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Abstract: Hashing has been widely used for large-scale remote sensing image retrieval due to
its outstanding advantages in storage and search speed. Recently, deep hashing methods, which
produce discriminative hash codes by building end-to-end deep convolutional networks, have shown
promising results. However, training these networks requires numerous labeled images, which are
scarce and expensive in remote sensing datasets. In order to solve this problem, we propose a deep
unsupervised hashing method, namely deep contrastive self-supervised hashing (DCSH), which uses
only unlabeled images to learn accurate hash codes. It eliminates the need for label annotation by
maximizing the consistency of different views generated from the same image. More specifically, we
assume that the hash codes generated from different views of the same image are similar, and those
generated from different images are dissimilar. On the basis of the hypothesis, we can develop a novel
loss function containing the temperature-scaled cross-entropy loss and the quantization loss to train
the developed deep network end-to-end, resulting in hash codes with semantic similarity preserved.
Our proposed network contains four parts. First, each image is transformed into two different views
using data augmentation. After that, they are fed into an encoder with the same shared parameters
to obtain deep discriminate features. Following this, a hash layer converts the high-dimensional
image representations into compact binary codes. Lastly, a novel hash function is introduced to train
the proposed network end-to-end and thus guide generated hash codes with semantic similarity.
Extensive experiments on two popular benchmark datasets of the UC Merced Land Use Database
and the Aerial Image Dataset have demonstrated that our DCSH has significant superiority in remote
sensing image retrieval compared with state-of-the-art unsupervised hashing methods.

Keywords: remote sensing image retrieval; unsupervised hashing; self-supervised learning;
contrastive learning; deep learning

1. Introduction

In recent years, various remote sensing images have emerged with the rapid develop-
ment of sensors and aerospace technology [1]. Therefore, searching for desired images from
such a big data archive has become a challenging task [2,3]. At present, remote sensing
image retrieval, which aims at fulfilling the task in an effective and efficient manner, has
received significant attention in the remote sensing community.

Remote sensing image retrieval methods are divided into two paradigms: text-based
and content-based image retrieval. In the early days, since text-based image retrieval
approaches [4,5] search images by matching text keywords of data, they require domain
experts to annotate images with high-quality descriptors in advance. However, remote
sensing images have high complexity and cannot be fully represented by only a few
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keywords. Instead of manually describing each image, content-based image retrieval [6,7]
can directly take a raw image as input and automatically extract its visual information.

Generally, content-based image retrieval includes two main steps: feature extraction
and similarity ranking. In the first step, we aim to explore an effective algorithm to
represent all database RS images and query images by discriminative visual features. In the
second step, based on these features, we measure the similarity between the query and each
image in the retrieval database and then return a ranked list of similar images. For feature
extraction, numerous methods have been proposed to describe image content. For instance,
early studies focus on low-level features based on three aspects: spectrum [8], texture [9,10]
and shape [11]. These features tend to be sensitive to scale, rotation or illumination, leading
to poor retrieval accuracy. Then a variety of encoding methods, such as locally aggregated
descriptors [12] and bag-of-visual words [13], have been proposed to improve robustness
by aggregating low-level features into holistic representations. All of the above features are
usually real-valued vectors with thousands of dimensions in the above methods, resulting
in high storage costs. In addition, retrieval speed is inefficient since it is time-consuming to
retrieve similar images in the high-dimensional Euclidean space. Both of them would be a
barrier in real-world retrieval practice, especially in the era of big data.

To address the above issue, hash-based retrieval methods (also called hashing) have
been developed to compress the images into compact binary codes rather than only high-
dimensional features. Besides lowering storage costs, short binary representations also
shorten the retrieval time due to searching in low dimensional Hamming space rather
than high dimensional Euclidean space. The key to hash-based retrieval [2,14–16] is to
learn hash functions, which need to preserve the similarity relation from image space to
Hamming space. In other words, similar images are projected to nearby hash codes, and
dissimilar images are far away. Hashing can be generally divided into supervised [17–22]
and unsupervised [23–26] based on whether predefined labels are used during training.

Deep learning has achieved dramatic success in various computer vision tasks, such
as image classification [27–29]. Recently, deep learning has also been introduced to hashing
methods for image retrieval, dubbed deep hashing. It also falls into unsupervised and
supervised. Deep supervised hashing methods construct an end-to-end supervised deep
model to generate hash code by modifying existing convolutional neural networks such as
AlexNet, VGG, GoogLenet and ResNet. To make the generated hash codes preserve seman-
tic similarity, it is essential to utilize predefined manual labels as supervision information.
Pairwise or triplet-wise labels are the two representative types. For instance, Refs. [21,30,31]
provide pairwise labels that show whether two images are similar or dissimilar. Based
on this type of label, pairwise cross-entropy loss is developed to train deep networks to
preserve semantic similarity. Refs. [32–35] construct a triplet metric learning deep network
with the aid of triplet-wise labels. Each of them contains three images: an anchor image, a
positive image and a negative image, and indicates a relative relation: an anchor is more
similar to the positive image than the negative.

Even deep supervised hashing methods have achieved promising performance; they
are heavily dependent on supervision information, which is scarce and expensive, espe-
cially in large-scale data archives. Thus, unsupervised deep hashing, adopting deep neural
networks to generate semantically-preserving hash code with unlabeled images, will be
the focus of this study. Existing deep unsupervised hashing methods use pre-trained
convolutional neural networks that are trained on a natural dataset of ImageNet to ex-
tract deep features of images and a non-deep structure for coding them. For instance,
Fernandez et al. [26] provided an unsupervised algorithm named probabilistic latent se-
mantic hashing, which adopted a pre-trained network of ResNet-18 to obtain features and
then used probabilistic topic models to produce the hash code. It cannot simultaneously
learn feature and hash code, resulting in unsatisfactory results. Due to the lack of prede-
fined labels, it is challenging to develop an objective function that forces related/unrelated
images to be close/far apart in the Hamming space, thus failing to build a deep hashing
network that can be trained end-to-end.



Remote Sens. 2022, 14, 3643 3 of 22

Fortunately, self-supervised contrastive learning, which achieves advanced success
in feature representation, has recently provided creative thinking for solving the above
problem. It can generate powerful image representations from vast amounts of unlabeled
data by creating a deep unsupervised network. In addition, it eliminates the need for
a predefined label by maximizing the agreement between different views of the same
image. However, contrastive learning cannot be directly applied to hashing since it focuses
on learning continuous features rather than binary codes. The continuous features are
high-dimensional and real-valued, while our aim of binary codes must be short and binary
(each element is either −1 or +1).

In this paper, we propose a deep unsupervised hash learning method for remote
sensing image retrieval by modifying contrastive learning, namely deep contrastive self-
supervised hashing (DCSH). Using only unlabeled images, it can build a deep network
with end-to-end training. Motivated by contrastive learning, we assume that the two hash
codes for different views generated from the same image are similar, while the two hash
codes for views generated from different images are not similar. Based on the hypothesis,
we design a new loss function to preserve the generated hash codes with semantic similarity
and train the unsupervised network end-to-end. In the proposed framework, four parts
are included in the training process, as shown in Figure 1. First is the data augmentation
part; each image is randomly transformed into two different views. Secondly is the encoder
part; the augmented images are fed into an encoder network with shared parameters to
obtain deep discriminative features. Thirdly, a hash layer is used to convert the high-
dimensional image representations into low-dimensional compact binary codes. Lastly, a
novel contrastive loss function is introduced to train the proposed network end-to-end and
thus guide the generated hash codes with semantic similarity. In summary, there are three
main contributions in this paper:

1. We present a novel deep unsupervised hashing method for remote sensing image
retrieval. Motivated by contrast learning, we hypothesize that the hash codes for
different views generated from the same image are similar, while the hash codes for
views generated from different images are not similar. To the best of our knowledge,
we are the first to implement this idea for remote sensing image retrieval. According
to the hypothesis, we can build a deep unsupervised hash network with end-to-
end training, which can learn discriminative hash codes from a large number of
unlabeled data. It avoids the problem of annotating images compared to most deep
hashing algorithms.

2. We introduce a novel hashing objective loss to train our deep network. This gives
each image a more effective hash code, improving the efficiency of image searching.
Additionally, instead of the conventional relaxation strategy, we propose a contin-
uous strategy that converges a non-differentiable sign function using a sequence
of differentiable functions, allowing us to explicitly enforce binary constraints on
hash codes.

3. In contrast to existing unsupervised hashing methods for the retrieval of remote
sensing images, we achieve the state-of-the-art results on benchmark datasets of the
UC Merced Land Use Database and the Aerial Image Dataset.

The article is arranged in the following manner. In Section 2, the related work is
reviewed. Section 3 gives a detailed description of our proposed unsupervised deep hashing
method. Section 4 presents extensive experimental results on two popular benchmark
datasets of the UC Merced Land Use Database and the Aerial Image Dataset. Section 5
discusses several hyper-parameters and shows the retrieval results of multiple methods in
a visual manner. Section 6 gives a conclusion of this research.
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Figure 1. The framework of deep contrastive self-supervised hashing (DCSH). It consists of four
components: data augmentation, encoder, hashing layer and objective loss function. Firstly, each
image xi in the sampled mini-batch training images {xi}M

i=1 would be transformed into two different

views v(1)
i and v(2)

i by the related data augmentation strategy. After augmentation, we set two views

from the same image as the positive pairs, which means, for v(1)
i , the only positive sample is v(2)

i , and

the others are all considered negative samples. v(2)
i is the same. Secondly, we utilize the encoder

module to extract the discriminative deep feature representation e for each image in the augmented

training batch. Thirdly, the hashing layer would transform the feature vectors e(1)i , e(2)i and e(1)j ,

e(2)j (j 6= i) to corresponding hash codes b(1)i , b(2)i and b(1)j , b(2)j . Finally, in Hamming space, we
employ the normalized temperature-scaled cross-entropy loss (NT-Xent loss) and quantization loss to
pull the distances of the positive sample pairs and to push the distances between the negative samples.

2. Related Work

Unsupervised hashing aims at encoding images into data-aware binary codes with
only unlabeled images, and it is not well-developed in the remote sensing community. The
existing methods are limited and mainly contain two modules. The first step is the feature
learning module. Each remote sensing image is described by a visual representation. The
second step is the hash learning module. The visual feature is fed into an unsupervised
hashing algorithm to produce a hash code. For instance, in [36], Demir et al. proposed a
kernel-based unsupervised locality-sensitive hashing method, which characterized each
image by a bag-of-visual-words feature and then encoded it into hash code by a set of
hash functions learned in kernel space. Later, Li et al. [37] presented a partial randomness
hashing approach, which first adopted the hand-crafted holistic descriptor [38] with 512-
dimension as visual representation, and then constructed hash functions based on the
framework approximated auto-encoder structure [39]. Unlike a traditional auto-encoder,
only parameters on the decoder require optimization. Its parameter strategy, partial
randomness and partial training makes hash function construction efficient and effective.
In [25], Reato et al. represented each image by multi-hash codes instead of single-hash
codes. More specially, it described images by primitive-sensitive clusters and then encoded
them into multi-hash codes by kernel-based unsupervised locality-sensitive hashing, at the
cost of more hash bits to represent each image.

However, the above-mentioned methods have not achieved satisfactory retrieval
performance. First, the feature learning module produces low-level hand-crafted features
primarily based on textures without sufficient semantic information. Secondly, the modules
of feature learning and hash learning are separated without interaction with each other.
Thus, hash codes of the above approaches are incompetent when describing the complex
semantic content of the remote sensing image. In order to embed more semantics into hash
codes, Fernandez et al. [26] provided an unsupervised algorithm named probabilistic latent
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semantic hashing, which adopted pre-trained ResNet-18 as a feature learning module and
added an extra probabilistic topic model. As proven in various remote sensing imagery
tasks, the intermediate outputs of pre-trained deep convolutional neural networks often
have stronger capability than hand-crafted descriptors on the characterization of high-
level semantic information of RS images. In addition, probabilistic topic models [40] can
further extract higher-level semantic content via uncovering hidden semantic patterns from
visual features in feature learning modules. However, Ref. [26] may still suffer from two
limitations. On the one hand, when the pre-trained convolutional neural network poorly
generalizes in the target dataset, the pre-extracted deep visual feature may lead to inferior
performance. On the other hand, the feature learning module is still independent of the hash
learning module. In other words, when optimizing the loss function of the hash learning
module, the feature vectors are fixed and unable to be optimized simultaneously. Thus,
visual features from semantically dissimilar/similar image pairs might not have a relatively
satisfactory distance to well preserve the similarity. To solve the above two problems, in
our paper, we aim to create a deep unsupervised network that can simultaneously optimize
feature and hash code learning with only unlabeled images.

3. Proposed Method

Given a training set of N images X = {x1, x2, · · · , xN} without any labels, for the
similarity retrieval task, we expect to learn an appropriate hash function that maps each
image xi into a compact K-bit binary codes bi ∈ {−1, 1}K, where N denotes the number of
images from the training set and K represents the length of the binary codes. Additionally,
the hash function should be such that semantically similar images are projected to nearby
hash codes while dissimilar images are encoded far away in the Hamming space. Then,
image retrieval, searching images semantically similar to a query image, can be efficiently
fulfilled by Hamming distance computed with bit-wise XOR operations.

In our paper, we propose a novel deep end-to-end framework to conduct unsupervised
hash learning, as shown in Figure 1. Firstly, in Section 3.1, each image in the sampled
mini-batch training images would be transformed into two different views by different data
augmentation strategies. After augmentation, we set two views from the same image as the
positive pairs and two views from different images as negative pairs. Secondly, we utilize
the encoder module (Section 3.2) to extract the discriminative deep feature representation
and then the hashing layer (Section 3.3) to transform the feature vectors to corresponding
hash codes. Finally, the novel loss function is proposed in Section 3.4 to train our network.
In Section 3.5, we give the optimizing strategy for our proposed network.

3.1. Data Augmentation

Generally, to equip learned hash code with similarity-preserving properties, the super-
vised hash learning [31,41,42] needs to leverage the label information to construct similar
relations for the training data as supervised information. Specifically, two points are consid-
ered similar if they have at least one label in common; otherwise, they are dissimilar. However,
due to the absence of label annotations, unsupervised hashing methods [37,43–45] can not
model the similarity relations of data points by this means.

To address this problem, inspired by SimCLR [46], we introduce the data augmentation
strategy to generate similar/dissimilar pairs for the training dataset. Specifically, we
consider that two augmented views generated from the same image are similar, and
inversely, two views produced from different images are dissimilar. We use common visual
transformations to augment images. More specifically, we sequentially apply the following
data augmentation techniques; that is, random cropping and resizing, random horizontal
flipping, random color jittering, random grayscale, and random Gaussian blur, as shown
in Figure 2.
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(a) Original (b) Crop and resize (c) Crop, resize and flip (d) Color jitter

(e) Grayscale (f) Gaussian Blur (g) Rotate (h) Gaussian noise

Figure 2. We show data augmentation operators through a series of illustrations. Note that some
augmentation technologies have a few internal parameters that need to be chosen randomly, such as
Gaussian blur and noise.

Given the original image xi, we get two augmented views v(1)
i and v(2)

i by randomly
selecting two different augmented transformations φ and φ̂ presented in Figure 2, which
can be modeled by the following expression:

v(1)
i = φ(xi)

v(2)
i = φ̂(xi)

(1)

3.2. Encoder

Recently, deep convolutional neural networks (CNNs) have shown powerful feature
learning capability. Therefore, we tailor one of them to our encoder, which aims to project
each input augmented image into discriminative representation. There exist various well-
known neural networks, such as AlexNet [47], VGG [48], GoogLeNet [49], and ResNet [50].
Among them, ResNet-based networks have achieved remarkable performance in diverse
computer vision tasks, so we extend our encoder network from ResNet-50, which has a
convolutional layer conv1, four residual blocks conv2_x–conv5_x, a global average pooling
layer, and a fully connected layer (classifier layer). We remove all layers after the global
average pooling layer, and the detailed structural information of the encoder is shown
in Table 1. Given an augmented image v(c)

i , we can get a deep feature vector e(c)i with
2048-dimension, which can be formulated as:

e(c)i = En

(
v(c)

i ; θe

)
(2)

where θe denotes the encoder parameters, and En is our encoder network.
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Table 1. The Architecture for the encoder.

Layer Name
Output Size

(Width × Height × Channel) Configuration

conv1 112 × 112 × 64 7 × 7, 64, stride 2

conv2_x 56 × 56 × 256

3 × 3 max pool, stride 2 1 × 1, 64
3 × 3, 64

1 × 1, 256

 × 3

conv3_x 28 × 28 × 512

 1 × 1, 128
3 × 3, 128
1 × 1, 512

 × 4

conv4_x 14 × 14 × 1024

 1 × 1, 256
3 × 3, 256

1 × 1, 1024

 × 6

conv5_x 7 × 7 × 2048

 1 × 1, 512
3 × 3, 512

1 × 1, 2048

 × 3

global average
pooling layer 2048 global average pooling

3.3. Hashing Layer

The hashing layer aims to compress high-dimensional continuous vectors e into low-
dimensional compact binary hash codes b, resulting in efficient retrieval and storage. We
use two steps to attain this goal. The first step is feature reduction. In this paper, we
adopt Multi-Layer Perception (MLP) with two fully connected layers to compress the
2048-dimensional feature vector to hash-like representation z with K-dimension, where K
is the length of hash codes. The process is shown as follows:

z = fh(e;W) = W(2)σ
(

W(1)e
)

(3)

where W(1) and W(2) denote parameters of the two fully connected layers, respectively,
and W =

[
W(1); W(2)

]
, as shown in Figure 3a, σ is a non-linear function of rectified linear

units (ReLU); that is,

σ(x) = max(0, x) (4)

Note that z in Equation (3) is still continuous rather than binary. Thus the second step
is to quantize the continuous vector into a binary code by an activation function, which is
generally performed by the element-wise sign function. The function can be formulated as:

b = sgn(z) =

{
+1, z ≥ 0
−1, z < 0

(5)

3.4. Loss Function

The goal of our proposed framework is to produce binary hash codes of the input
images. The generated hash codes should meet two constraints. The first one is preserving
similarity. We satisfy this limit by the normalized temperature-scaled cross-entropy loss
called NT-Xent loss due to their consistent aim of semantic preservation, i.e., pulling similar
images together and pushing dissimilar ones apart in embedding space. The second one is
quantization loss, which forces embedded features to be −1 or +1.
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(a) (b)

Figure 3. Rectified linear units (ReLU) function and continuation optimization. (a) ReLU function.
(b) Continuation optimization.

For a minibatch image {xi}M
i=1 randomly sampled from the training set, we can get

the corresponding M pairs of binary codes
{(

b(1)
i , b(2)

i

)}M

i=1
. We apply NT-Xent loss on all

M pairs; that is,

LNT−Xent =
1
M

M

∑
i=1

l(i) (6)

where l(i) denotes an expression of loss function on i-th pair, which aims at forcing related
pairs

{
b(1)

i , b(2)
i

}
from the same image xi close and unrelated pairs

{
b(c)

i , b(k)
j

}
j 6=i;c=1,2;k=1,2

from different images are far away. The definition is as follows:

l(i) = −1
2 ∑

c=1,2
log

exp
(

sim
(

b(1)
i , b(2)

i

)
/τ
)

exp
(

sim
(

b(1)
i , b(2)

i

)
/τ
)
+ ∑j 6=i ∑k=1,2 exp

(
sim
(

b(c)
i , b(k)

j

)
/τ
)

=
1
2 ∑

c=1,2

log (1 + ∑
j 6=i

∑
k=1,2

exp

 sim(b(c)i , b(k)j )− sim(b(1)i , b(2)i )

τ

)


(7)

where τ is a temperature parameter, and sim(·, ·) is a metric function to measure the
pairwise similarity of two binary codes. It must be such that the smaller Hamming distance
between two binary codes, the larger the output of sim(·, ·). In order to meet this condition,
we choose the cosine similarity:

sim
(
bi, bj

)
=

bT
i bj

‖bi‖
∥∥bj
∥∥ ∈ [−1, 1] (8)

where ‖·‖ denotes the L2-norm, since there is a relationship between the Hamming distance
distH

(
bi, bj

)
and cosine similarity sim

(
bi, bj

)
: distH

(
bi, bj

)
= K

2
(
1− sim

(
bi, bj

))
.

Equation (7) resembles softmax loss. It can shorten the similarity distance of pos-
itive pairs

(
b(1)

i , b(2)
i

)
and enlarge the similarity distance of 2(M− 1) negative pairs{(

b(c)
i , b(k)

j

)}
where j 6= i; k = 1, 2; c = 1, 2. Thus, compared to the triplet loss [51] with

only one negative example, each sample in our loss function (Equation (7)) can interact
with multiple negative examples, which eases the problem of slow convergence and poor
local optima [52].
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Based on Equation (7), when l(i) → 0, we get sim(b(c)i , b(k)j )− sim(b(1)i , b(2)i ) → −2,

where
(

b(c)i , b(k)j

)
is a dissimilar pair, and

(
b(1)i , b(2)i

)
is a similar pair. Thus the loss function

used in this paper can make the hash codes of similar pairs close and the hash codes of
dissimilar pairs far away.

3.5. Optimization by Continuation

Note that Equation (7) can not be optimized directly since the binary codes are
produced by the sign function (Equation (5)) that suffers from the vanishing gradient
problem. Therefore, our proposed deep hashing network fails to be trained by the back-
propagation algorithm [53–55] in a truly end-to-end manner. However, numerous research
studies [42,56–58] have shown that end-to-end training significantly improves the retrieval
accuracy of deep hashing.

To train our framework end-to-end, we must address the binary constraint, and
there are two kinds of methods. The first kind is an iterative alternating optimization
algorithm [59,60], which alternately optimizes continuous vector e and binary hash codes
b while fixing the other. That is to say, it skips the ill-posed gradient challenge caused by
the sign function but substantially weakens the deep hashing model flexibility. The second
kind is a widely-used relaxation scheme [61–65], which relaxes the discrete constraint
{−1,+1} to a continuous interval [−1,+1] by seeking a smooth function (sigmoid or
tanh) to approximate the sign function. Most studies [64–66] adopt a scaled tanh function
tanh(βx), where β is a hyper-parameter controlling the trade-off between the function
smoothness and the binary quantization error. Therefore, choosing optimal β is vital yet
difficult [64–66] because a small value for β tends to a large quantization loss, while a large
value for β tends to an almost vanishing gradient problem similar to the sign function.
Hence, we adopt a novel way to solve the binary constraint.

According to the verification of recent works [67,68], the complex problem of non-
smooth optimization can be simplified. Specifically, as shown in Figure 3b, we gradually
increase the non-smoothness level β in tanh(βz), which would converge to the sign function
optimization problem. This method is effective due to a nice relationship between the
sgn(.) and tanh(.) function:

sgn(z) = limβ→∞ tanh(βz) (9)

Therefore, in the training process, to use standard back-propagation to train our deep
hashing network in an end-to-end manner, we adopt a sequence of scaled tanh as our
activation function instead of sign function, that is:

h = tanh(βz) (10)

where h denotes a K-dimensional real-valued feature vector before converting to binary
(termed as a hash-like feature) and β changes gradually.

sgn(z) = limβ→∞ tanh(βz) (11)

The details of the training process are as follows. We start with β = 1 in Equation (10).
For each stage, after the network converges in the last stage, we enlarge β and initialize the
current stage parameters with the parameters of the last converged network. By involving
tanh(βx) with β→ ∞, the network obtains the same results as adopting sgn(x), which can
produce exact binary hash codes as we promise. When β is increased to 10, we can already
obtain expectant convergence. Therefore, for each stage, we use the hash-like feature h
instead of binary hash code b, and Equation (7) can be rewritten as:
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l̂NT−Xent(i) = −
1
2 ∑

c=1,2
log

exp
(

sim
(

h(1)
i , h(2)

i

)
/τ
)

exp
(

sim
(

h(1)
i , h(2)

i

)
/τ
)
+ ∑j 6=i ∑k=1,2 exp

(
sim
(

h(c)
i , h(k)

j

)
/τ
) (12)

Quantization Loss: In order to accelerate the approximation process between the
hash-like code h and the binary code b , we add quantization loss:

lQ(i) =
1
2

(∥∥∥∣∣∣h(1)
i

∣∣∣− 1
∥∥∥2

+
∥∥∥∣∣∣h(2)

i

∣∣∣− 1
∥∥∥2
)

(13)

where ‖·‖ and |·|, respectively, denote the L2-norm and element-wise absolute value opera-
tion. The quantization loss on the i-th positive pair aims at pulling the element of hash-like
features to desired discrete values {−1,+1}.

Total Loss: We combine NT-Xent loss (Equation (12)) and quantization loss
(Equation (13)) to get the total loss function:

Ltotal =
1
M

M

∑
i=1

(
l̂NT−Xent(i) + αlQ(i)

)
(14)

where α is a weighting parameter to balance the two terms. Algorithm 1 is the main
learning procedure of our proposed method.

Algorithm 1 DCSH’s main learning algorithm.

Require: batch size M, initial and trainable encoder parameters θe, initial and trainable hash
layer parameters W , hyper-parameter of temperature τ and weighting parameter α

1: for sampled mini-batch {xi}M
i=1 do

2: for i in {1, 2, · · · , M} do
3: draw two different augmented transformation φ and φ̂, then get a pair of two

related images from the same image xi:
4: v(1)

i = φ(xi)

5: v(2)
i = φ̂(xi)

6: learn deep image representation by Encoder:
7: e(1)i = En

(
v(1)

i ; θe

)
8: e(2)i = En

(
v(2)

i ; θe

)
9: get hash-like feature h(1)

i and h(2)
i via hashing layer of Equation (3) and activation

function of tanh described in Equation (10):
10: z(1)i , z(2)i = fh

(
e(1)

i ;W
)

, fh

(
e(2)

i ;W
)

11: h(1)
i , h(2)

i = tanh
(

βz(1)i

)
, tanh

(
βz(2)i

)
12: end for
13: for i in {1, 2, · · · , M} do
14: compute NT-Xent loss on i-th related pair l̂NT−Xent(i) via Equation (12) and quan-

tization loss on i-th related pair lQ(i) via Equation (13)
15: end for
16: total M pairs loss: Ltotal = 1

M ∑M
i=1

(
l̂NT−Xent(i) + αlQ(i)

)
17: end for
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Inference Process: Note that, in the inference process, we get the desired discrete code
by binarizing the hash-like feature h produced by Equation (10), i.e.,

b = sgn(h) (15)

where sgn is a point-wise function defined by Equation (5).

4. Experiments

To verify the effectiveness of our proposed DCSH, we perform extensive retrieval
experiments on two popular benchmark databases, the UC Merced Land Use Database
(UCMD) and the Aerial Image Dataset (AID).

4.1. Datasets

The performance of our proposed method is evaluated on two remote sensing bench-
mark datasets. We briefly introduce these datasets as follows.

• UCMD [69]: It is publicly free and provided by the University of California, which
collected surface images from the United States national city map produced by the
United States Geological Survey. This dataset comprises 21 challenging land cover
concepts, where each concept consists of 100 images of size 256× 256 with a spatial
resolution of 0.3 m per pixel. We show images from UCMD in Figure 4.

• AID [70]: It is a large-scale remote sensing publicly available dataset gathered by
Wuhan University from Google Earth imagery. The images are completely annotated
by specialists in the remote sensing image interpretation field. By contrast with the
UC Merced dataset, AID is significantly more challenging. Specifically, the dataset
comprises a total of 10,000 aerial images with a fixed size of 600× 600 pixels and a
spatial resolution varying from 8 m to about 0.5 m. It is categorized into 30 land-use
scene classes such as airport, bare land, dense residential, desert, and so on; each class
contains a number of images ranging from 220 to 420. Furthermore, the AID is derived
from diverse remote sensing imaging sensors and chosen from different countries,
under various times and distinct seasons, which makes the intra-class diversity larger
and inter-class dissimilarity smaller as well. We show images from AID in Figure 5.

(3) baseballdiamond (4) beach (5) buildings (6) chaparral (7) denseresidiental

(10) golfcourse (11) harbor (12) intersection (13) mediumresidential (14) mobilehomepark

(17) river (18) runway (19) sparseresidential (20) storagetanks (21) tenniscourt

(1) agricultural

(8) forest

(15) overpass

(2) airplane

(9) freeway

(16) parkignlot

(3) baseballdiamond (4) beach (5) buildings (6) chaparral (7) denseresidiental

(10) golfcourse (11) harbor (12) intersection (13) mediumresidential (14) mobilehomepark

(17) river (18) runway (19) sparseresidential (20) storagetanks (21) tenniscourt

(1) agricultural

(8) forest

(15) overpass

(2) airplane

(9) freeway

(16) parkignlot

Figure 4. Sample images of the UC Merced Land Use Database (UCMD).
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(2) bareland (3) baseballfield (4) beach (5) bridge (6) center(1) airport(1) airport (2) bareland (3) baseballfield (4) beach (5) bridge (6) center(1) airport

(25) school (26) sparseresidential (27) square (28) stadium (29) storagetanks (30) viaduct(25) school (26) sparseresidential (27) square (28) stadium (29) storagetanks (30) viaduct

(19) playground (20) pond (21) port (22) railwaystation (23) resort (24) river(19) playground (20) pond (21) port (22) railwaystation (23) resort (24) river

(13) industrial (14) meadow (15) mediaresidential (16) mountain (17) park (18) parking(13) industrial (14) meadow (15) mediaresidential (16) mountain (17) park (18) parking

(7) church (8) commercial (9) denseresidential (10) desert (11) farmland (12) forest(7) church (8) commercial (9) denseresidential (10) desert (11) farmland (12) forest

(2) bareland (3) baseballfield (4) beach (5) bridge (6) center(1) airport

(25) school (26) sparseresidential (27) square (28) stadium (29) storagetanks (30) viaduct

(19) playground (20) pond (21) port (22) railwaystation (23) resort (24) river

(13) industrial (14) meadow (15) mediaresidential (16) mountain (17) park (18) parking

(7) church (8) commercial (9) denseresidential (10) desert (11) farmland (12) forest

Figure 5. Sample images of the Aerial Image Dataset (AID).

4.2. Evaluation Protocols

To perform the quantitative evaluation of image retrieval, we adopt three standard
evaluation metrics: precision-recall curves (PR-curves) [71], mean average precision (MAP),
and precision within different numbers of top retrieved examples. For the query database,
the MAP is computed as follows:

MAP =
1
|Q|

|Q|

∑
i=1

APi

where |Q| denotes the total number of query databases, and APi is the average precision of
query xi based on ranking, i.e.,

APi =
1

N+

n

∑
k=1

Nk
+

k
× pos(k)

where N+ is the total number of images related to query xi in the retrieval database, n
denotes the number of images in the retrieval database, Nk

+ is the number of related
examples within the top k retrieved examples, and pos(k) is an indicator function and
indicates if the returned image at position k is related to the query. pos(k) = 1 if the
relationship is relevant, otherwise pos(k) = 0.

4.3. Implementation Details

We implement our DCSH method using the open source Pytorch
(https://pytorch.org/) on Ubuntu 16.04 with 2 NVIDIA GeForce GTX TITAN X GPUs. The

https://pytorch.org/
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DCSH method contains four main components: data augmentation, encoder, hashing layer,
and contrastive loss function. We conduct the experiment on two benchmark datasets,
UCMD and AID. We randomly select a mini-batch of images from the training dataset; the
selected images are first resized into 224× 224× 3 as the input. The data augmentation mod-
ule randomly transforms each image into two different views with the size of 224× 224× 3.
Then the augmented mini-batch training set will be fed into our encoder network. The
architecture of the encoder is shown in Table 1; we construct the encoder network from
the original ResNet-50 by removing all layers after the global average pooling layer. We
initialize it with the pre-trained ResNet50, which has been well-trained on the ImageNet
dataset [72]. The hash layer contains two fully connected (FC) layers; the first FC layer
has 1024 neurons with ReLU activation function, and the second FC layer has K neurons
(the length of hash code) and deploys scaled tanh function as the activation function. In
addition, the hash layer is randomly initialized with zero-mean Gaussian distribution with
a standard deviation of 0.01. We use Adam (Adaptive moment estimation) [73] as the
optimizer in our experiment; the learning rates of the encoder network and the hash layer
are set to 10−5 and 10−4, respectively. The training epochs for UCMD and AID are set
to 100 and 120, respectively. The hyper-parameters of batch size and the temperature τ
are set to 64 and 0.3, respectively. The detailed analysis of these settings will be further
investigated in Section 5. The weighting parameter α is set to 1.

4.4. Comparative Experiments with State-of-the-Art Methods

We compare our proposed unsupervised deep hashing framework for remote sensing
image retrieval with six state-of-the-art methods, including three unsupervised hashing
methods specifically designed for remote sensing, i.e., kernel-based unsupervised hashing
(KULSH) [36], partial randomness hashing (PRH) [37] and probabilistic latent semantic
hashing (PLSH) [26]; and three representative hashing methods for natural images widely
used in computer vision, i.e., density sensitive hashing (DSH) [74], locality sensitive hashing
(LSH) [75] and iterative quantization (ITQ) [59]. For a fair comparison, all approaches are
unsupervised hashing without utilizing any label information in the training stage, which
is vital in practical application since the label annotation is highly labor-intensive and prone
to errors.

According to the settings in Shan’s recent paper [14], we take both hand-crafted
features of 512-dimensional GIST descriptors [38] and fully-connected features with 4096
dimensions of a pre-trained VGG16 as input for all these baseline methods and use ‘-CNN’
and ‘-GIST’ as the notation, respectively. Then, we demonstrate the experimental results of
all the compared methods and our proposed method under the indicators above on UCMD
and AID datasets. Moreover, we conduct several ablation analyses and discussions on two
significant hyper-parameters appearing in our proposed method in Section 5.

4.4.1. Results on UCMD

For the UCMD dataset, there are 21 classes and each class consist of 100 images. We
randomly choose 80 images for every class as training data (1680 images), and in the
retrieval database, the remaining images (420 images in total) are set as the test queries.

Table 2 shows the MAP scores obtained by our approach and other baseline methods
for hash codes with different lengths on the UCMD dataset. First, we can observe a
significant superiority of our proposed method over the baseline methods in all hash
code lengths. To be specific, the MAP score of our method shows a large improvement of
7.02–13.52% compared to the second-best competitor, PLSH-CNN. In addition, the methods
specially designed for remote sensing images, such as KULSH, PRH and PLSH, outperform
the methods for natural images; this phenomenon is also observed in a recent paper [14].
Third, all the ‘CNN’-based hash methods outperform their ‘GIST’-based versions, which
indicates the CNN feature is more discriminative than the hand-crafted feature of GIST
descriptors under the same hash method. Finally, even in general, the MAP score increases
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when the length of the hash code increases; the MAP score will sometimes decline when
the length of the hash code reaches a certain value, such as 64-bits, as shown in Table 2.

Table 2. The mean average precision (MAP) retrieval results on the UCMD dataset; we give separate
hash retrieval results for 16, 32, 48, 64 bits. The testing set has 420 images (each category randomly
takes 20% of the images).

Method
Hash Code Length

16-bits 32-bits 48-bits 64-bits

DSH-GIST [74] 16.38 17.09 19.24 19.18
LSH-GIST [75] 17.55 18.25 19.78 21.46
ITQ-GIST [59] 19.35 20.45 20.89 20.78

KULSH-GIST [36] 28.37 33.56 34.98 34.16
PRH-GIST [37] 31.77 33.38 35.76 36.92
PLSH-GIST [26] 40.49 44.17 47.32 46.37

DSH-CNN 28.35 33.90 34.24 34.66
LSH-CNN 32.44 38.58 45.48 51.67
ITQ-CNN 42.38 45.99 47.28 47.49

KULSH-CNN 53.68 55.37 58.23 64.58
PRH-CNN 55.39 59.45 61.89 67.77
PLSH-CNN 62.28 65.35 70.44 73.07

OUR 75.80 78.17 80.49 80.09

In addition to the MAP indicator, we demonstrate two important evaluation metrics
to further validate the effectiveness of our proposed method, i.e., precision curves and
precision-recall curves. Figure 6 shows the UCMD retrieval results of precision curves
with respect to a different number of retrieved images for different methods. As shown in
Figure 6a,b, our proposed method outperforms all baseline methods by significant margins
on the precision curve with 32 and 64 bits, respectively. Compared to methods with 32 bits
hash codes, the same methods with 64 bits hash codes have small gains in precision with
the same number of returned images, which indicates that appropriately increasing the
length of hash codes can contribute to improving the retrieval performance. Figure 7 reveals
the precision-recall curves by ranking on Hamming distance. From Figure 7a,b, we can
find that our method obtains the best performance on both 32 and 64 bits, respectively.
Therefore, compared to the state-of-art algorithm of PLSH, we obtain higher precision with
the same recall, which is desirable for the remote sensing image retrieval task.
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Figure 6. Precision curves with respect to a different number of retrieved images on the UCMD
dataset. (a) Precision curve with regard to top-n@32 bits. (b) Precious curve with regard to top-
n@64 bits.
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Figure 7. Precision-recall curves on the UCMD dataset. (a) Precision-recall curve@32 bits. (b) Precision-
recall curve@48 bits.

4.4.2. Results on AID

The AID dataset consists of 30 classes, and each class contains a number of images
ranging from 220 to 420. We randomly choose 50% of the samples from every class as
training data (5000 images) and retrieval database, and the remaining images (500 images
in total) are set as the test queries. Each image has a fixed size of 600× 600, and we resize it
to 256× 256.

Table 3 shows the MAP scores for hash codes with different lengths ranging from 16
to 64 bits on the AID dataset. First, as shown in Table 3, our method surpasses all baseline
methods. Compared to the second-best competitor PLSH-CNN, MAP indicates a large
advantage of 13.69–17.69%. Second, the methods specifically designed for remote sensing
images are significantly superior to the methods for natural images such as DSH, LSH and
ITQ. Third, all the ‘CNN’-based hash methods outperform their ‘GIST’-based versions,
which indicates that the CNN feature is a more discriminant feature than hand-crafted
features of GIST descriptors under the same hash method on the AID dataset. For example,
KULSH-CNN gets more than 27% than KULSH-GIST at all hash code lengths. Finally, even
in general, the MAP score increases when the length of the hash code increases, the MAP
score will sometimes decline when the length of the hash code reaches a certain value, such
as 64-bits, as shown in Table 3.

Table 3. MAP retrieval results on the AID dataset; we give separate hash retrieval results for 16, 32,
48, 64 bits. The testing set has 5000 images (each category randomly takes 50% of the images).

Method
Hash Code Length

16-bits 32-bits 48-bits 64-bits

DSH-GIST [74] 9.42 9.87 10.06 10.35
LSH-GIST [75] 10.53 10.89 12.74 13.77
ITQ-GIST [59] 9.67 10.49 11.74 11.91

KULSH-GIST [36] 11.43 13.46 14.63 15.86
PRH-GIST [37] 13.42 15.37 15.74 17.26
PLSH-GIST [26] 13.26 17.32 18.64 18.99

DSH-CNN 16.25 18.74 19.63 19.57
LSH-CNN 25.44 29.79 35.58 40.66
ITQ-CNN 23.28 27.29 28.74 29.65

KULSH-CNN 38.47 41.37 46.64 50.62
PRH-CNN 43.89 47.58 50.27 55.74
PLSH-CNN 48.72 52.35 55.83 60.14

OUR 66.17 70.04 71.48 73.83
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Figure 8 shows the AID retrieval results of precision curves with respect to the different
numbers of retrieved images for different methods. As shown in Figure 8a,b, the proposed
method outperforms all baseline methods by significant margins on precision curves with
32 and 64 bits, respectively. Compared to methods with 32-bit hash codes, the same
methods with 64 bits hash codes have a small gain in the precision with the same number
of returned images, which indicates that an appropriate increase in the length of hash codes
would contribute to the promotion of the retrieval performance.
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Figure 8. Precision curves with respect to a different number of retrieved images on the AID dataset.
(a) Precision curve with regard to the top-n@32 bits. (b) Precious curve with regard to the top-
n@64 bits.

Figure 9a,b reveal the precision-recall curves by ranking the Hamming distance. Since
high precision corresponding to high recall has been a sign of a desirable retrieval algo-
rithms, our method is advantageous over other compared methods on both 32 bits (red
line) and 64 bits (red line), respectively.
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Figure 9. Precision-recall curves on the AID dataset. (a) Precision-recall curve@32 bits. (b) Precision-
recall curv@64 bits.

5. Discussion
5.1. The Analysis and Setting of Temperature τ

Similar to previous work [46,76], τ in Equation (7) is used to scale the sensitivity of
the loss function, which plays an important role in our unsupervised contrastive learning
on remote sensing image retrieval. In view of this, we further make an ablation analysis to
examine the influence of hyperparameter τ on MAP scores on the UCMD dataset. We fix the



Remote Sens. 2022, 14, 3643 17 of 22

batch size to 64 and evaluate the MAP score by varying τ from 0.1 to 1. From Figure 10, it
is inspiring that the model trained with the optimal temperature can improve performance
by nearly 10%. More specifically, with the increase in τ, the MAP score first shows a sharp
increase before τ = 0.3 and then remains at the top level from τ = 0.3 to τ = 0.6, then is
followed by a moderate drop afterward. The best two values of the MAP score (0.8049
and 0.8051) are almost equal. Since recent research shows that a smaller temperature can
increase the model’s penalty on difficult negative examples [77] and then generate more
discriminative image features and hash codes, we set τ = 0.3.
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temperature τ

0.70

0.72

0.74

0.76

0.78

0.80

M
A

P
@

8
0

Figure 10. Model performance with various temperatures τ at 48 bits on UCMD.

5.2. The Analysis and Setting of Training Batch Size

As can be seen in the detail of training implements, our proposed method needs to
set the proper batch size to train an optimal remote sensing retrieval model. In order to
evaluate the effect of the batch size in the training process, we conduct several experiments
to demonstrate the retrieval MAP metric under various batch sizes. Due to the conclusion
that in the original feature space larger batch size can benefit the contrastive learning [46],
we also design the batch size from small to large to study whether it still has this property
in the Hamming space. Figure 11 shows the influence of batch size when the model is
trained for different numbers of epochs, and this parameter setting makes a vast difference
in getting excellent retrieval performance. We can observe that when the batch size is too
small or too large, the performance is not optimal. On the other hand, as the batch size and
epochs increase to a proper value, the performance rises obviously and then converges to
the maximum MAP.
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Figure 11. Our proposed model trained with different batch size and epochs.
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5.3. Visualization Study

To further emphasize the effectiveness of our proposed method intuitively, we illus-
trate the quantitative top-10 matching results and the number of correctly returned images
out of the top-60 results of the query samples, respectively, from the UCMD dataset and
AID dataset in Figures 12 and 13. The query images are all randomly sampled in the related
dataset, and the returned retrieval results are ranked by the Hamming distances between
the query image and the images in the retrieval database. We select three competitive base-
line methods, KULSH-CNN, PRH-CNN and PLSH-CNN, to compare with our proposed
method in terms of the visual, quantitative retrieval results.

As shown in Figures 12 and 13, the first column displays the query image, and
the remaining columns present the retrieval results for the different baseline methods.
The red boxes indicate the false positive data points. Particularly, in view of the MAP
results obtained by different hash bits presented in Tables 2 and 3, we can observe that
the 48-bit hash codes can achieve the best result of 80.49% in the UCMD dataset and
the 64-bit hash codes perform best in AID dataset. Therefore, we select 48-bit and 64-bit
hash codes to demonstrate the performance of the two datasets, respectively. From the
two figures, it can be seen that our proposed method can obtain all true positive results for
two query samples (baseballdiamond from UCMD dataset and bridge from AID dataset)
in the top-10 and top-60. The other three methods also obtain good results, but they
have several wrong retrieval images. In addition, it is worth noting that our method can
obtain more discriminative hash codes, which can distinguish confusing remote sensing
images. For instance, the KULSH-CNN and PRH-CNN have an error in identifying the
“tenniscourt” as the “baseballdiamond”, and the PLSH-CNN misclassifies the residential
as the bridge. Our method demonstrates obviously superior performance over other
competitive baseline methods.

Query Retrieval  Results

Baseballdiamond

KULSH-CNN   39 matches out 60

  PRH-CNN       46 matches out 60

PLSH-CNN       54 matches out 60

     OURS          60 matches out 60

Query Retrieval  Results

Baseballdiamond

KULSH-CNN   39 matches out 60

  PRH-CNN       46 matches out 60

PLSH-CNN       54 matches out 60

     OURS          60 matches out 60

From UCMD 

dataset

Figure 12. Retrieval results of “baseballdiamond” in the UCMD dataset by different competitive
baseline methods. The single image in the left column is the query sample. Each row in the rest
of the columns is the top-10 retrieval results from each comparable method. The results with red
rectangles are incorrect, and the number of true positive results out of the top-60 retrieved images is
also provided.
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Figure 13. Retrieval results of “bridge” in the AID dataset by different competitive baseline methods.
The single image in the left column is the query sample. Each row in the rest of the columns is the
top-10 retrieval results from each comparable method. The results with red rectangles are incorrect,
and the number of true positive results out of the top-60 retrieved images is also provided.

6. Conclusions

In this paper, we propose an unsupervised deep hash learning method for remote
sensing image retrieval, namely deep contrastive self-supervised hashing. By creating a
pretext task of preserving data visual augmentation invariance, we solve the problem of
lacking supervised information, which is a significant challenge in unsupervised retrieval
research. More specially, based on the task of pulling two augmented views generated
from the same image and simultaneously pushing two views produced from different
images, we develop the first deep unsupervised hash learning framework by introducing
the normalized temperature-scaled cross-entropy loss and quantization loss. Extensive
experiments on two popular benchmark datasets of UCMD and AID have demonstrated
that our DCSH has overwhelming superiority in remote sensing image retrieval compared
with state-of-art unsupervised hashing methods. For instance, on AID, the MAP perfor-
mance for 16, 32, 48 and 64 bits of our DCSH method is 66.17%, 70.04%, 71.48% and 73.83%,
respectively, which enables it to outperform KUSH, PRH and PLSH by at least 13.69%.

The paper only focuses on unimodal hash retrieval; that is, a query image must be
provided to find the desired image. Nevertheless, retrieval system users sometimes prefer
to enter text rather than images, so we plan to extend our method to the problem of
retrieving images via text in the future, i.e., cross-modal hash retrieval.
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