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Abstract: As the largest and highest alpine ecoregion in the world, the Qinghai–Tibetan Plateau (QTP)
is extremely sensitive to climate change and has experienced extraordinary warming during the past
several decades; this has greatly affected various ecosystem processes in this region such as vegetation
production and phenological change. Therefore, numerous studies have investigated changes in
vegetation dynamics on the QTP using the satellite-derived normalized-difference vegetation index
(NDVI) time-series data provided by the Moderate-Resolution Imaging Spectroradiometer (MODIS).
However, the highest spatial resolution of only 250 m for the MODIS NDVI product cannot meet the
requirement of vegetation monitoring in heterogeneous topographic areas. In this study, therefore,
we generated an 8-day and 30 m resolution NDVI dataset from 2000 to 2020 for the QTP through
the fusion of 30 m Landsat and 250 m MODIS NDVI time-series data. This dataset, referred to as
QTP-NDVI30, was reconstructed by employing all available Landsat 5/7/8 images (>100,000 scenes)
and using our recently developed gap-filling and Savitzky–Golay filtering (GF-SG) method. We
improved the original GF-SG approach by incorporating a module to process snow contamination
when applied to the QTP. QTP-NDVI30 was carefully evaluated in both quantitative assessments
and visual inspections. Compared with reference Landsat images during the growing season in
100 randomly selected subregions across the QTP, the reconstructed 30 m NDVI images have an
average mean absolute error (MAE) of 0.022 and a spatial structure similarity (SSIM) above 0.094. We
compared QTP-NDVI30 with upscaled cloud-free PlanetScope images in some topographic areas and
observed consistent spatial variations in NDVI between them (averaged SSIM = 0.874). We further
examined an application of QTP-NDVI30 to detect vegetation green-up dates (GUDs) and found
that QTP-NDVI30-derived GUD data show general agreement in spatial patterns with the 250 m
MODIS GUD data, but provide richer spatial details (e.g., GUD variations at the subpixel scale).
QTP-NDVI30 provides an opportunity to monitor vegetation and investigate land-surface processes
in the QTP region at fine spatiotemporal scales.

Keywords: continuous NDVI time-series; spatiotemporal data fusion; soil erosion; Tibetan; vegetation
phenology

1. Introduction

The Qinghai–Tibetan Plateau (QTP), known as the third pole of the word, is the largest
and highest alpine ecoregion. During the past few decades, the QTP has experienced rapid
climate warming, with a rate of temperature increase two times the global average [1].
Therefore, the QTP is recognized as an ideal study area to assess ecosystem changes
in response to climate change. A large number of studies have focused on this alpine
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ecosystem and investigated various vegetation activities, such as changes in vegetation
greenness (production) [2,3], vegetation phenology [4–6], and biodiversity [7,8].

The satellite-derived normalized-difference vegetation index (NDVI) is the most com-
monly used indicator for monitoring vegetation dynamics [9]. Compared with other
land-cover types, green vegetation displays higher reflectance in the near-infrared wave-
length and lower reflectance in the red wavelength; thus, NDVI combines reflectance in the
two wavelengths in a normalized form to enhance the contrast between green vegetation
and other land-cover types. Currently, two main types of NDVI data are available for practi-
cal application in the QTP region. The first type is high-temporal- but low-spatial-resolution
NDVI data, such as the AVHRR GIMMS (Global Inventory Monitoring and Modeling Sys-
tem) NDVI data and the NDVI time-series products provided by the Moderate-Resolution
Imaging Spectroradiometer (MODIS). Because of the high frequency of observations, high-
quality GIMMS NDVI or MODIS NDVI time-series data have been generated by simply
smoothing the original NDVI time-series using various temporal filters [10–13]. The second
type of data include high-spatial-resolution NDVI data (e.g., the 30 m Landsat NDVI) with
relatively low temporal resolutions, resulting in rather limited cloud-free observations
within a year [14–16].

The two types of NDVI data have distinct pros and cons. The continuous GIMMS
NDVI and MODIS NDVI time-series data provide useful information to characterize
intraseasonal greenness changes; however, the coarse pixel sizes (~8 km for GIMMS and
250 m for MODIS) impede vegetation monitoring in topographic regions [17,18]. For
example, assuming that a mountain area has a slope of 45 degrees, a 250 m pixel reflects
the average vegetation status within a 250 m elevation bin. Such large elevation bins
greatly limit our ability to understand the elevation-dependent changes in vegetation
parameters (e.g., greenness and phenology) [19–21]. Therefore, high-spatial-resolution
Landsat NDVI data are necessary for practical application in the QTP. Previous studies
have adopted some strategies to address the lack of temporal continuity in Landsat NDVI
data. For example, to detect land-surface phenology at a high spatial resolution on the
QTP, An et al. [17] generated 30 m Landsat NDVI time-series data by combining both
Landsat 7 ETM+ and Landsat 8 OLI observations in overlapping zones of adjacent images.
However, Landsat NDVI time-series data generated in this way are confined to local areas
and are still discontinuous when cloud contamination is serious. To reduce the influence of
cloud contamination in Landsat NDVI data, comparatively wide time windows can be used
to produce NDVI data using the maximum value composition (MVC) strategy. Lu et al. [20]
used a two-month time window (July to August) to generate cloud-free Landsat NDVI data
over six mountains in the QTP region and analyzed the vertical movement of vegetation
greenness isolines in these mountains. However, this composition method may result in
highly uncertain analyses because the NDVI composition dates can vary within wide time
windows. Therefore, NDVI data with high spatial resolution and temporal continuity are
widely needed for the QTP; these data could benefit vegetation monitoring and land-surface
process models driven by fine-scale vegetation parameters (e.g., soil-erosion simulations,
Duan et al. [22]).

Currently, temporally continuous Landsat NDVI time-series data may be reconstructed
using two categories of technology. The first approach is based solely on Landsat data and
temporal interpolation; first, missing values in Landsat cloud images are typically filled,
and then, the Landsat NDVI data are filled by applying various time-series models [23,24].
The other approach is based on spatiotemporal data-fusion technology (e.g., MODIS–
Landsat fusion), which simulates Landsat at a prediction date by learning temporal-change
information between the base and prediction dates from ancillary MODIS data [25–27].
The area of the QTP is nearly 2.5 million km2; thus, reconstructing high-quality continuous
Landsat NDVI time-series data for the entire QTP is a challenging objective; this is due
to the vast amounts of Landsat imagery and data required for analyses, which cannot be
obtained by most of the previous reconstruction methods. In actuality, there are more than
100,000 Landsat 5/7/8 image scenes for 2000–2020 in the QTP vegetation area. In addition,
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NDVI reconstruction in large areas may present various difficulties. For example, cloud
removal on Landsat cloud images is easily affected by inaccurate cloud and cloud-shadow
masks [28,29], and the performance of spatiotemporal data fusion highly depends on
the availability of satisfactory Landsat images on the base dates [25]. To address these
issues, we recently developed an operable approach to reconstructing continuous Landsat
NDVI time-series data called the gap-filing and Savitzky–Golay (GF-SG) method [30]. The
GF-SG method can be implemented on the Google Earth Engine (GEE) platform and has
been proven to be effective in various challenging scenarios, such as those with long-term
continuous missing values and incorrect cloud masks [30].

In this study, we reconstructed high-spatiotemporal-resolution NDVI time-series data
(30 m and 8 days) from 2000–2020 for the QTP through the fusion of 30 m Landsat and
250 m MODIS NDVI time-series with the GF-SG method. Considering the special climate
conditions in the QTP region, we incorporated a module to process winter snow contami-
nation in the NDVI data. This NDVI product, referred to as QTP-NDVI30, was generated
by employing all available Landsat 5/7/8 images (>100,000 scenes). The reliability of
QTP-NDVI30 was evaluated via both visual inspections and quantitative assessments, and
the potential to monitor QTP at fine spatiotemporal scales was verified.

2. Materials and Methods
2.1. Study Area

The QTP is located in Southwest China, ranging from 25◦ to 40◦N and from 74◦ to
104◦E, with an area of approximately 2.5 million km2 and an average elevation above
4500 m. The main vegetation types in this alpine ecoregion include alpine steppes, mead-
ows, scrubs, and broadleaf and needleleaf forests (see Figure 1A for the spatial distribution).
We excluded nonvegetated areas from the reconstruction of Landsat NDVI time-series data.
Here, nonvegetated areas on the QTP were defined as areas where the average cloud-free
MODIS NDVI from July to September was lower than 0.15. The threshold of 0.15 was
determined empirically. It is, indeed, true that some soil NDVI values may be larger than
0.15; however, this does not affect the practical application of the QTP-NDVI30 dataset.
Users can further exclude nonvegetated areas from QTP-NDVI30 using a higher NDVI
threshold. In QTP-NDVI30, the vegetated areas on the QTP are shown in Figure 1B (see the
gray color).

2.2. Satellite Data

The high-spatiotemporal-resolution NDVI time-series for the QTP were reconstructed
by blending the Landsat data with the MODIS data. We collected the MODIS surface-
reflectance product (MOD09Q1) from the United States Geological Survey (USGS), which
provides 250 m and 8-day resolution data for the red and near-infrared bands. In addition,
the corresponding MODIS data-quality flags were obtained. We noticed that other MODIS
NDVI products were available, such as the NDVI data estimated from the BRDF (bidi-
rectional reflectance distribution function)-adjusted reflectance product (MCD43A4). In
our previous analyses [30], we compared the fusion accuracy when using MOD09Q1 and
MCD43A4 and found that better results were obtained when MOD09Q1 was performed.
Notably, MOD09Q1 has a higher spatial resolution than MCD43A4 (250 m vs. 500 m),
although the viewing angular differences between MODIS and Landsat data are corrected
in MCD43A4. Therefore, we used MOD09Q1 in this study.

We collected all available Landsat surface-reflectance (SR) images (red and near-
infrared bands) for the QTP from 2000 to 2020, except in 2012. In 2012, there were few
Landsat data due to the failure of Landsat 5. Therefore, the collected Landsat data include
those from the Landsat-5 TM (January 2000–December 2011), Landsat-7 ETM+ (January
2000-December 2020), and Landsat-8 OLI (February 2013–December 2020). Due to the
faulty scan lines correct for Landsat-7 (referred to as SLC-off), there are missing stripes
in the ETM+ images after May 2003. These SLC-off images were also included in the
reconstruction process because maximizing the amount of cloud-free observation data used
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has been proven to be effective in enhancing the performance of MODIS–Landsat data
fusion [25].
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Figure 1. (A) The spatial distribution of the main vegetation types on the QTP, provided by The
Vegetation Map of the Editorial Board of China (CAS) [31]; (B) the vegetated areas in the QTP (gray
color), where NDVI reconstruction was performed. The red squares represent the 100 randomly
selected subregions for quantitative assessment with reference Landsat images. The two red crosses
indicate the sites for which corresponding images were compared with PlanetScope images.

2.3. The Landsat NDVI Time-Series Data Reconstruction Method

The recently developed GF-SG method was used in the reconstruction of high-quality
continuous Landsat NDVI time-series data in the QTP region (QTP-NDVI30). In general,
the GF-SG method includes two main steps [30].

In the first step, GF-SG fills the missing values in the original Landsat NDVI time-
series data. Because the original Landsat NDVI time-series may be relatively discontinuous
and even contain few cloud-free observations within a year, it is impossible to directly fill
missing values via linear interpolation or curve fitting. In the GF-SG method, MODIS NDVI
images with high spatial autocorrelation are preferable, and these images can be spatially
resampled to 30 m via the bicubic interpolation method (referred to as “M_interpol”). Then,
GF-SG determines similar pixels of each target pixel within a local neighboring window
(40 × 40 pixel, about 1.2 × 1.2 km) by calculating the correlation coefficients between
M_interpol and the cloud-free Landsat observations of this target pixel. The neighboring
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pixels with correlation coefficients above 0.8 are assumed to be similar pixels to the target
pixel (M_similar_series(xj ,yj)

) and can be used for generating synthesized NDVI time-series
data for the target pixels; this is given by:

M_re f erence(x,y) =
n

∑
j=1

w(xj ,yj)
× M_similar_series(xj ,yj)

(1)

where n indicates the number of similar pixels and w(xj ,yj)
represents the weight of the

jth similar pixels. w(xj ,yj)
was determined according to the similarity between the time-

series data of the jth similar pixels and that of the target pixel, which is quantified by the
correlation coefficient between the time series of the two data. Considering the difference
in the NDVI values between the Landsat and MODIS data (e.g., different spectral response
function), GF-SG incorporates the concept of shape-model fitting [32,33] and uses the linear
transfer function [34] to modify M_re f erence(x,y), expressed as:

M_adjusted(x,y) = M_re f erence(x,y) × a(x, y) + a0(x, y) (2)

where a(x, y) and a0(x, y) are solved by minimizing the difference between M_adjusted(x,y)
and the cloud-free Landsat observations of the target pixel.

In the second step of GF-SG, a weighted SG filter is used to smooth the synthesized
NDVI time-series to reduce residual noise. The weighting mechanism in the GF-SG filter is
based on two principles: (1) the original cloud-free Landsat observations are assumed to
have the largest weights to optimally preserve these observations; and (2) in the synthesized
NDVI time-series, the filled NDVI values on certain dates are assigned larger weights if the
NDVI images on these dates exhibit small spatial variations, and vice versa. This principle
is reasonable because spatial resampling is more reliable for homogeneous landscapes than
for others. For more details regarding the GF-SG method, please refer to the study by
Chen et al. [30].

Figure 2 shows the flowchart used to reconstruct continuous Landsat NDVI time-
series data in the QTP region. To process the large numbers of Landsat images and data
analyses required, the reconstruction was conducted in the Google Earth Engine (GEE)
cloud-computing platform. Several issues in the reconstruction process should be clarified.
First, to avoid excessive occupation of computing resources by individual users, the GEE
platform allocates restricted computing power to individual users and does not allow the
same task to be run from different user accounts. We, therefore, divided the entire QTP into
four subregions to ensure that each subregion could be processed separately on the GEE.
Because a local neighboring window is necessary for the generation of the synthesized
NDVI time-series for each Landsat pixel, we created a 2 km buffer for each subarea to
process the boundary pixels. Then, we composited the original Landsat NDVI time-series
according to the MODIS imaging time (i.e., 1, 9, . . . , and 353, with 8-day time intervals). At
each imaging time, we set the original NDVI value as the maximum value of all available
Landsat 5/7/8 NDVI data within a 16-day time window (i.e., 8 days before and after each
imaging time). Third, the MODIS and Landsat pixels identified as clouds, cloud shadows,
and snow were removed. These missing values in the MODIS NDVI time-series were
linearly interpolated. For snow contamination on the QTP, we used the first or the last
snow- and cloud-free observation as a background reference to address the temporally
continuous snow-contaminated values in early spring or late autumn; this step is not
considered in the original GF-SG method.
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2.4. Experiments and Accuracy Assessments

We evaluated QTP-NDVI30 in three experiments. In the first experiment, we selected
Landsat images obtained from July to September with cloud coverages less than 50% in
100 randomly determined subregions (30 km × 30 km) distributed relatively uniformly
over the QTP (see Figure 1B). One hundred random locations cover various vegetation
types on the QTP, including alpine steppes, meadows, scrubs, and broadleaf and needleleaf
forests (Figure 1B). Then, these selected images were removed from the reconstruction and
were used as the reference data. Finally, we quantitively compared the reconstructed 30 m
NDVI images with these reference Landsat images.

In the second experiment, 16 PlanetScope constellation multispectral images (3 m
resolution) were collected at two test sites (Figure 1B) and were compared with QTP-
NDVI30-based images. Notably, the 100 reference Landsat images were excluded from the
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reconstruction in the first simulation experiment, whereas all available Landsat images
were included in the second experiment.

In the third experiment, we explored an application of QTP-NDVI30 to determine
the vegetation green-up date (GUD) over the QTP. The GUD was estimated according
to Zhang’s logistic method [35], and was determined to be the date showing an initial
maximum value of the rate of change in the curvature of the fitted NDVI curve. We
compared the QTP-NDVI30-derived GUD with the MODIS-derived GUD through visual
assessments and expected richer spatial information in the QTP-NDVI30-derived GUD.

We used four statistical indices for quantitative assessments: the mean absolute error
(MAE), relative MAE, correlation coefficient (R) and structural similarity index (SSIM).
The SSIM has been widely used to assess the overall structural similarity between the
reconstructed and reference images [36]. In this study, SSIM was calculated as:

SSIM = L(recon, re f ) ∗ C(recon, re f ) ∗ S(recon, re f )
L(recon, re f ) =

2ureconure f +c1

u2
recon+u2

re f +c1

C(recon, re f ) =
2σreconσre f +c2

σ2
recon+σ2

re f +c2

S(recon, re f ) =
σrecon,re f +c3
σreconσre f +c3

(3)

where the subscripts “recon” and “ref” represent the cloud-free pixels in the reconstructed
and reference Landsat NDVI images, respectively; urecon and ure f represent the average
NDVI value; σrecon and σre f represent the NDVI standard deviation; and σrecon,re f represents
covariance. c1, c2, c3 are constants to avoid a zero denominator and are determined as:

C1 = (K1 × L)2

C2 = (K2 × L)2

C3 = C2/2
(4)

where K1 and K2 are equal to 0.01 and 0.03, respectively and L represents the dynamic
range of pixel values for an image. The SSIM varies between 0 and 1, with larger SSIM
values indicating more similar spatial patterns between the reconstructed and reference
images, and vice versa.

3. Results
3.1. Spatiotemporal Patterns of QTP-NDVI30

Figure 3 shows the spatial distribution of the reconstructed Landsat NDVI data on
four dates in 2010 (17 January, 23 April, 28 July, and 1 November). In general, the spatial
variations in vegetation greenness across the QTP can be effectively captured by the
reconstructed Landsat NDVI data. High NDVI values (>0.5) throughout the year are
observed on the southwestern QTP, which is mainly covered by deciduous and evergreen
mixed forests. In the central and northeastern QTP areas, the alpine steppe and meadow
exhibit obvious seasonal greenness dynamics, with a low NDVI in winter and an increasing
NDVI after grass growth in spring. Vegetation is very sparse on the northwestern QTP,
with low NDVI values throughout the year. The reconstructed Landsat NDVI is spatially
continuous, and the spatial pattern is consistent with our prior knowledge of the vegetation
distribution in this cold and dry alpine ecoregion.
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We further examined the reconstructed Landsat NDVI time-series data at four ran-
domly selected locations (Figure 4). At location B, the cloud-free observations were rel-
atively concentrated during the growing season (May–September). The reconstructed
NDVI time-series reflect the temporal trends well, notably reaching the upper envelope
of the original Landsat NDVI because of the incorporation of the iterative SG filter. The
reconstructed NDVI data effectively corrected some abnormal decreases in the original
NDVI time-series, such as near the start of the growing season (Point B in Figure 4). At
the other three locations, the original cloud-free Landsat observations were temporally
discontinuous, with some long-term gaps. Because continuous gaps may occur in the peak
of the growing season, these discontinuous time-series cannot be reconstructed by using
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linear interpolations or temporal filters. By fusing the MODIS data, QTP-NDVI30 generates
reasonable annual vegetation-growth curves. In the following experiments, we conducted
quantitative assessments of QTP-NDVI30 in this challenging scenario whereby NDVI data
gaps occur at the peak of the growing season.

3.2. Quantitative Assessments with the Reference Landsat NDVI Images

One hundred reference Landsat images from 100 randomly selected subregions (i.e.,
one reference image per subregion) were excluded from the reconstruction process and
used for quantitative assessments. The results show that the MAE averaged over the
100 subregions is approximately 0.02 and that the relative MAE is below 6% (Figure 5).
The reconstructed Landsat NDVI images generally exhibit high spatial-structure similarity
with the reference images, with average SSIM values above 0.94, indicating the satisfactory
accuracy of the reconstructed Landsat NDVI time-series.

Remote Sens. 2022, 14, 3648 10 of 18 
 

 

 
Figure 5. The quantitative assessments in 100 randomly selected subregions. One original Landsat 
image from July to September in each subregion was excluded from the reconstruction process and 
used as a reference image. The red dashed lines in each panel represent the values averaged over 
the 100 subregions. 

 
Figure 6. Comparisons between the reference Landsat NDVI images (B) and the reconstructed 
Landsat NDVI images (C) in the three subregions. The landscapes of the three subregions from 
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image from July to September in each subregion was excluded from the reconstruction process and
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To more intuitively investigate the performance, the reconstructed Landsat NDVI
images were compared with the reference images in three subregions, as shown in Figure 6.
Here, it should be noted that the reference Landsat NDVI images, including those with
cloud-free pixels, were not used in the reconstruction process in this experiment. The
results show that the reconstructed Landsat NDVI images can effectively reflect the spatial
variations in vegetation greenness in the mountain areas, and the spatial trend is consistent
with that of the reference NDVI images (see Figure 6B,C). The visual comparisons suggest
that the reconstructed 30 m NDVI time-series could potentially be used to estimate fine-scale
vegetation parameters for land-surface process simulations.
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Figure 6. Comparisons between the reference Landsat NDVI images (B) and the reconstructed
Landsat NDVI images (C) in the three subregions. The landscapes of the three subregions from
Google Maps are shown (A). Note: the reference Landsat NDVI images, including those with cloud-
free pixels, were not used in the reconstruction process.

3.3. Quantitative Assessments Using the PlanetScope NDVI Images

Recently, the PlanetScope satellite constellation was established by launching groups
of individual cubes, which can provide revisit observations on a daily basis and at a very
high spatial resolution. We collected 16 PlanetScope images (3 m resolution) at two test
sites (Figure 1B) to compare with QTP-NDVI30-based images. There were seven and nine
PlanetScope images covering sites A and B, respectively (Table 1). This experiment was
conducted for two reasons. First, in the previous experiment (in Section 3.2), the 100 reference
Landsat NDVI images were not used in the reconstruction process, which is somewhat limiting
in terms of reflecting the actual situation. In this experiment, the reconstruction process includes
all available Landsat data. Second, the PlanetScope constellation data are commercial satellite
data that are too expensive and cannot meet the requirement of long-term monitoring on
the QTP. However, the PlanetScope constellation data can provide higher-spatiotemporal-
resolution images. In this experiment, we aim to further investigate the difference between the
PlanetScope NDVI images and the reconstructed Landsat NDVI images.
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Table 1. Comparisons between the PlanetScope images (resampled to 30 m) and QTP-NDVI30-
based images at two test sites. Seven and nine PlanetScope images were available for sites A and B
(Figure 1B), respectively.

Area ID Date Correlation Coefficient (R) SSIM

A-1 21 June 2019 0.8568 0.9037
A-2 21 June 2019 0.8384 0.9299
A-3 21 June 2019 0.8692 0.8994
A-4 21 June 2019 0.8322 0.9028
A-5 21 June 2019 0.8304 0.8422
A-6 21 June 2019 0.7896 0.9501
A-7 21 June 2019 0.8612 0.9245
B-1 5 August 2010 0.8021 0.9046
B-2 5 August 2010 0.7879 0.8347
B-3 5 August 2010 0.8099 0.9069
B-4 5 August 2010 0.8114 0.7879
B-5 5 August 2010 0.8043 0.7758
B-6 5 August 2010 0.7913 0.7958
B-7 5 August 2010 0.8322 0.8358
B-8 5 August 2010 0.8308 0.8564
B-9 5 August 2010 0.8576 0.9350

Average 0.8253 0.8741

The consistency between the two NDVI datasets was quantitatively evaluated using
the correlation coefficient (R) and SSIM (Table 1). To calculate the R and SSIM values, the
3 m PlanetScope data were resampled to 30 m using an aggregation method. Given the
difference between the PlanetScope and Landsat sensors (in terms of the spectral-response
function and point-spread function), we did not calculate the MAE values between the two
datasets. The results show that the R values are between 0.78 and 0.87, with an average
value of 0.83, and the SSIM values range from 0.77 to 0.95, with an average SSIM of 0.87
(Table 1), reflecting acceptable accuracy considering the comparisons were made using data
from two different sensors.

We further compared the spatial patterns among the PlanetScope NDVI (3 m), MODIS
NDVI (250 m), original Landsat NDVI (30 m), and QTP-NDVI30 (30 m) in the A-5 and B-8
areas (Figures 7 and 8). We found that the 250 m MODIS NDVI data do not reflect fine-scale
greenness variations. For example, in the B-8 area (Figure 8), the alpine terrain highly
influences the spatial pattern of NDVI (see the enlarged view of the PlanetScope data), and
this effect cannot be simulated using the MODIS NDVI. The cloud-contaminated pixels
in the original Landsat NDVI images are successfully reconstructed in the QTP-NDVI30
imagery. For example, green vegetation distributed in some very small local areas of
A-5 can be captured by QTP-NDVI30 (Figure 7E). Improving the spatial resolution from
250 m to 30 m with QTP-NDVI30 obviously enhances the spatial details of the NDVI in
heterogeneous topographic regions. Additionally, marginal improvements in the spatial
details of the NDIV are achieved with the transformation from a resolution of 30 m to 3 m
(Figures 7 and 8).



Remote Sens. 2022, 14, 3648 12 of 17

Remote Sens. 2022, 14, 3648 12 of 18 
 

 

reflect fine-scale greenness variations. For example, in the B-8 area (Figure 8), the alpine 
terrain highly influences the spatial pattern of NDVI (see the enlarged view of the  
PlanetScope data), and this effect cannot be simulated using the MODIS NDVI. The cloud-
contaminated pixels in the original Landsat NDVI images are successfully reconstructed 
in the QTP-NDVI30 imagery. For example, green vegetation distributed in some very 
small local areas of A-5 can be captured by QTP-NDVI30 (Figure 7E). Improving the spa-
tial resolution from 250 m to 30 m with QTP-NDVI30 obviously enhances the spatial de-
tails of the NDVI in heterogeneous topographic regions. Additionally, marginal improve-
ments in the spatial details of the NDIV are achieved with the transformation from a res-
olution of 30 m to 3 m (Figures 7 and 8). 

 
Figure 7. Comparisons of the spatial patterns of the PlanetScope NDVI (3 m), MODIS NDVI (250 
m), original Landsat NDVI (30 m), and QTP-NDVI30 (30 m) in the A-5 area. 

 
Figure 8. The same as Figure 7 but for the B-8 area. 

Figure 7. Comparisons of the spatial patterns of the PlanetScope NDVI (3 m), MODIS NDVI (250 m),
original Landsat NDVI (30 m), and QTP-NDVI30 (30 m) in the A-5 area.

Remote Sens. 2022, 14, 3648 12 of 18 
 

 

reflect fine-scale greenness variations. For example, in the B-8 area (Figure 8), the alpine 
terrain highly influences the spatial pattern of NDVI (see the enlarged view of the  
PlanetScope data), and this effect cannot be simulated using the MODIS NDVI. The cloud-
contaminated pixels in the original Landsat NDVI images are successfully reconstructed 
in the QTP-NDVI30 imagery. For example, green vegetation distributed in some very 
small local areas of A-5 can be captured by QTP-NDVI30 (Figure 7E). Improving the spa-
tial resolution from 250 m to 30 m with QTP-NDVI30 obviously enhances the spatial de-
tails of the NDVI in heterogeneous topographic regions. Additionally, marginal improve-
ments in the spatial details of the NDIV are achieved with the transformation from a res-
olution of 30 m to 3 m (Figures 7 and 8). 

 
Figure 7. Comparisons of the spatial patterns of the PlanetScope NDVI (3 m), MODIS NDVI (250 
m), original Landsat NDVI (30 m), and QTP-NDVI30 (30 m) in the A-5 area. 

 
Figure 8. The same as Figure 7 but for the B-8 area. 

Figure 8. The same as Figure 7 but for the B-8 area.

3.4. An Application of QTP-NDVI30 to Detect Vegetation Phenology

As a key phenological-stage indicator, the green-up date (GUD) characterizes the start
of vegetation growth and can be estimated from NDVI time-series. Previous studies have
normally used MODIS NDVI data to estimate the GUD on the QTP [5,37]. The generated
QTP-NDVI30 product provides an opportunity to determine the GUD at a 30 m spatial
scale. In this experiment, we estimated the GUD using the widely used logistic fitting
method [35], and the GUD was defined as the date on which the rate of change in the
curvature of the fitted NDVI curve reached an initial maximum. The pixels without obvious
seasonal NDVI changes were excluded from the estimates [5]. We compared the GUD
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estimates derived from the MODIS and QTP-NDVI30 data in 2018. The results show that
the QTP-NDVI30-derived GUD exhibits a spatial pattern similar to that of the MODIS-
derived GUD over the entire QTP, with earlier GUDs in the northeastern QTP area and later
GUDs in the southwestern part of the plateau (Figure 9). However, QTP-NDVI30-derived
GUDs better describe detailed spatial variations in the actual GUD at the derived 30 m
spatial resolution (Figure 10). For example, 250 m MODIS GUD data exhibit obvious block
effects in enlarged local areas (Figure 10B). In contrast, QTP-NDVI30-derived GUD maps
capture subpixel GUD variations with rich spatial details.
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Figure 9. The green-up date (GUD) estimated from 250 m MODIS NDVI time-series (upper) and
QTP-NDVI30 data (lower) in 2018 for the QTP. The three local areas (points a–c) are enlarged and shown
in Figure 10. Note: pixels without obvious seasonal NDVI changes were excluded from GUD estimates.
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to availability limitations.

4. Discussion
4.1. The Value and Robustness of the QTP-NDVI30 Data

The QTP-NDVI30 data were reconstructed based mainly on our recently developed GF-
SG method. The GF-SG method effectively incorporates three types of auxiliary information:
spatial similarity, spatial autocorrelation, and temporal-change information. In previous
tests at two heterogeneous cropland sites [30], the GF-SG method outperformed three
other typical Landsat NDVI reconstruction methods (IFSDAF, Liu et al. [38]; STAIR, Luo
et al. [39]; and Fill-and-Fit, Yan et al. [24]). Two improvements make the GF-SG method
particularly suitable for the reconstruction of Landsat NDVI time-series on the QTP. First,
on the QTP, continuous Landsat NDVI gaps are very common during the growing season
due to frequent cloud contamination in summer (Figure 4). This challenging issue can
be effectively resolved using the GF-SG method, which has been proven to be reliable in
reconstructing continuous long-term NDVI gaps (see Figure 9 of Chen et al. [30]). Second,
Landsat cloud-detection errors can be serious in the QTP region, which can further decrease
the ease of cloud removal (see Figure 5 of Cao et al. [28]). The GF-SG method includes a
weighted Savitzky–Golay filter that corrects residual noise in NDVI time-series; thus, the
performance of this method is less affected by cloud-detection errors. These strengths of
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the GF-SG method ensure the robustness of the QTP-NDVI30 data, as confirmed by our
experiments in terms of both quantitative assessments (the average SSIM value is greater
than 0.94; Figure 5) and visual inspections (Figures 6 and 8).

QTP-NDVI30 provides continuous NDVI data with a 30 m spatial resolution, thus
improving our ability to monitor vegetation dynamics in variable topographic areas and
providing a potential resource for the research community. Our experiments show the
superiority of QTP-NDVI30 in simulating fine-scale vegetation phenology (Figure 10). The
coupling influence between climate factors and terrain effects on vegetation phenology can,
therefore, be investigated using QTP-NDVI30. In addition, fine-scale vegetation coverage
parameters in each 15-day period are among the factors used as inputs in soil-erosion
simulations in the QTP region using the Chinese Soil Loss Equation (CSLE) [22]. These
high-spatiotemporal-resolution vegetation parameters can be estimated from QTP-NDVI30.
Reconstructions of continuous Landsat NDVI time-series for the QTP can be enhanced
through progress in reconstruction algorithms and cloud computing. However, it still
takes nearly half a year to generate QTP-NDVI30 data with the GEE platform for two main
reasons. First, all available Landsat images from 2000–2020 in the QTP area are employed,
which requires large quantities of computations and many data analysis processes. Second,
the GEE platform restricts the computing power of individual users. Google accounts may
be forbidden if they are used to run the same task repeatedly on the GEE. Therefore, it is
necessary to release QTP-NDVI30 after careful data assessments to fully support ecological
research on the QTP, particularly in the context of climate warming.

4.2. Limitations of QTP-NDVI30

Several limitations remain for QTP-NDVI30. First, QTP-NDVI30 currently only spans
2000 to 2020 because the MODIS observations date back to 2000. Before the era of MODIS,
AVHRR NDVI time-series (1982–1999) were the unique auxiliary data source for spatiotem-
poral NDVI fusion. However, there may be much higher uncertainty in AVHRR–Landsat
data fusion due to the large difference in spatial resolution between the two datasets
(4–8 km vs. 30 m) and low data quality of the AVHRR NDVI [5]. For these reasons, 30 m
NDVI data before 2000 were not reconstructed. Second, the SLC-off Landsat 7 data after
May 2003 were included in the generation of QTP-NDVI30. It is possible that pixels inside
and outside the missing stripes were reconstructed using different numbers of images,
resulting in less-spatially-smooth reconstructed NDVI images in some local areas. Notably,
we performed QTP-NDVI30 reconstruction without using SLC-off Landsat 7 data, but ob-
served obvious increases in the MAE (data not shown). Third, a small number of vegetation
pixels in the QTP region (< 1%) failed to be reconstructed in QTP-NDVI30. The reason for
this issue is poor quality (e.g., continuous missing values) in the MODIS time-series data of
these pixels. As a result, the reference shape within the local window was not found for
these pixels when using the GF-SG method. Two solutions may be considered to address
this issue. One is to define a lower threshold (the original value is 0.8 in the GF-SG method)
to search for the reference shape if a certain degree of accuracy variation is allowed. The
other is to employ climate variables (e.g., temperature and precipitation) to simulate vege-
tation growth trajectories for these pixels [40,41]. In QTP-NDVI30, the two solutions were
not used to further process the unreconstructed vegetation pixels by considering the small
percentage of these pixels, which will not affect the practical application of QTP-NDVI30.

5. Conclusions

Currently, MODIS provides the highest-spatial-resolution (250 m) NDVI time-series
data for ecological research on the QTP. However, vegetation monitoring in topographic
regions requires NDVI time-series data with a higher spatial resolution. To fill this gap,
in this study, we reconstructed an 8-day and 30 m resolution NDVI dataset for the QTP
from 2000–2020. The obtained NDVI dataset (referred to as QTP-NDVI30) was produced
by employing all available Landsat 5/7/8 images (>100,000 scenes) with the developed
spatiotemporal GF-SG data-fusion algorithm. QTP-NDVI30 was carefully evaluated, and
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the subsequent results displayed satisfactory accuracy. Compared with the reference
Landsat images in 100 randomly selected subregions across the QTP, the reconstructed
NDVI data achieved an average MAE of 0.02 and average SSIM values greater than 0.94.
QTP-NDVI30 displays similar spatial variations in vegetation greenness to the PlanetScope
images, whereas the rich spatial details cannot be simulated by the 250 m MODIS NDVI
product. QTP-NDVI30 has excellent potential for use in vegetation monitoring and land-
surface process models related to fine-scale vegetation parameters. In the future, we will
update QTP-NDVI30 by generating the data from after 2020. In the QTP-NDVI30 dataset,
one image file corresponds to an NDVI image for the entire QTP on one date (~13 gigabytes).
QTP-NDVI30 will be uploaded to the National Tibetan Plateau Data Center (TPDC) and
is freely available for scientific research. To acquire the download link, please contact the
corresponding author.
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