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Abstract: Accurate spatial population distribution information, especially for metropolises, is of
significant value and is fundamental to many application areas such as public health, urban develop-
ment planning and disaster assessment management. Random forest is the most widely used model
in population spatialization studies. However, a reliable model for accurately mapping the spatial
distribution of metropolitan populations is still lacking due to the inherent limitations of the random
forest model and the complexity of the population spatialization problem. In this study, we integrate
gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), light gradient boosting
machine (LightGBM) and support vector regression (SVR) through ensemble learning algorithm
stacking to construct a novel population spatialization model we name GXLS-Stacking. We integrate
socioeconomic data that enhance the characterization of the population’s spatial distribution (e.g.,
point-of-interest data, building outline data with height, artificial impervious surface data, etc.) and
natural environmental data with a combination of census data to train the model to generate a
high-precision gridded population density map with a 100 m spatial resolution for Beijing in 2020.
Finally, the generated gridded population density map is validated at the pixel level using the highest
resolution validation data (i.e., community household registration data) in the current study. The
results show that the GXLS-Stacking model can predict the population’s spatial distribution with high
precision (R2 = 0.8004, MAE = 34.67 persons/hectare, RMSE = 54.92 persons/hectare), and its overall
performance is not only better than the four individual models but also better than the random
forest model. Compared to the natural environmental features, a city’s socioeconomic features are
more capable in characterizing the spatial distribution of the population and the intensity of human
activities. In addition, the gridded population density map obtained by the GXLS-Stacking model
can provide highly accurate information on the population’s spatial distribution and can be used to
analyze the spatial patterns of metropolitan population density. Moreover, the GXLS-Stacking model
has the ability to be generalized to metropolises with comprehensive and high-quality data, whether
in China or in other countries. Furthermore, for small and medium-sized cities, our modeling process
can still provide an effective reference for their population spatialization methods.

Keywords: population spatialization; ensemble learning; stacking; metropolis; Beijing

1. Introduction

Population generally refers to the total residential population in a specific geographical
area. As one of the most basic research metrics in geography, demography and sociol-
ogy, population is the most direct and effective indicator to characterize the intensity of
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human activities in a specific geographical area [1]. Population is closely associated with
regional development and environmental issues such as unbalanced regional growth, haz-
ard responses, water resource shortages, severe traffic congestion, and carbon-induced air
pollution, particularly in internationally-linked metropolises such as Beijing [2]. Mean-
while, since the outbreak of COVID-19 in late 2019, recurrent outbreaks have occurred due
to the high population densities and the frequent population movements in metropolitan
areas [3–5]. Therefore, understanding the accurate spatial distribution of population is of
great significance for public health, urban development planning and disaster assessment
management, especially in complex metropolises [6–11].

The official population figures derived from census data are usually reported at the
administrative unit level (e.g., province, city, county, township) [12]. The census data
represent the entire population of the census administrative units and cannot highlight
the spatial distribution of residents in different parts of the administrative units [13]. The
usefulness of such census data is limited because the population is not evenly distributed
within the administrative units and the administrative boundaries may also change over
time. Consequently, census data fail to reveal in detail the spatial heterogeneity of popula-
tion density [14,15]. However, gridded population density datasets can overcome these
shortcomings because they can reflect the spatiotemporal characteristics of a population’s
distribution [16–18]. Therefore, to ensure valid analyses, generating high-precision and
high-spatial-resolution gridded population density datasets is crucial [19].

The process of disaggregating census data to produce gridded population density
datasets is also called population spatialization [20]. In the past few decades, the pop-
ulation spatialization research methods have mainly been divided into three categories:
(1) spatial interpolation methods; (2) statistical model methods; and (3) machine learning
model methods. Spatial interpolation was mostly used in early population spatialization
research, which made it easy to convert data scales but made it difficult to consider the
impact of the various factors influencing the population distribution in a region [21,22].
For more detail, the area-weighted interpolation method is the most common spatial in-
terpolation; it is easy to implement but not very precise due to its neglect of the scale and
boundary effects [23–26]. Statistical models of population spatialization are generally based
on linear regression analyses, including geographic weighted models, multiple regression
models and spatial logistic regression models [13,27–29]. By establishing a linear regression
model, the impact of various influencing factors on a population’s distribution can be
comprehensively considered, but it is difficult to explain the nonlinear relationship be-
tween the population’s various spatial distribution influencing factors and the population’s
density [30–33]. With the advent of the big data era and the development of artificial
intelligence technology, machine learning models have become the mainstream population
spatialization models [34]. In particular, the random forest model, which is the most widely
used, performs very well in population spatialization processes, and the gridded popu-
lation density datasets generated by it attain high accuracies [2,35–38]. Machine learning
models have made significant progress in population spatialization methods, enabling the
analysis of the complex nonlinear relationships between the various population spatial
distribution influencing factors and the population density in the process of population spa-
tialization [39]. However, for the scientific considerations of population spatialization, the
accuracy of the generated gridded population density datasets is very important. Although
the random forest model effectively undertakes the process of population spatialization,
the accuracy of the model still leaves much room for improvement due to the limited un-
derstanding of the variable features by the individual model. Ensemble learning algorithm
stacking is considered to be an excellent model fusion algorithm [40], which can integrate
machine learning models with excellent performance in order to better understand variable
features and improve the integrated model’s generalization capacity [41]. Therefore, there is
a high probability that the accuracy of the integrated model will be higher than the accuracy
of the individual models [42]. Stacking has achieved great success in many fields [43,44],
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but to the knowledge of the authors, there has been no research on this algorithm’s model
integration to improve the population spatialization accuracy.

The supporting data for population spatialization are also crucial. At present, many
scholars use medium spatial resolution remotely-sensed ancillary data, such as land
cover/land use data and normalized difference vegetation index (NDVI) data, to dis-
aggregate the census data [7,13,45–48]. However, these data are not directly indicative of
human presence. They also have limited capabilities in extracting the demographic and
socioeconomic features related to human activities, particularly in complex urban environ-
ments [48–51]. According to related studies, point-of-interest data, as emerging geospatial
big data, can provide new opportunities for generating accurate gridded population den-
sity datasets with fine spatial resolutions [48,52–56]. In addition, building outline data
with height, artificial impervious surface data and road network data can also effectively
characterize a population’s spatial distribution, which greatly improves the accuracy of the
population spatialization [2,7,48,57–61].

Evaluating the generated gridded population density datasets is a very difficult prob-
lem. Most of the current population spatialization research fits the model at the county
level and then verifies it at the township level [36,37,48,62]. Zonal statistics were collected
on gridded population density datasets during the validation phase, and the total popula-
tion number was calculated and compared with the corresponding total township-level
administrative unit population in the census data. However, this method of evaluation
is not accurate, as the township-level administrative units are too large to represent an
accurate spatial distribution of the population, even if the total population is consistent.
Community data are considered good validation data because of their small scale, so it can
be approximated that the population is uniformly distributed within their range. However,
community data are confidential government data and difficult to obtain [11,32,36,38]. If
community data are obtained and used for validation, they can largely confirm the accuracy
of the generated gridded population density datasets.

It is critical to develop a rigorously validated and efficient algorithm for mapping
metropolitan gridded population density maps for an improved understanding of the
population density spatial patterns. We thus hypothesize that: (1) the population density
mapping algorithm based on ensemble learning and adopted at the metropolitan scale
will be helpful in improving the precision of population spatialization results and (2) the
spatial distribution of the population is mainly influenced by socioeconomic features.
The innovation of this study is in constructing a novel population spatialization model
GXLS-Stacking by integrating GBDT, XGBoost, LightGBM and SVR through ensemble
learning algorithm stacking and generating a high-precision gridded population density
map with a 100 m spatial resolution for Beijing in 2020. This study’s specific objectives
are to: (1) integrate socioeconomic data that better characterize the spatial distribution
of the population and natural environmental data with a combination of census data to
develop the GXLS-Stacking model and; (2) validate the GXLS-Stacking model at the pixel
level using the highest resolution validation data (i.e., community household registration
data); (3) explore the attribution of the socioeconomic features and natural environmental
features to the spatial distribution of the population.

2. Study Area and Data
2.1. Study Area

Beijing is the capital of China; it is a world-famous ancient capital and a modern
international metropolis (see Figure 1). Beijing is located in the northern part of the
North China Plain, and its terrain is high in the northwest and low in the southeast. It
is surrounded by mountains in the west, north and northeast. The southeast part is a
plain, the center of which is located at 116◦20′E longitude and 39◦56′N latitude. As of 2020,
the city has 16 districts and 337 township-level administrative units with a total area of
16,410 square kilometers. According to the seventh China census report, the total resident
population of Beijing in 2020 was 21,893,095, and its population density ranks 13th among
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all the cities in China. Beijing is the political, cultural and commercial center of the country
and therefore attracts a large permanent resident population with complex compositions
and structures. This high-density population distribution is a persistent challenge for
city population management, public health security, and urban planning. The relatively
complex natural environment and the complicated spatial distribution of the population in
Beijing makes it an ideal area for the study of population spatialization.

Figure 1. Geographical location and census situation of Beijing.

2.2. Data and Preprocessing

The main categories of data used are socioeconomic data, natural environmental data
and population data. Table 1 lists the 11 types of data used in this study. The retrieval
and preprocessing of these datasets in this study are described below. To ensure the same
spatial location and the correctness of the area information, all data in this paper were
reprojected to the WGS-1984-UTM-Zone-50N coordinate system.

2.2.1. Boundary and Census Data

The boundary map at the township level was derived from the Administration of
Surveying Mapping and Geoinformation, China. The population data of Beijing in 2020
were derived from the seventh China census. The census data are reported at the township
level (equivalent to level 4 of the Global Administrative Unit Layer defined by the Food
and Agriculture Organization) with 337 units [48]. The census data at the township level
were used to fit the model. Although both data are from 2020, the two types of data
inconsistently match at some points due to the inconsistent release dates, and the fact that
the Beijing government made adjustments to the township-level administrative divisions
during this period. Therefore, we ensured that the census population was consistent with
the corresponding administrative boundary maps through data revision and checking.

2.2.2. Remote Sensing Datasets

Nighttime light (NTL) data have been proven to have a strong correlation with the
spatial distribution of populations [63]. In recent decades, most scholars have used Defense
Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) nighttime
light data to assess urban areas and population spatial distributions at the regional and
global scales [7,46,64,65]. At the urban scale, the spatial resolution of the DMSP-OLS data
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is too low, and the urban population is severely underestimated due to the saturation
effect, so its effect on population spatialization is not ideal [66,67]. Therefore, we chose
the 2020 annual average National Polar-orbiting Partnership’s Visible Infrared Imaging
Radiometer Suite (NPP-VIIRS) nighttime light data, which were derived from the Earth
Observation Group (available from https://eogdata.mines.edu/products/vnl/ (accessed
on 3 October 2021)). It not only has a high spatial resolution but also removes the influence
of sunlight, moonlight, clouds and abnormal pixel values [68]. Following [48], the NTL
image was resampled to a 100 m spatial resolution using the nearest neighbor approach in
ArcGIS 10.6 to avoid changing any pixel values during the resampling process.

Table 1. List of datasets and sources used in the study.

Category Datasets Format Time Sources

Socioeconomic data

Point of interest Vector (Point) 2020 AMap Services, China

Building outline Vector (Polygon) 2020 Baidu Map
Services, China

Road network Vector (Polyline) 2020 AMap Services, China

Impervious surface Raster (30 m) 2020
State Key

Laboratory of Remote
Sensing Science, China

NPP-VIIRS nighttime light
image Raster (500 m) 2020

Earth
Observation
Group, USA

Natural
environmental

data

River network Vector (Polyline) 2018
Resource and

Environment Science
and Data Center, China

ASTER GDEM v3 Raster (30 m) 2019
National

Aeronautics and Space
Administration, USA

Population data

WorldPop Raster (100 m) 2020
WorldPop

Mainland China
Dataset in 2020, UK

Census data Table 2020 Beijing
Government, China

Community
household

registration data
Table 2020

Information Center
of the Ministry of

Civil Affairs, China

Basic geographic data Boundary maps Vector (Polygon) 2020
Administration of

Surveying Mapping and
Geoinformation, China

The artificial impervious surface (IS) data with 30 m spatial resolutions were derived
from the State Key Laboratory of Remote Sensing Science, China (available from https://
doi.org/10.5281/zenodo.5220816 (accessed on 26 February 2022)), which has been shown to
have the highest accuracy among the top five impervious surface datasets in the world [69].
First, we reclassified each pixel of the dataset to 0 or 1 (0 represents a pervious surface and
1 represents an impervious surface in 2020). Then, a fishnet with empty attributes at the
100 × 100 m cell size covering the entire Beijing was created in ArcGIS 10.6. Through an
intersection operation between the fishnet and the reclassified dataset, the total area of the
impervious surface of each cell was calculated. Finally, we used the fishnet with impervious
surface area information to generate a raster layer with a 100 m spatial resolution.

The advanced spaceborne thermal emission and reflection radiometer global digital
elevation model version 3 (ASTER GDEM v3) with a 30 m spatial resolution was derived
from the National Aeronautics and Space Administration (NASA) (available from https://
earthdata.nasa.gov/ (accessed on 7 May 2021)). The 30 m spatial resolution DEM data were
resampled to 100 m using the bilinear interpolation method, and the resampled DEM data
were used to generate the elevation and slope datasets.

https://eogdata.mines.edu/products/vnl/
https://doi.org/10.5281/zenodo.5220816
https://doi.org/10.5281/zenodo.5220816
https://earthdata.nasa.gov/
https://earthdata.nasa.gov/
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2.2.3. Point of Interest Data

The point of interest (POI) data were derived from the AMap (http://ditu.amap.
com/ (accessed on 18 January 2022)), which is a leading provider of digital map content,
navigation and location service solutions in China [70]. We obtained 1,349,421 POI records
for Beijing in 2020 using AMap’s application programming interface. AMap classified these
POI data into 23 categories on the basis of their Chinese semantic phrase [70]. Because
the Incidents and Events category has only 18 records and is not related to the research
content, we deleted it. Table 2 presents the 22 categories and the amount of POI records for
each category.

Table 2. Category and quantity of POI data.

Category Quantity

Shopping 187,906
Enterprises 107,055
Auto Repair 4565
Auto Service 16,522
Auto Dealers 3141
Pass Facilities 87,170
Public Facility 20,136
Road Furniture 2127
Medical Service 27,375
Indoor Facilities 99,498

Daily Life Service 143,195
Tourist Attraction 10,098

Motorcycle Service 1044
Commercial House 47,077
Food and Beverages 107,994

Sports and Recreation 28,495
Transportation Service 89,999

Accommodation Service 21,301
Place Name and Address 204,066

Finance and Insurance Service 15,285
Science/Culture and Education Service 63,618

Governmental Organization and Social Group 61,754

Following [48], all the POI categories in this study were produced to two raster layers
of distance to the nearest POI (DtN-POI) and POI-Density. A fishnet with empty attributes
at the 100 × 100 m cell size covering all of Beijing was created in ArcGIS 10.6. Each cell was
valued by the Euclidean distance from the center of the cell to the nearest POI of a category.
Finally, we produced a total of 22 raster layers as DtN-POI for the 22 POI categories.

We adopted the kernel density estimation (KDE) [71] method to convert discrete
individual POI to continuous and smooth density surfaces for each of the 22 categories.
The density surfaces were output as raster layers at a 100 m spatial resolution. Bandwidth
is an important parameter of the KDE method. Since the quantity and spatial distribution
of each POI category differ, using Equation (1) to calculate the bandwidth can correct the
spatial outliers and make the generated raster layer more realistic [72].

Bandwidth = 0.9 ∗min

(
SD,

√
1

ln(2)
∗ Dm

)
∗ n−0.2 (1)

where SD is the standard distance, Dm is the median distance and n is the number of points.

2.2.4. Building Outline Data

The building outline data were derived from the Baidu Map (http://map.baidu.
com (accessed on 6 February 2022)), which is a leading internet map service provider in
China [73]. First, a fishnet with empty attributes at the 100 × 100 m cell size covering

http://ditu.amap.com/
http://ditu.amap.com/
http://map.baidu.com
http://map.baidu.com
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all of Beijing was created in ArcGIS 10.6. Then, an intersection operation was performed
between the fishnet and the building outline data. Since the building outline data have
area and height information, the building volume of each cell can be calculated. Finally, we
used the fishnet with building volume information to generate a raster layer with a 100 m
spatial resolution.

2.2.5. Road and River Network Data

The road network data were derived from the AMap (http://ditu.amap.com/ (ac-
cessed on 17 November 2021)), which included township roads, county roads, provincial
roads, national roads, railways, subway lines, expressways, urban first-class roads, ur-
ban second-class roads, urban third-class roads and urban fourth-class roads. The river
network data were derived from the Resource and Environment Science and Data Cen-
ter, Chinese Academy of Sciences (available from https://www.resdc.cn/ (accessed on
9 December 2021)). Using the same method used to generate the DtN-POI raster layer, we
produced a total of 11 raster layers as DtN-Road for the 11 road categories and a raster
layer as DtN-River for the river.

2.2.6. Community Household Registration Data

The community household registration data were derived from the Information Center
of the Ministry of Civil Affairs, China. There are 3485 communities distributed across
Beijing based on the population density (see Figure 2). These data are considered to be
the highest resolution validation data [36,38], and since a community’s scale is very small,
we therefore hypothesized that the distribution of population within the community is
uniform. As these data are confidential government data, the Information Center of the
Ministry of Civil Affairs emphasizes that they are only available for use for academic
research and should not be shared.

Figure 2. Spatial distribution of Beijing community committee sites.

http://ditu.amap.com/
https://www.resdc.cn/
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The data include the number of households and area corresponding to all communities
in each township-level administrative unit and the detailed address of the community
committee. Therefore, we divided the census data by the total number of households in the
corresponding township-level administrative unit to calculate the average population per
household and then calculated the total population in the community. Then, we calculated
the average population density by dividing the total population by the area (hectare) of each
community. Finally, we obtained the latitude and longitude coordinates of each community
committee site through the Baidu coordinate pickup system. However, the coordinates use
the Baidu coordinate system, so we converted the coordinates of all the sites into WGS84
through the conversion parameters. Based on the above assumption, we can perform
pixel-level verification on the gridded population density dataset cells corresponding to
the community committee coordinates to prove the accuracy of the spatial distribution of
the population.

2.2.7. WorldPop Mainland China Dataset

The WorldPop mainland China dataset in 2020 was derived from the WorldPop project
website (https://www.worldpop.org/ (accessed on 19 April 2022)). This dataset is a
relatively new gridded population density dataset and has the best spatial resolution at
100 m and the best accuracy for the Chinese territory [62,74]. We compared the gridded
population density map generated by the GXLS-Stacking model with the WorldPop dataset
to prove the superiority of the GXLS-Stacking model and feature engineering.

3. Methodology
3.1. Overall Work Framework

Numerous factors influence the spatial distribution of a population. For a more
comprehensive analysis of the spatial distribution of a population, we take into account
not only the influence of natural environmental factors, but also the influence of the
socioeconomic factors that better characterize the spatial distribution of the population.
As mentioned earlier, we generated six categories of socioeconomic features, including
POI-Density, DtN-POI, Building Volume, DtN-Road, IS Area and Brightness of NTL, and
three categories of natural environmental features, including Elevation, DtN-River and
Slope. These features collectively affect the spatial distribution of the population. As
these factors interact with each other and are difficult to separate, their relationships with
population density become complex and nonlinear [39].

Machine learning models can solve complex nonlinear problems, among which ran-
dom forest models are widely used in the study of population spatialization and have
shown high accuracy [35]. However, due to the complexity of the population spatialization
problem, predicting population density becomes a very difficult regression problem. Al-
though the random forest model can perform the regression task well, a good regression
model does not reach all-round superiority over others. In addition, the accuracy of the ran-
dom forest model still leaves much room for improvement due to the limited understanding
of the variable features by the individual model. In this situation, a reasonable approach is
to keep all the results of the excellent regression models and then create a final model by
integrating them [43]. Ensemble learning algorithm stacking enables the integrated model
to achieve better performance through the integration of heterogeneous models [44]. This
paper aims to integrate the above multiple features, and constructs a novel population
spatialization model GXLS-Stacking by integrating GBDT, XGBoost, LightGBM and SVR
through stacking to generate a 100 m spatial resolution gridded population density map
for Beijing in 2020. The detailed algorithms and model architecture are described in the
following sections.

First, during the training phase, a total of 61 raster layers with 100 m spatial resolutions
for the nine features mentioned above (22 POI-Density raster layers, 22 DtN-POI raster
layers, 11 DtN-Road raster layers, 1 Building Volume raster layer, 1 IS Area raster layer,
1 Brightness of NTL raster layer, 1 Elevation raster layer, 1 DtN-River raster layer, 1 Slope

https://www.worldpop.org/
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raster layer) were used as the independent variables, and the census population was used as
the dependent variable to fit the GXLS-Stacking, GBDT, XGBoost, LightGBM, SVR, and RF
models. As the performance of these models may be biased by the division of the training
and testing sets, we used the ten-fold cross-validation technique to evaluate the models
and tune the hyperparameters of each model [75]. Then, during the prediction phase,
all 61 raster layers were imported into the best trained models to predict the distributed
weight and disaggregate the census population to generate the final dasymetric population
density maps for Beijing in 2020. Finally, we used the highest spatial resolution validation
data (i.e., community household registration data) to verify the accuracy at the pixel level
to demonstrate that our integrated model GXLS-Stacking is not only better than the four
individual models but also better than the random forest model. We also compared the
highest spatial resolution and the best accuracy of the WorldPop mainland China dataset
to demonstrate the superiority not only of the GXLS-Stacking model but also of our feature
engineering. The flowchart of the proposed framework is shown in Figure 3.

Figure 3. Flowchart of the proposed framework.

3.2. Population Spatialization Model GXLS-Stacking
3.2.1. Stacked Generalization

Stacking is a hierarchical ensemble learning algorithm. It introduces the concept
of meta-learning, i.e., integrates multiple base learners through a meta-learner, the base
learners use the entire training set for training, while the meta-learner uses the results of the
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base learners as features to model. Besides, stacking represents an asymptotically optimal
learning system, and aims to minimize the errors of generalization by reducing the bias of
its generalizers [41]. When using stacking for model fusion, the improvement in prediction
results is evident. This occurs because models with different generalization principles tend
to yield different results. Diversity can be included in the modeling process by introducing
models that follow different learning strategies. The diversity in stacking is achieved
by using heterogeneous models on the same training sets [44]. Therefore, stacking’s
advantages can be summarized as follows. Compared to individual models, it has better
generalization ability, better modeling nonlinear patterns, and better identification of
regressor variable importance [43].

There is a complex nonlinear relationship between the various population spatial
distribution influencing factors and the population density. It is difficult for an individual
model to completely fit this nonlinear relationship. Therefore, integrating individual
models with excellent performance and giving full play to the characteristics of all the
models can not only make the integrated model more diverse but also helps it better
understand the variable features, improve the generalization ability, and make the final
population spatialization result more accurate. Based on the above theories, we integrated
the GBDT, XGBoost, LightGBM and SVR models, which not only performed well in ten-
fold cross-validation but also have different learning strategies through ensemble learning
algorithm stacking, and constructed a novel population spatialization model GXLS-Stacking
to predict the spatial distribution of population with high precision. Where “G” stands for
GBDT, “X” stands for XGBoost, “L” stands for LightGBM, and “S” stands for SVR.

3.2.2. Base Model and Meta-Model

Since stacking is a hierarchical ensemble learning algorithm, it expresses the concepts
of a base model and meta-model. The selection of the base model and meta-model is very
important because it is directly related to the accuracy of the final population spatialization
results. After a repeated number of extensive experiments, GBDT, XGBoost and LightGBM
were selected as the base models of the first layer because the base models must be accurate
and different, i.e., have high accuracy during the training phase and follow different
learning strategies so that diversity can be included in the modeling process, while the
relatively simple but highly accurate SVR model was chosen as the meta-model of the
second layer to avoid overfitting [43]. The basic principles and learning strategies of the
base models and meta-model are described below. The detailed integration process is
described in the following sections.

The gradient boosting decision tree (GBDT) is an ensemble learning model based on
classification and regression trees (CART) and is trained by a gradient boosting algorithm.
As an iterative decision tree algorithm, GBDT is composed of multiple trees, and the
conclusion of all the trees is accumulated as the final answer. The gradient boosting
algorithm builds a new model in the direction of the negative gradient of the previous
model’s loss function, which is quite different from the traditional boosting algorithm
with weighting samples. Therefore, the construction of each tree in GBDT makes the
residuals decrease toward the negative gradient direction, and the model residuals decrease
continuously in successive iterations [76].

Extreme gradient boosting (XGBoost) is a classic tree-based model. XGBoost has
attracted increased attention and has been widely used in many recent data mining com-
petitions due to its excellent performance. First, it penalizes complex models by adding
regular terms to the objective function, effectively avoiding overfitting. Second, it uses
the second-order approximation of the loss function while training, which speeds up the
descent of the loss function and makes iterations faster. Third, it constructs an approximate
algorithm for split finding and a sparsity-aware split-finding algorithm for automatically
handling missing values, which can greatly improve the computational efficiency [77].

The light gradient boosting machine (LightGBM) is an adaptive gradient boosting
model. To improve the computing power and prediction accuracy, the LightGBM first
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uses the histogram algorithm for split finding and the mutually exclusive feature bundling
algorithm for feature dimension reduction, which can greatly reduce the time complexity.
Second, the Leaf-wise algorithm is used to find the leaf with the greatest splitting gain from
all the current leaves and then split it. At the same time, LightGBM adds a maximum depth
limit on top of Leaf-wise to ensure high efficiency while preventing overfitting [78].

Initially, support vector machines (SVM) aimed to learn a separate function that
divides training instances into distinct groups according to their class labels. Now, SVM
has been extended for general estimation and prediction problems, namely, support vector
regression (SVR). SVR is a nonlinear kernel-based regression model that attempts to find
the best regression hyperplane with the smallest structural risk. SVR finds a function
that approximates the training instances well by minimizing the prediction error. When
minimizing the error, the risk of overfitting is reduced by simultaneously trying to maximize
the flatness of the function [79].

3.2.3. Overall Model Architecture

The GXLS-Stacking model architecture of this paper is shown in Figure 4; it uses a
two-layer ensemble learning algorithm stacking. GBDT, XGBoost and LightGBM are the
base models of the first layer, and the SVR model is the meta-model of the second layer.
The training and testing process of the GXLS-Stacking model is as follows. First, a five-fold
cross-validation on the training set is applied for each base model in the first layer, and
the predictions on the test set are calculated for each cross-validation. In the second layer,
the five predictions of each base model on the training set are stitched together separately,
which are the predictions of the original entire training set, and the predictions of the three
base models of GBDT, XGBoost and LightGBM after stitching are combined as the input
values of the second layer. The true values of the training set are used as the target values
to train the meta-model SVR. Then, the mean values of the predictions of the three base
models on the test set are combined and input to the SVR model to finally obtain the test
result of the GXLS-Stacking model on the test set.

Figure 4. GXLS-Stacking model overall architecture.

3.3. Random Forest Model for Comparison

Random forest (RF) is a tree-based bagging model. It randomly extracts m sub-samples
and k sub-features from the original dataset, forming multiple sets of sub-data for training
multiple regression trees. Then, it applies the averaging method to combine the regression
results of each regression tree and generate the final regression results. The random forest
model introduces a random attribute selection process while training, which makes the
diversity of the base regression trees come not only from the sample disturbance but also
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from the attribute disturbance. Therefore, the generalization performance of random forest
can be further improved by increasing the difference degree between the base regression
trees [80]. Due to the excellent performance of the random forest model, it has been widely
used in the study of population spatialization and has produced highly accurate results.
Therefore, to evaluate the performance of the GXLS-Stacking model, we compared it with
the random forest model.

3.4. Evaluation Strategy and Performance Metrics

An accuracy assessment is the validation of a model’s precision and is an important
step for constructing a model. An ideal measure to validate the population spatialization
results would be to use census counts with a finer resolution but this is very difficult due to
the lack of census data or the corresponding boundary data [13]. However, we obtained
community household registration data from the Information Center of the Ministry of
Civil Affairs, which can be considered the highest resolution validation data [38]. To fully
assess the accuracy of the best performing model, we used these data for validation at the
pixel level.

Three performance metrics widely used for population spatialization, the determina-
tion coefficient (R2), mean absolute error (MAE) and root mean square error (RMSE), were
adopted in this study. Given the research context of this paper, the units of MAE and RMSE
are persons/hectare. The equations used to calculate these metrics are as follows:

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (2)

MAE =
1
n

n

∑
i=1
|yi − ŷi| (3)

RMSE =

√√√√ 1
n

n

∑
i=1

(yi − ŷi)
2 (4)

where yi is the true value, ŷi is the predicted value, y is the average of true values and n is
the total number of samples.

4. Results
4.1. Optimal Model Construction

We trained the models by using normalized training data and adjusting the hyper-
parameters of the models to obtain the optimal models. First, a total of 61 raster layers
with 100 m spatial resolutions for the nine features mentioned above (22 POI-Density raster
layers, 22 DtN-POI raster layers, 11 DtN-Road raster layers, 1 Building Volume raster layer,
1 IS Area raster layer, 1 Brightness of NTL raster layer, 1 Elevation raster layer, 1 DtN-River
raster layer, 1 Slope raster layer) were normalized using Equation (5) and averaged at the
township-level administrative unit. Then, the average population density was calculated by
dividing the census population by the area (hectare) of the corresponding township-level
administrative unit. Finally, the raster layers and the corresponding natural logarithms of
the average population density were connected to fit the GXLS-Stacking, GBDT, XGBoost,
LightGBM, SVR and RF models.

RLi
′ =

RLi − RLmin
RLmax − RLmin

(5)

where RLi
′ is the normalized value of the i-th pixel of the raster layer, RLi denotes the

original value of the i-th pixel of the raster layer, RLmax represents the maximum value of
the raster layer, and RLmin is the minimum value of the raster layer.



Remote Sens. 2022, 14, 3654 13 of 26

The training, testing and validation processes of the above models were imple-
mented using the xgboost, lightgbm and scikit-learn packages in Python (https://xgboost.
readthedocs.io/en/stable/, https://lightgbm.readthedocs.io/en/latest/, https://scikit-
learn.org/stable/ (accessed on 1 March 2022)). In order to improve the performance of the
models, this study used the grid search method combined with ten-fold cross-validation
technique to train the models and select the best hyperparameters to ensure that the op-
timal models were obtained [81]. The hyperparameters of the optimal models and their
performance metrics in the ten-fold cross-validation are shown in Table 3.

Table 3. The hyperparameters of the optimal models and their performance metrics in the ten-fold
cross-validation.

Model Name

Ten-Fold Cross-Validation
Performance Metrics Global Optimal Hyperparameters

R2 MAE RMSE

GXLS-Stacking 0.9687 0.2564 0.3639

GBDT

max_depth: 3
max_features: 8 learning_rate: 0.2

n_estimators: 183
min_samples_split: 32

XGBoost

n_estimators: 11
reg_lambda: 0.89

learning_rate: 0.38
gamma: 0.06 reg_alpha: 0.04
subsample: 0.7 max_depth: 8

LightGBM

max_depth: 5
subsample: 0.1

reg_lambda: 0.19
learning_rate: 0.1
n_estimators: 132

feature_fraction: 0.7
min_child_samples: 39

min_child_weight: 0.001
num_leaves: 6 reg_alpha: 0.39

SVR gamma: 0.11C:
8 kernel: rbf

GBDT 0.9651 0.2722 0.3874
min_samples_split: 32

max_depth: 3 n_estimators: 76
max_features: 19 learning_rate: 0.26

XGBoost 0.9635 0.2824 0.3972

gamma: 0.195 reg_alpha: 0
subsample: 1 max_depth: 5

reg_lambda: 1 n_estimators: 17
learning_rate: 0.3 min_child_weight: 1

LightGBM 0.9658 0.2704 0.3836

feature_fraction: 0.42
min_child_samples: 8

min_child_weight: 0.001
max_bin: 170 max_depth: 4

num_leaves: 6 reg_alpha: 0.04
subsample: 0.01 reg_lambda: 0.31

learning_rate: 0.1 n_estimators: 138

SVR 0.9563 0.3049 0.4371 gamma: 0.24
C: 5 kernel: rbf

RF 0.9643 0.2729 0.3920 max_depth: 11 n_estimators: 30
max_features: 29 min_samples_split: 2

The GXLS-Stacking model achieved excellent results for performance metrics (i.e.,
R2, MAE, RMSE) in the ten-fold cross-validation, where the R2 was 0.9687, MAE was
0.2564 persons/hectare and RMSE was 0.3639 persons/hectare. In comparison with the four
individual models GBDT, XGBoost, LightGBM, SVR and RF model, the three performance
metrics of the GXLS-Stacking model were the highest. It is worth noting that all models
achieved good results for the performance metrics in the ten-fold cross-validation, which

https://xgboost.readthedocs.io/en/stable/
https://xgboost.readthedocs.io/en/stable/
https://lightgbm.readthedocs.io/en/latest/
https://scikit-learn.org/stable/
https://scikit-learn.org/stable/
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indicates an overall agreement between the population density predicted by all models and
the target population density. The results show that the overall performance of the GXLS-
Stacking model was the best among the six models, so the GXLS-Stacking model is more
likely to achieve the best accuracy in subsequent pixel level verification using community
household registration data. Therefore, in the remainder of this study, we focused on using
the GXLS-Stacking model that has been trained and achieved the best performance.

4.2. Dasymetric Population Mapping

Dasymetric mapping, also called dasymetric modeling, is a kind of areal interpolation
that aims to disaggregate coarse resolution variables (e.g., population) to a finer resolution
based on auxiliary data [7,45,82]. Dasymetric population mapping has a long history
and has gained popularity due to the rapid development of the geographic information
system and satellite remote sensing. Its key idea is to produce a gridded weight layer, and
assuming the same spatial distribution of the population and the weight layer within the
spatial unit [18,45,83]. Therefore, generating the population distribution weight layer is the
penultimate step of the whole population spatialization process, and then disaggregating
the census population based on this weight layer to finally obtain the gridded population
density map.

Above, we obtained six optimal models (i.e., GXLS-Stacking, GBDT, XGBoost, Light-
GBM, SVR, RF) by the grid search method and ten-fold cross-validation technique. Then,
the 61 raster layers mentioned above were positioned to the optimal models to predict
the population distribution weight for each one hectare (i.e., 0.01 km2) gridded area (see
Figure 5) and generated six 100 m spatial resolution distribution weight layers. Next, the
distribution weight layers were used to disaggregate the census population at the township
level administrative unit (see Figure 1) into pixels. Finally, six dasymetric population
density maps (see Figure 6) for Beijing were produced using Equation (6) as follows:

POPgrid =
POPtownship ×Wgird

Wtownship
(6)

where Wgird is the population distribution weight for a 1-hectare gridded area, Wtownship
denotes the summed population distribution weight of a township-level administrative unit
that contains the gridded area, POPtownship represents the township-level administrative
unit census population, and POPgrid is the predicted population for the gridded area.

4.3. Accuracy Assessment of the Optimal Models

The assessment of gridded population density maps generated by the optimal models
after the dasymetric population mapping has been a very difficult problem due to the
lack of higher-resolution validation data [2,13,84,85]. Most of the current studies only
conduct an overall assessment at the township level administrative unit, i.e., comparing
the predicted total population with the corresponding township-level administrative unit
census population [31,36,37,48,62]. However, the area of the township-level administrative
unit is so large that even if the two values are consistent, they cannot represent the accurate
spatial distribution of the population. Community data are considered to be the smallest
scale and highest resolution validation data, and few scholars use it in their studies due to
their difficult access [32,36,38]. Fortunately, the Information Center of the Ministry of Civil
Affairs provided us with 3485 community household registration data in Beijing, and the
detailed data processing flow is described above. Then, we evaluated the accuracy of the
gridded population density maps generated by the optimal models on 3485 pixels. The
detailed evaluation results are shown in Figure 7.
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Figure 5. The 100 m spatial resolution distribution weight layers predicted by the optimal models.

Figure 6. The 100 m spatial resolution dasymetric population density maps for Beijing in 2020
generated by the optimal models.
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The GXLS-Stacking model achieved excellent results in the performance metrics
(i.e., R2, MAE, RMSE) in the pixel-level validation. Where the R2 was 0.8004, MAE was
34.67 persons/hectare and RMSE was 54.92 persons/hectare. Compared to the other
five models, the GXLS-Stacking model had the highest three performance metrics, which
also represents its best overall performance. Compared with the four individual models
GBDT, XGBoost, LightGBM and SVR, the overall performance of the integrated model
GXLS-Stacking is far superior to these four individual models. This result shows that the
GXLS-Stacking model can fully exert the characteristics of all the individual models and
include diversity in the modeling process. In addition, the GXLS-Stacking model can better
understand the complex nonlinear relationship between the various influencing factors
of population spatial distribution and the population density, and can better identify the
importance of the regression variables. Through the verification at the pixel level, it can
be shown that the GXLS-Stacking model has a stronger generalization ability. The overall
performance of the random forest model ranked second, where the R2 was 0.7769, MAE
was 36.47 persons/hectare and RMSE was 58.07 persons/hectare. This is why random
forest models have been widely used in the study of population spatialization and have
shown considerable accuracy. As shown in Figure 7, the scatter of the GXLS-Stacking
model fits closely to the 1:1 line, and the other five models are discrete in some places. On
the other hand, the weight layers can also be used as a criterion to evaluate the model
performance. We found that the GXLS-Stacking model is still the best among the six models
by computing the sum of all the pixel values in the weight layers and comparing it with the
census population. The sum of all pixel values in the weight layer generated by the GXLS-
Stacking model was the closest to the census population, with a difference of 60,797 persons.
The results are shown in Table 4.

Figure 7. Scatter plots of the predicted by optimal models and the community committee sites
population density at the pixel level (Total of 3485 pixels). A ln-ln transformation was conducted for
the population density. The black dash line indicate 1:1 line. pph: persons per hectare.
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Table 4. The sum of all pixel values in the weight layers compared with census population.

Model Name Sum of All Pixels
Values in Weight Layer Census Population Difference

GXLS-Stacking 21,832,298

21,893,095

−60,797
GBDT 25,122,462 3,229,367

XGBoost 20,115,082 −1,778,013
LightGBM 22,480,540 587,445

SVR 26,696,073 4,802,978
RF 22,409,335 516,240

4.4. WorldPop Mainland China Dataset for Comparison

The WorldPop dataset was reported as the most accurate gridded population den-
sity dataset with the finest spatial resolution (i.e., 100 m) for China in the current litera-
ture [48,62,74,86]. Therefore, by making comparisons with the WorldPop dataset, we can
prove the superiority of not only the GXLS-Stacking model but also our feature engineer-
ing. Since the total population of Beijing in 2020 estimated by the WorldPop dataset was
18,617,470, which deviates widely from the official census population of 21,893,095, for the
sake of fairness, we take the WorldPop dataset as a weight layer, and use the census data
to make corrections to obtain a corrected WorldPop dataset. The WorldPop dataset and
corrected WorldPop dataset are shown in Figure 8, and the scatter plots evaluated by the
three performance metrics are shown in Figure 9. Although it can be seen from the scatter
plots that the corrected WorldPop dataset is closer to the 1:1 line than the WorldPop dataset,
both have an unacceptable inaccuracy (the R2 was 0.1386 and 0.0399, respectively).

Figure 8. (a) WorldPop mainland China dataset in 2020. (b) WorldPop mainland China dataset
corrected by census data in 2020. WPCBCD: WorldPop corrected by census data.

The WorldPop dataset was produced by generating weight-layer based on the random
forest model and disaggregating the census population using the dasymetric mapping
method, which is consistent with the logic of this study. However, the R2 of the gridded
population density map generated by the random forest model in this study reached
0.7769, which is much higher than the result of the WorldPop dataset. The reason for this
phenomenon, we believe, is that our feature engineering performs far better than WorldPop.
Through the WorldPop dataset production process [87], we found that the data they use
are almost all publicly available and free, and most of them are land cover/land use data,
net primary productivity (NPP), annual average temperature data and annual average
precipitation data. However, these data are not directly indicative of human presence. They
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also have limited capabilities in extracting the demographic and socioeconomic features
related to human activities, particularly in complex urban environments [48–51]. We
use socioeconomic data that better characterize the spatial distribution of the population,
such as the POI data, building outline data with height, artificial impervious surface data
and road network data [7,48,58,73]. Among them, the POI data, building outline data
and road network data are commercial data that have undergone a strict quality review.
Compared with WorldPop, which uses similar data from World Food Programme (WFP)
and OpenStreetMap (OSM) such as POI, road network, river network, etc. Our data are
more comprehensive and of better quality and are more adaptable to complex population
spatialization problems. Therefore, the data and features determine an upper-bound on the
accuracy of the population spatialization results, and better models can approximate this
bound more closely (e.g., the GXLS-Stacking model).

Figure 9. (a) Scatter plot of the predicted by WorldPop and the community committee sites population
density at the pixel level (Total of 3485 pixels). (b) Scatter plot of the predicted by WPCBCD and
the community committee sites population density at the pixel level (Total of 3485 pixels). A ln-ln
transformation was conducted for the population density. The black dash line indicate 1:1 line. pph:
persons per hectare. WPCBCD: WorldPop corrected by census data.

5. Discussion
5.1. Socioeconomic Features versus Natural Environmental Features

Our GXLS-Stacking model achieved the best accuracy in pixel-level validation. There-
fore, to better understand why the model can achieve excellent results, we need to perform
a feature importance evaluation of the model. As mentioned earlier, we have a total of six
categories of socioeconomic features and three categories of natural environment features.
To evaluate the importance of the different features in predicting the spatial distribution
of the population, we selected the permutation feature importance technique, which is
defined as the decrease in prediction accuracy when a predictor variable is randomly per-
muted [80]. Compared with the widely used measure of feature importance based on the
decrease in the impurity of the tree-based models, permutation-based feature importance
is less likely to be biased toward variables with many categories [75,88]. The results of the
permutation-based feature importance assessment for the GXLS-Stacking model are shown
in Figure 10.

The results showed that six categories of socioeconomic features ranked in the top six
of feature importance, and three categories of natural environmental features ranked in the
bottom three. The sum of the importance of socioeconomic features was as high as 99.54%,
and the sum of importance of natural environmental features was only 0.46%. Among them,
the sum of the importance of the POI-Density, DtN-POI and Building Volume features
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reached 94.52%, which fully indicated that the GXLS-Stacking model takes into account
more of the influence of these features in the modeling process. In modern society, human
existence inevitably generates demand for different kinds of services, driving the emergence
of different service entities (e.g., hotels, schools, hospitals, restaurants, shopping malls). The
larger the population, the greater the demand for such service entities, so areas with more
POI or closer to POI have a larger population than their counterparts [31,36,37,48,56,89].
People live in buildings most of the day; compared with the 2-dimensional building
area, the 3-dimensional building volume information can better reflect the capacity of the
building to accommodate people. Therefore, areas with larger building volumes tend to
have more people, and many studies have also shown that building volume has a strong
positive correlation with population density [2,36,57,61,73,90]. This is why the sum of the
importance of these three features is so high. Similarly, humans are more distributed near
roads and in building areas from impervious surfaces, so these two features are of some
importance [7,59,91,92].

Figure 10. Permutation-based feature importance results of the GXLS-Stacking model.

DMSP-OLS nighttime light data have been widely used to assess the spatial distribu-
tion of populations and have shown a strong correlation [7,46,63–65]. We used NPP-VIIRS
nighttime light data with better quality and higher spatial resolution than DMSP-OLS [68],
but, surprisingly, the importance of the brightness of NTL feature is only 0.47%. The basic
logic of using the brightness of NTL to distribute populations is that areas with bright lights
at night usually have a large population [64]. However, the blooming effect is inherent to
NTL and indicates that the peri-urban areas are illuminated by city lights [93]. Therefore,
NTL within a small land area inside a city can brighten a large surrounding area [94]. In
addition, although NPP-VIIRS does not have the saturation effect of DMSP-OLS and has a
higher spatial resolution (i.e., 500 m), it is still not sufficient to reflect the population density
in a small geographic area within the city due to the abovementioned problems.

In general, socioeconomic features can better characterize the spatial distribution of
populations than the natural environmental features [36–38,87]. Indeed, the natural envi-
ronmental features play a role in determining the spatial distribution of the population, as
shown in Figure 6. Most of the population is located in the flat area of southeastern Beijing,
while the surrounding high-altitude areas are rarely inhabited by humans. However, when
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both socioeconomic and natural environmental features are present, the socioeconomic
features are more reflective of human activity and existence.

Compared with geographic weighted models that mainly rely on linear regression
in previous population spatialization studies [13], machine learning models can explain
the complex nonlinear relationship between the various population spatial distribution-
influencing factors and the population density. The partial dependence plots (Figure 11)
show the nonlinear relationship between the input variables and the population density in
the GXLS-Stacking model. Most human settlements are distributed in the southeastern low
elevation and flat areas of Beijing, and the population density decreases with increasing
elevation and slope. From the perspective of socioeconomic features, the population density
increases with an increasing POI density, building volume, impervious surface area, and
brightness of NTL and decreases with an increasing distance to the nearest POI. The fitted
curves show that the overall population density decreases with an increasing distance to
the nearest road, but interestingly, the population density increases and then decreases
around the x-axis of 0. We believe this phenomenon is because a small distance from the
road, such as the presence of buildings, leads to an increase in population density and
thus more people than on the road; when the population density reaches a maximum, the
decrease in population density is caused by the reduction in human activity farther from
the road. Similarly, the overall population density increases with an increasing distance to
the nearest river but there is a peak in population density, which also indicates that certain
distances from the river are more livable.

Figure 11. Partial dependency plots for the variables in the GXLS-Stacking model predicting popula-
tion density (a–i). The black ticks at the bottom of the plots are the distribution density of the input
variables. The solid blue line is the fitted curve.
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5.2. Cons and Pros of the GXLS-Stacking Model and Future Improvement

The GXLS-Stacking model is an ensemble-learning-based model, developed by inte-
grating four individual models, GBDT, XGBoost, LightGBM and SVR, and based on the
relationship between relevant geographic variables and the population density [41,76–79].
The GXLS-Stacking model can fully exert the characteristics of the four individual models;
it can better understand the complex nonlinear relationships between various influencing
factors of population spatial distribution and population density; it can better identify
the importance of the regression variables; and it has stronger generalization abilities.
Therefore, the GXLS-Stacking model achieves the best comprehensive performance in the
validation at the pixel level. In addition, the GXLS-Stacking model also performs better
than the random forest model, which is the most widely used in population spatialization
studies and exhibits very high accuracy [2,36–38,48,80,87].

Currently, the GXLS-Stacking model has some limitations, as it integrates four indi-
vidual models through ensemble learning algorithm stacking, so there is a problem of
computational cost in the prediction process, but this problem is acceptable because of
its high accuracy [43,95,96]. In addition, machine learning based models are data-driven
models [97], so the GXLS-Stacking model will have higher requirements on the compre-
hensiveness and quality of data. For example, we consider subway line data and building
outline data with height in the modeling process because it is helpful to disaggregate
the census data, but in some small- and medium-sized cities, there are no subways and
no building outline data with height, which will challenge the applicability of the GXLS-
Stacking model. However, we believe that the GXLS-Stacking model will perform very well
in metropolises with comprehensive and high-quality data, whether in China or in other
countries. From a method perspective, our GXLS-Stacking model can better understand
the complex nonlinear relationships between the various influencing factors of population
spatial distribution and the population density, so even with some missing features, we
believe it is more likely to perform well than the other five models. Therefore, for small-
and medium-sized cities, our modeling process still provides an effective reference for their
population spatialization methods.

As mentioned above, the data and features determine an upper bound on the accuracy
of the population spatialization results, and better models can approximate this bound
more closely. The NPP-VIIRS nighttime light data used in our modeling process are
insufficient to portray a fine spatial distribution of the population due to its low spatial
resolution. Compared to NPP-VIIRS, the Luojia 1-01 nighttime light data have a higher
spatial resolution (i.e., 130 m), can detect a higher dynamic range, and better reflect the
subtle human activities inside the city. Nevertheless, some issues remain when Luojia
1-01 data are used. First, these data contain slight geo-referencing errors, which cause
mismatches with other remote sensing data. Second, some Luojia 1-01 images are affected
by clouds and moonlight, so they cannot be used directly. Third, current Luojia 1-01 imagery
is comprised of single images, which is an obstacle to applications over large areas [98].
Most importantly, Luojia 1-01 does not currently have data for Beijing in 2020 to match the
timing of the other data in this study. In addition, the building outline data from Baidu Map
obtained in our research are not classified according to their functions, which may also lead
to a reduction of the population spatialization accuracy; because with the same building
volume but different building functions, the number of people who can be accommodated
is often different [32,99]. Although our POI data, road network data, and building outline
data with height are all commercial data with strict quality validations, there is also the
problem of missing data in suburban or rural areas, which can cause the GXLS-Stacking
model to underestimate the population in these areas. According to related studies, the
use of cropland data may be useful to improve the precision of population spatialization in
rural areas, which may improve the underestimation of population density in these areas
by the GXLS-Stacking model [100–102]. We believe that after solving these problems, the
performance of the GXLS-Stacking model in the process of population spatialization will
be further enhanced.
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6. Conclusions

In this study, we integrated four individual models: GBDT, XGBoost, LightGBM, and
SVR through ensemble learning algorithm stacking to construct a novel population spatial-
ization model GXLS-Stacking. In addition, socioeconomic data and natural environmental
data were integrated into the modeling to generate a gridded population density map
with a 100 m spatial resolution for Beijing in 2020. Ten-fold cross-validation results and
validation at the pixel level using community household registration data demonstrated
that the GXLS-Stacking model can accurately predict the spatial distribution of a population.
The major findings of this study are as follows.

Based on the various features extracted from multisource datasets, six optimal models
were trained and obtained. The overall cross-validation R2, MAE, and RMSE values of the
GXLS-Stacking model were 0.9687, 0.2564 persons/hectare and 0.3639 persons/hectare,
respectively, which were not only better than the four individual models but also better than
the most widely used random forest model in population spatialization research. The GXLS-
Stacking model also has the best performance in pixel-level verification, where R2, MAE,
and RMSE were 0.8004, 34.67 persons/hectare and 54.92 persons/hectare, respectively.
This shows that the GXLS-Stacking model, compared to the four individual models and
RF model, can better understand the complex nonlinear relationships between the various
influencing factors of the population spatial distribution and the population density; it can
better identify the importance of the regression variables; and it has stronger generalization
abilities. The comparison with the WorldPop dataset shows that the data and features
determine an upper bound on the accuracy of the population spatialization results, and
the GXLS-Stacking model can approximate this bound more closely compared to the other
five models. The result of the feature importance evaluation for the GXLS-Stacking model
shows that when both the socioeconomic features and natural environmental features are
present, the socioeconomic features are more able to characterize the spatial distribution of
the population and the intensity of human activities.

In summary, our results show that the GXLS-Stacking model can predict the spatial
distribution of populations with high precision, which is important for understanding the
spatial patterns of population density. Moreover, the GXLS-Stacking model has the ability
to be generalized to metropolises with comprehensive and high-quality data, whether in
China or in other countries. Furthermore, for small- and medium-sized cities, our modeling
process can still provide an effective reference for their population spatialization methods.
Future studies may consider better types of socioeconomic data to improve the performance
of the GXLS-Stacking model.
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