the ground-level NO2
column concentration is the main source of the tropospheric NO2 column concentration.
The other reason is the short lifetime of near-surface NO2, resulting in little transmission in
both vertical and horizontal directions [24,27]. Bechle et al. [28] used the tropospheric NO2
column concentration product monitored by the OMI to further estimate the near-surface
NO2 concentration on the basis of scaling factors (surface-to-column ratios). Comparing
the results with ground-monitored NO2 data, it was found that the annual average devi-
ation was 13% and the seasonal deviation was between 1% and 22%. In another study,
Gu et al. [29] combined the whole-layer NO2 column concentration product monitored
by the OMI with the NO2 profile simulated by the Community Multi-scale Air Quality
(CMAQ) [30] model to obtain the NO2 concentration near the ground, and compared the
results with the ground-monitored data of China’s National Environmental Monitoring
Center (CNEMC). A correlation of 0.75 between the CMAQ model alone and ground mea-
surements was found, which increased to 0.80 and 0.78 for January and July, respectively,
after adding satellite data. Based on data such as TropOMI TCD NO2, Ghahremanloo
et al. [31] used Deep Convolutional Neural Networks (CNN), Support Vector Machine
(SVM), Random Forest (RF) and Multiple Linear Regression (MLR) methods to obtain
a model of daily near-ground NO2 concentration in Texas, USA, and finally concluded
that the Deep CNN model estimated the best results, with a correlation coefficient (R) of
0.91, an index of agreement (IOA) of 0.95, and a mean absolute bias (MAB) of 1.75 ppb.
Chen et al. [32] compared the ability of three different methods to estimate the daily NO2
across mainland China during 2014–2016, and it turned out that the kriging-calibrated
satellite method was the best, with model R-squared and root mean square error (RMSE) of
0.85 and 7.87 µg/m3. Lee et al. [33] estimated daily ground-level NO2 concentrations in
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New England, USA for the period 2005–2010 using a space-bound land-use regression of
NO2 density in the tropospheric column from the OMI. A mixed effects model showed a
reasonably high predictive power for daily NO2 concentrations (cross-validation R2 = 0.79).

In purview of the above, the present study aims at: (1) establishing a daily model suit-
able for estimating near-surface NO2 concentrations in China, combining for the first time
the RF machine learning (ML) method and the tropospheric NO2 concentration product
of the high-resolution TROPOspheric Monitoring Instrument (TropOMI). The proposed
method also utilizes meteorological forecast data from the Global Forecast System of the
National Centers for Environmental Prediction (NCEP/GFS), normalized difference vegeta-
tion index (NDVI) data from the Moderate Resolution Imaging Spectroradiometer (MODIS),
and date, longitude, latitude and other auxiliary data of the same period; (2) comparing
predictions of the proposed model with the monitored values at ground sites during the
COVID-19 outbreak in 2020 to verify its accuracy and timeliness. The model developed
herein is suitable for estimating daily concentrations of near-surface NO2 in China and can
successfully address issues arising from the limited number of ground sites and missing
observations in some areas.

2. Dataset Construction
2.1. Data Preparation
2.1.1. TropOMI Data

This study uses the TropOMI offline version of the tropospheric NO2 column concen-
tration L2 product based on the inversion of differential absorption spectroscopy released
by the European Space Agency (ESA). TropOMI is a tropospheric observer carried on board
the Sentinel-5P satellite launched by the European Space Agency (ESA) on 13 October 2017.
This satellite is a solar synchronous orbit satellite operating at an altitude of 824 km from
the ground, with an operation cycle of 17 days [34]. Since 6 August 2019, TropOMI has had
a spatial resolution of 7 km × 3.5 km, improved from the 5.5 km × 3.5 km prior to that
date. The latter allowed monitoring the composition of various trace gases in the global
atmosphere effectively, thereby strengthening the monitoring of clouds and aerosols [35,36].
TropOMI has two kinds of tropospheric NO2 products. One is a near-real-time product,
which allows users to obtain the imaging data of an area within 4 h after the satellite has
scanned that area. This option facilitates researchers to understand the spatial distribution
characteristics of pollutant concentrations in a timely manner and further study and ana-
lyze the pollutant situation in an area [37,38]. The other is an offline product that allows
satellite data to be downloaded from the official website within a few days.

A comparison of the main parameters between the tropospheric NO2 column concen-
tration L2 product of TropOMI and other satellite sensor products is provided in Table 1.
As can be seen, the TropOMI NO2 column concentration L2 product represents an improve-
ment over the inversion method of the OMI L2 product; it also improves the wavelength
calibration of the L1 data spectrum. In addition, the fitting result of the NO2 column
concentration can be improved by adding equal trace gases into the fitting. TropOMI con-
firms the best fitting based on ensuring that the error and root-mean-square error (RMSE)
of the NO2 inclined column are reduced and the auxiliary trace gas that significantly
improves the degree of fitting is included [39]. Subsequently, improvements have been
made in stratospheric tropospheric separation and the calculation of atmospheric quality
factors [40].

In this study, the part of the TropOMI tropospheric NO2 column concentration dataset
in which the quality of the data exceeds a certain threshold [(qa_values) > 0.75] is selected,
which excludes those pixels in which snow/ice-covered areas were observed or the data
include incorrect values.
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Table 1. NO2 inversion algorithm of TropOMI compared with previous sensors(Adapted with
permission from Ref. [41]. 2017, Gu, J.; Chen, L.; Yu, C.; Li, S.; Tao, J.; Fan, M.; Xiong, X.; Wang, Z.;
Shang, H.; Su, L.).

TropOMI OMI GOME-2 SCIAMACHY

Wavelength range (nm) 405–465 405–465 425–450 426.5–451.5

Secondary trace gases O3, H2Ovap, O2-O2,
H2Olip

O3, H2Ovap, O2-O2,
H2Olip

O3, H2Ovap, O2-O2 O3, H2Ovap, O2-O2

False absorber Ring Ring Ring Ring

Fitting method Non-linear Non-linear Linear Linear

Polynomial term number 5 5 3 2

Polarization calibration No No No Yes

2.1.2. Meteorological Data

The RF machine learning model established in this study uses meteorological data
in 2019. Those include the temperature at 2 m height, the humidity at 1000 hPa, the
zonal (U) and meridional (V) components of the wind, the atmospheric boundary layer
height, and NDVI (shown in Table 2). Among them, the temperature, relative humidity, U
and V wind components, and the height of the atmospheric boundary layer are from the
reanalysis grid data of NCEP/GFS. Since they need to match the transit time of TropOMI
in China (12:00–15:00 daily), the forecast meteorological data used are 0.25◦ × 0.25◦ grid
data obtained by integrating 6 h of daily GFS data.

Table 2. Meteorological parameters used in modeling.

Name Unit Abbreviation

Temperature at 2 m height ◦C T
Relative humidity at 2 m height % RH

U component of wind at 2 m height m/s Ugrd
V component of wind at 2 m height m/s Vgrd

Boundary layer height m PBLH
Normalized vegetation index - NDVI

The NDVI data are from the spectral reflectance data of MODIS carried on board the
Aqua satellite. As an afternoon detection satellite, Aqua flies from north to south and passes
over the equator at around 13:30 local time every day. MODIS has a total of 36 spectral
channels and the scanning spatial resolutions are mainly 250 m, 500 m and 1000 m. The
primary data for calculating the NDVI are from the satellite data with 1 km resolution
corrected by the MODIS sensor, and the NDVI calculation is as follows:

NDVI =
ρNIR − ρRed
ρNIR + ρRed

, (1)

where ρNIR is the reflectivity in the near infrared band and ρRed is the reflectivity of the red
light band.

2.1.3. Ground Monitoring Station Data

The ground-monitored NO2 concentration data used in this study are from the hourly
data provided by CNEMC air quality real-time release platform. The research period is
from 1 January to 31 December 2019. In this year, there were 1604 ground sites in China
from January to May. After May, a number of ground monitoring sites were newly built,
and the number of ground monitoring sites from June to December reached 1641.
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2.2. Ground and Satellite Data Quality Control

Quality control of both ground and satellite data is required before modeling. For the
ground data, the sites with CCs higher than 0.15 were ultimately selected. Moreover, errors
higher than three times the standard deviation were omitted. For the satellite data the part
of the TropOMI tropospheric NO2 column concentration dataset in which the quality of the
data exceeds a certain threshold, i.e., qa_values > 0.75, was selected.

2.2.1. Ground Data Quality Control

This study takes the NO2 concentration data monitored by ground sites as the target
value, i.e., the near-surface NO2 concentration, so the reliability of the ground site data is
particularly important. Therefore, before modeling, it is necessary to screen the ground site
data in China in 2019 and select the ground sites most suitable for modeling.

According to the data of ground monitoring sites in 2019, there are 1605 sites in China
from January to May and 1644 sites from June to December. Therefore, in accordance
with the provisions of Environmental Air Quality Indicators for monitoring data, the site
results in China for every day in 2019 were screened and 1641 ground sites were ultimately
determined for calculation. Since TropOMI passes through China at around 13:30 (Beijing
time) every day, the hourly data of the ground sites from 12:00 to 15:00 were selected to
calculate the average concentration of the NO2 concentration at a particular site on that
day to match with the satellite products. The matching method for geographical location
involved matching the satellite data at each ground site by using the inverse distance
weighting interpolation method within a 0.1◦ longitude and latitude range of the ground
site. After the quality control and matching of the ground monitoring data, the correlation
between the daily concentration results of various sites in China in 2019 and the daily
tropospheric NO2 products retrieved by satellite was calculated. Since new sites were
added after May, the number of days for some sites is less than one year. The distribution
of CCs for 1641 sites in China in 2019 is shown in Figure 1, in which the ordinate represents
the value of CC and the abscissa represents the station serial number. It can be seen that
the correlation is a mix of high and low values, with the CC of some sites reaching close to
1, but others showing basically no correlation. All figures in this study are made using the
visualization package in Python [42–44].
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Figure 1. Correlation coefficient (CC) distribution of ground daily NO2 concentration results and
TropOMI products for 1641 sites in China in 2019.

The statistical results of the correlation distribution presented in Figure 1 are detailed
in Table 3. The number of sites with CCs in different intervals were counted, and the CCs
were divided into five grades, as follows: (i) the absolute value of the CC (|r|) is greater
than 0.7; (ii) |r| is higher than 0.5 and less than 0.7; (iii) |r| is higher than 0.15 and less
than 0.5; (iv) |r| is less than 0.15; and (v) the CC cannot be calculated because of missing
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data throughout the year. According to these results, it can be seen that most sites in China
are concentrated in the CC range of higher than 0.15 and less than 0.5, and less than 0.15.
There are 28 sites with CCs higher than 0.7, while there are 133 sites without correlation.

Table 3. Distribution of correlation coefficient (CC) values among 1641 sites.

Range |r| > 0.7 0.5 ≤ |r| < 0.7 0.15 ≤ |r| < 0.5 |r| < 0.15 Nan

Number of sites 28 134 801 545 133

The spatial distribution of different CCs in China is illustrated in Figure 2a–d, which
shows the CCs higher than 0.7, higher than 0.5 and less than 0.7, higher than 0.15 and less
than 0.5, and less than 0.15, respectively. There are 28 ground sites with CCs higher than 0.7,
mainly distributed in Central China (Box1) and Yunnan (Box2), and relatively few in areas
with serious near-surface NO2 pollution. The sites with CCs higher than 0.5 and less than
0.7 are basically distributed in Southwest China (Box3), where the pollution (particularly in
Sichuan and Chongqing) is also relatively serious. However, there are many sites in the
latter two grades (i.e., higher than 0.15 and less than 0.5, and less than 0.15), and they are
randomly distributed throughout China and involve all cities. Therefore, according to the
results shown in Figure 2 and Table 3, the sites with CCs higher than 0.15 were ultimately
selected as the research object for modeling.
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In 2019, a total of 963 ground monitoring sites were selected in China as the target value
for modeling, and several of them were randomly selected to study the NO2 concentration
distribution of these ground sites, all of which were subject to quality control according
to the distribution. Figure 3 shows a comparison before and after quality control of three
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sites chosen randomly in China. From the distribution of the annual concentration of sites
before quality control on the left, it can be seen that the first and second sites, which are
the ground data sites, have days when the near-ground NO2 pollution concentration is
considerably higher than on other days. In particular, in the first site, there is a significant
difference between the abnormal large value of individual days and the concentration of
adjacent days. The third site has multiple days with serious pollution at the same time,
inferring that there may be a trend of more serious pollution in this area. In view of the
above, errors higher than three times the standard deviation were omitted to eliminate
anomalies from instrument failure or human error, which may otherwise have affected the
modeling data quality [45]. Specifically, values were eliminated by calculating three times
the standard deviation of the NO2 concentration of the site in one year, and the three panels
on the right show the results after elimination. It can be seen that the site concentration
after quality control is much smoother and there are days with very high NO2 pollution.
Therefore, this quality control method does not eliminate all days with serious pollution,
which also hinders the process of machine learning. Therefore, herein, the data of all of the
963 ground sites in China in 2019 that reached this error threshold were eliminated to make
the model target value more accurate.
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2.2.2. TropOMI Data Quality Control

As mentioned, TropOMI provides both a near-real-time and an offline tropospheric
NO2 product. The offline product can provide long time series of data that can be used
to model training samples. However, the data are delayed by 10 days, meaning the
established model cannot estimate the near-surface NO2 concentration on the day of
satellite observation. Conversely, the near-real-time data can be obtained 4 h after the
detector scans a particular region on that day. However, the disadvantage is that this
product cannot provide long-term data for modeling and generally only the data of the
current month can be obtained from the website. Taking into account the relative strengths
and limitations of the two products, it was decided that this study should use swath data
(offline) for modeling. Then, the near-real-time data could be input into the established
model to estimate the near-surface NO2 concentration on that day.

The date of 16 August 2019 was selected randomly in this study to compare the two
kinds of data in China, and data with quality assurance (qa)_values less than 0.75 for
both kinds of data at the same time were excluded. The results are shown in Figure 4,
from which we can see that the regions eliminated by the two kinds of data are basically
consistent. It can further be seen from Table 4 that the maximum and average values of
the two data types in China are basically the same, and the median difference is also very
small, which is 0.156 mol/cm2. In general, there is little difference between the spatial
distribution and concentration distribution of the two kinds of data in China. The near
real-time tropospheric NO2 concentration data can be input into the model established by
using the whole orbit, which makes the model highly effective.

Table 4. Statistic comparison of TropOMI’s two types of tropospheric NO2 column products.

Maximum (mol/cm2) Average (mol/cm2) Median (mol/cm2)

Near-real-time 40.529 1.168 1.031

Offline 39.715 1.012 0.875
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2.3. Data Set Generation

After the screening and quality control of the ground monitoring sites, a total of
963 sites were selected as target sites for modeling in China in 2019. The TropOMI tro-
pospheric NO2 products and meteorological forecast data provided by NCEP/GFS were
selected according to these 963 ground sites in China.

Satellite data of tropospheric NO2 with qa values > 0.75 were selected according to the
TropOMI user manual. The meteorological data from the NCEP/GFS dataset predicted
for 6 h at 00:00 (coordinated universal time) every day were selected and then changed to
Beijing time to obtain the meteorological data at 14:00 each day. The timing of the satellite’s
scanning transit through China is 12:00–15:00 every day and the NCEP/GFS data are within
this time period. The NCEP/GFS data used include the temperature at 2 m height, relative
humidity, U and V wind components at 2 m height, and boundary layer height. Since
the distribution of vegetation also has an impact on the NO2 concentration, Level 1 data
observed by MODIS were used to calculate the NDVI. The MODIS sensor passes over
China at about 13:00 each day. According to the inverse distance weighting interpolation
method, the NCEP/GFS forecast data and the NDVI data calculated by MODIS were
matched for modeling near the 963 ground sites and within a 0.1◦ longitude and latitude
range. When establishing the stochastic RF machine learning model, in addition to the
above meteorological factors, the days of the modeling date in a year and the longitude
and latitude information of the 963 monitoring sites after matching were also added.

Next, the ground monitoring site data on the 10th and 20th of each month in 2019
were selected, giving a total of 7959 effective values. These data were then used as matched
sample data, all factors affecting their change were used as explanatory variables, and the
daily NO2 concentration of the ground site was used as the dependent variable to build an
RF regression model. The model divides the training set and test set according to a ratio of
3:1. The divided training set has 5989 data values and the test set has 1990 data values.

3. Methods
3.1. Random Forest (RF) Algorithm Implementation

The RF method originated from the random decision forest method proposed by
Breiman [46] in 2001, which is based on the earlier decision tree model and can rapidly
classify data. However, due to it being unable to achieve the desired effect in follow-up
machine learning research, Breiman combined the method with his own earlier idea of
“bagging”. He then carried out random repeated sampling in a range to ultimately obtain
the newly proposed RF machine learning algorithm [47]. As an ensemble machine learning
model, this algorithm needs to learn the subset model of the trained weak classifiers for
many iterations, then combine these weak classifiers and finally vote on each subset or
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take their average value to obtain the final result of the model. RF can be divided into
two types—a classified response variable (classifier) and a continuous response variable
(regressor) [48]. RF is based on bootstrap sampling to train the samples to be learned.
According to different classifiers, the best subset in each subsection is determined to divide
the nodes in the decision tree. The principle of bootstrap sampling is based on random and
repeated sampling, so the probability of each sample being sampled is the same. Even if
the sample is not sampled in the last sampling, the probability it will still be sampled in the
next sampling is the same. According to the calculation, in each extraction, the data with a
probability of about 36.8%( 1

e ) will not be extracted as samples, and this part of the data is
also called “out of bag” data [48]. In addition, the algorithm can also give the importance
of each explanatory variable. The higher the importance value, the more significant the
explanatory variable is in estimating the target variable [49].

Due to the high accuracy and generalization of the model results of the overall learning
of the RF learning model, it breaks through the single decision-making of the model
determined by only one decision tree. Thus, the training method of one result is determined
by multiple decision trees, which also makes the model less prone to over-fitting. This
allows the prediction results to not only improve the accuracy but also to perform robustly,
especially when there is high dimensionality in the data. Therefore, the machine learning
model can better train the learning and predict the results after input [50]. In short, the
prediction accuracy of the RF model is high [51], and it can deal with outliers and noise
well. This explains the model’s use in various scientific fields [52,53]. The RF algorithm
computational package used in this study is provided by Scikit-Learn in Python, which
contains the RF function [54–56].

In this study, a daily model for estimating the near-surface NO2 concentration in China
based on the RF algorithm was established and analyzed. The main steps are as follows:
(1) establishing training and test data sets (Section 2: Data sets are created while selecting
data and performing quality control.); (2) feature selection (Section 4.1); (3) using a machine
learning library to build the platform of RF (Section 4.2); (4) model verification (Section 5).

3.2. Evaluation Procedure

Considering that the usual experimental evaluation methods have certain applicability
and contingency, the ten-fold cross-validation method is used to test the accuracy of the
model. That is, the dataset is divided into 10 parts, and then nine of them are taken in turn
as the training data and the remaining one as the test data. The corresponding hit rate (or
error rate) is obtained in each test, and the average value of the hit rate (or error rate) of the
10 results is used as an estimation of the accuracy of the algorithm.

The statistical metrics used in this study to measure the prediction performance of
the developed model included: the coefficient of determination (R2), RMSE, mean square
error (MSE), and mean absolute error (MAE). The R2 represents the relationship between
random variables and multiple random variables, as follows:

R2 =
∑(ŷ− y)2

∑(y− y)2 = 1− ∑(y− ŷ)2

∑(y− y)2 (2)

in which ∑(y− ŷ)2 is the sum of the squares of residuals, i.e., the sum of the squares of
the deviation between the data points and their corresponding positions on the regression
line, and ∑(y− y)2 is the total sum of squares, i.e., the sum of the squares of the deviation
between the data point and its average value. When R2 is closer to 1, it indicates that the
goodness-of-fit of the model is higher.
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RMSE is a measure of the difference between the predicted value of the model and the
real value. It is very sensitive to extremely large or small errors in a set of data, so it can
reflect well the accuracy of the real value, as shown in Equation (3):

RMSE =

√
1
m

m

∑
i=1

(
y′i − yi

)2 (3)

On the other hand, MSE reflects the difference between the predicted value and the
real value, which can be used to evaluate the degree of change in the model data. The
smaller the value of the MSE, the higher the accuracy of the prediction model for the
experimental data, as shown in Equation (4):

MSE =
1
m

m

∑
i=1

(y′i − yi)
2 (4)

In addition, MAE is the average of the absolute value of the error between the predicted
value and the real value of the model. This index can effectively avoid the problem of
mutual offset between errors and accurately reflect the error of the prediction results, as
shown in Equation (5):

MAE =
1
m

m

∑
i=1

∣∣y′i − yi
∣∣ (5)

In the above Equations (3)–(5), y′i is the observed data, and yi is the predicted data.

4. Establishment of Near-Surface NO2 Concentration Estimation Model
4.1. Feature Selection

The RF model has the independence of multiple modeling and the randomness of
variable selection. Moreover, it can compare the accuracy change degree of specific inde-
pendent variables when they participate in modeling and when they do not participate in
modeling. Therefore, it can reflect the importance score of each independent variable in
regression. For the near-surface NO2 concentration estimation, the TropOMI tropospheric
NO2 products and meteorological data (shown in Table 2) were herein selected as input
features. After training the model with the training set, the importance score of each
parameter in the model is output.

Figure 5 shows the importance ranking of adding explanatory variables. It can be seen
that the tropospheric NO2 concentration product retrieved by satellite is of key importance
in the daily model for estimating the near-surface NO2 concentration, being higher than
40%. This is followed by the influence of temperature at 2 m height and the days in a
year, with the two basically having the same influence on the model. The U and V wind
components and relative humidity contribute relatively less to the model.
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The correlation between explanatory variables and dependent variable, i.e., the near-
surface NO2 concentration at the ground site, was calculated and the results are shown
in Figure 6. It can be seen that the correlation between the ground NO2 concentration
and the satellite inversion product is the best, at 0.42, and the satellite product is also
of primary importance in the model. The importance of the day factor is good and the
correlation with the ground NO2 concentration is 0.23. The V wind component has a good
negative correlation with the ground NO2 concentration, at −0.39. It can also be seen
from Figure 6 that the correlation between explanatory variables is not high, and some
variables have almost no relationship with each other. These results suggest that these
explanatory variables meet the conditions of mutual independence and can be selected for
model regression analysis.
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4.2. Construction of the RF Platform

The model verification index is used to judge the estimated results of the established
near-surface NO2 concentration model. Figure 7a shows the distribution of the correlation
between predicted near-surface NO2 concentration results by the RF model and measure-
ments from ground sites in the model training set. Figure 7b is similar, but in the test set.
Table 5 shows the model evaluation index values, such as R2, RMSE, MSE, and so on, in
the two data sets (training and test sets). From the figure, it can be seen that the results of
the NO2 daily concentration model training set are good, but there are still several large
concentration points that have not yet been well studied, with an R2 of 0.941 and RMSE of
3.58 µg/m3. The R2 of the NO2 daily concentration model test set is 0.784 and the RMSE is
7.05 µg/m3. Compared with the daily models of estimated near-surface NO2 established
by other researchers, such as Zhan et al. [57] (R2 = 0.62; RMSE = 13.3 µg/m3) and Chen
et al. [32] (R2 = 0.85; RMSE = 7.87 µg/m3), it is clear that the RMSE result in this study is a
significant improvement, but the R2 still needs to be improved.
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Table 5. Evaluation results of the RF model in the training set and test set.

Number of Samples R2 RMSE (µg/m3) MSE (µg/m3) MAE (µg/m3) Interpretation Degree

Training set 5969 0.94 3.59 12.90 2.21 0.94

Test set 1990 0.78 7.04 49.54 5.00 0.78

5. Results and Discussion

Based on the RF machine learning technique, a daily model for estimating the near-
surface NO2 concentration was established by using the NO2 concentration data of ground
sites and meteorological data in 2019. The test set verified that the proposed model
produces satisfactory predictions. Therefore, this model was further used to analyze the
spatiotemporal distribution of the near-surface NO2 concentration in China during the
period of COVID-19 in early 2020. Results verification was performed with monitoring
data from ground sites in the same period.

The region of China from 1–5 February 2019 and 1–5 February 2020 was separately
selected for estimation of near-surface NO2 concentrations, and the results are shown in
Figure 8. As can be seen by comparing the two sets of results, due to the impact of COVID-
19, when the government called upon citizens to stay at home and reduce their travel, the
near-surface NO2 concentration caused by human travel was alleviated. Compared to
the same period in 2019, the area polluted by NO2 was significantly reduced. From 1–5
February 2019, there are obvious areas with serious pollution—in Beijing, Tianjin and Hebei,
northeast and southwest China—and the maximum concentration is close to 40 µg/m3.
However, in the same period in 2020, the near-surface NO2 concentration in these areas
is significantly lower; it basically did not exceed 30 µg/m3. Notably, though, the level
of NO2 pollution in the Xinjiang area did not change much compared with the previous
years. From the estimated distribution of NO2 concentration near the ground in China, it
can be seen that the concentration of NO2 pollution in China decreased significantly in
February 2020. This is reflective of China’s timely and effective deployment of prevention
and control measures following the sudden outbreak of COVID-19. From 1–5 February
2020, it can be seen that the near-surface NO2 concentration in polluted areas of China
decreased day by day, to the point where the NO2 concentration was basically around
20 µg/m3 on 5 February 2020, which is a relatively low level. The estimated results of
the model show a significantly different situation in the east of Northeast China and the
southwest of Xinjiang and Tibet. This may be because the sites in these areas are not
screened-out during modeling, resulting in poor machine learning and rendering these
areas consistent with the surrounding pollution. In the western region, where there are
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few ground monitoring sites for geographical reasons, the model can be used to estimate
the near-surface NO2 concentration, thus compensating for the lack of observations and
thereby providing data support for pollution research in this region.
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Figure 9 illustrates the estimated average value of the near-surface NO2 concentration
in seven typical cities in China from 1–5 February 2019 and 2020. It can be seen that the
near-surface NO2 concentration in these seven cities shows different changes. Among them,
the NO2 concentration in Beijing, Wuhan, Nanjing, Zhengzhou and Chengdu in 2019 is
higher than that in 2020, especially in Chengdu, where the change is the most obvious,
with a decrease of 14.56 µg/m3. On the other hand, it is noted that the concentration in
Shanghai and Urumqi in 2020 is slightly higher than that in 2019. The near-surface NO2
concentration in Urumqi in 2020 is 5.11 µg/m3 higher than that in 2019.
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Figure 9. Near-surface NO2 concentration comparison in seven typical cities in China between 1 to 5
February 2019 and 2020.

The predicted near-surface NO2 concentrations were matched with the monitoring
results of the ground sites in China. “Matched” here means the matching method for
geographical location involved matching the satellite data at each ground site by using
the inverse distance weighting interpolation method within a 0.1◦ longitude and latitude
range of the ground site. As for time matching, since TropOMI passes through China
from 12:00 to 15:00 (Beijing time) every day, the hourly data of the ground sites in this
period were selected to calculate the average concentration as the NO2 concentration of
a particular site on that day to match with the satellite products. The predicted values of
the NO2 concentration model were selected according to the inverse distance weighting
interpolation method and the correlation between them was calculated. As an example,
Figure 10 shows the correlation between the NO2 concentration in China for five days in
2019 and 2020. In particular, Figure 10a shows the correlation between them in 2019 and
Figure 10b shows the correlation between them in 2020. From 1–5 February 2019, there are
5938 data samples in total, with an R2 of 0.682 and MSE of 6.13 µg/m3. From 1–5 February
2020, there are 5760 data samples in total, with an R2 of 0.644 and MSE of 6.12 µg/m3. In
terms of correlation, the results estimated by the model in 2019 and 2020 are to a certain
extent correlated with the concentrations monitored on the ground, The 2019 validation
results are better than 2020, but the results are not much different. This may be due to
the better generalization ability of the model, but there are still deviations between the
estimated values of the model and the actual monitored values at some sites; multi-year
data can be used for modeling to increase the model’s learning of the differences between
different years.
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6. Conclusions

In this study, TropOMI-observed tropospheric NO2 column data was first used, com-
piled with other auxiliary data with the aim of establishing a daily near-surface NO2
concentration estimation model by RF in China. The key study findings are summarized
below as follows:

1. In the daily model established to estimate the near-surface NO2 concentration in China
based on the RF method, the tropospheric NO2 columns observed by TropOMI have
a substantial influence on the importance of the model and the highest correlation
with the near-surface NO2 concentration. It can be seen that adding satellite data into
the model is helpful in estimating near-surface NO2 concentrations. Furthermore,
temperature, date and NDVI also contribute to the NO2 concentration estimation near
the surface.

2. The established model was verified based on the ten-fold cross-validation method.
The R2 and RMSE of the model for estimating the daily NO2 concentration in China
by the RF model are 0.78 and 7.04 µg/m3, respectively. Compared with previous
studies on modeling the daily NO2 concentration, there are still some gaps in the R2

but the RMSE is an improvement.
3. The established model was used to estimate the near-surface NO2 concentration in

China from 1–5 February 2020. Compared to the same period in 2019, it was found
that the near-surface NO2 concentration in most parts of China decreased significantly
in 2020, especially in the Beijing–Tianjin–Hebei region and Fenwei plain. This suggests
that the strong measures taken by the Chinese government to control the COVID-19
pandemic have been well reflected by the forecast model, reflecting the practicability
of the model forecast. From an analysis of seven typical cities, apart from Shanghai
and Urumqi where the near-surface NO2 concentration in 2020 was slightly higher
than that in 2019, other cities showed an obvious downward trend. By comparing
and verifying the model-estimated results with the ground monitoring results, it
was found that the results in 2019 and 2020 were basically the same. The R2 values
reported were 0.682 and 0.644, and the RMSEs were 6.13 and 6.12 µg/m3, respectively.
It further verifies that the model has good practicability in China.

All in all, the present study demonstrated the use of the established daily model
using the newly proposed RF machine learning method for estimating the near-surface
NO2 concentration in China. Furthermore, it was shown that the distribution of near-
surface NO2 could be obtained on the same day. Our proposed model offers satisfactory
timeliness and improved RMSE from 7.87 to 7.05 µg/m3 compared with previous studies.
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It provides an appropriate solution to be used in cases where there is lack of observations
in some geographically challenging areas of China. Future directions to continue this
study could include using multiple satellite products to establish a long-term near-surface
NO2 daily concentration model for China, and also adding an emissions inventory to
further improve the model. In addition, it is also necessary to compare the RF outputs with
other machine learning (ML) methods such as SVM and deep learning. This study can
provide data support for the Chinese environmental protection department to formulate
relevant policies, as well as provide some help for the evaluation of the simulation results
of atmospheric chemistry models.
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